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Molecularmatchedpair (MMP) analysis has beenused formore than 40 yearswithinmolecular design and is still
an important tool to analyse potency data and other compound properties. The methods used to find matched
pairs range from manual inspection, through supervised methods to unsupervised methods, which are able to
find previously unknownmolecular pairs. Recent publications demonstrate the value of automatic MMP analysis
of publicly available bioactivity databases. TheMMP concept has its limitations, but because of its easy to use and
intuitive nature, it will remain one of the most important tools in the toolbox of many drug designers.
© 2016 Tyrchan, Evertsson. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The challenge of molecular design is the decision what to do next
based on available data, medicinal chemistry expert knowledge, experi-
ence and intuition [1]. In small sets of molecules an experienced chemist
can spot trends and relationships by eye. As the numbers of compounds
increases,more systematical approaches are needed. Already in the early
70s, methods for systematic analysis were published e.g. the Topliss
Scheme [1] or the Craig Plot [2], recommending a systematic stepwise
method of building a structure–activity relationship for a chemical series.
Hansch [3], Free andWilson [4] reasoned in the 1960s that the biological
activity for a set of analogues could be described by the contributions
that substituents or structural elements make to the activity of a parent
structure. Generally speaking these local QSAR methods try to find a
correlation between structural and physicochemical descriptors towards
a given endpoint [4], such as biological activity.
. Evertsson).

vier B.V. on behalf of the Research Ne
y/4.0/).
The term Molecular Matched Pair (MMP) was coined in 2004 by
Kenny and Sadowski [5], for a special case of QSAR; now a widely
used concept throughout drug design processes. In the most common
situation, MMP describes a pair of compounds that differ structurally
at a single site through a well-defined transformation (see Fig. 1) that
is associated with a relative change in a property value. The correlation
between the structural change and the property change is used in
rationalizing observed structure–property-relationships (SPR) and
compound optimization. Several different applications for MMP analy-
sis originating from industry or academia have been developed and
published, highlighting its importance. Among others these include:
Drug-Guru [6,7], Buy me Grease [7], WizePairZ [8], T-Analyse and
T-Morph [9], VAMMPIRE [10] as well as the Hussain-Rea MMP algo-
rithm [11] (Table 1). The MMP concept has been further developed
into Matched Pair Series [12,13] or Matched Molecular Series (MMS)
[14] to describe a set of compounds (not only a pair) differing by only
a single chemical transformation.

Recently an extension of the MMP concept towards biopharmaceu-
tical applications was published, using macromolecular sequence data
twork of Computational and Structural Biotechnology. This is an open access article under
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Fig. 1. Example of a matched molecular pair (MMP).
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to predict the effect of single amino acid substitutions on property
optimization [15].

Besides supporting hypothesis development and testing, an impor-
tant application of MMP is in the detection of outliers, namely a pair of
compounds that show a step change in a property; a so called activity
cliff. These compounds are often themost interesting to study in the de-
sign of compounds targeting improvement of the property showing this
change [16,17]. An inherently difficult problem to detect these activity
cliffs is confounded by experimental uncertainties in the measured
properties, since they are a function of the chemical space representa-
tion [18]. One systematic approach to the detection of activity cliffs
and determination of their depth uses support vector regression [19].
Not only can different chemical space representations lead to significant
changes in the nature of these activity cliffs, but even simple atomic var-
iations can cause dramatic effects on important complex endpoints in
medicinal chemistry; dose to man prediction, potency, clearance, solu-
bility and permeability to name a few [18,20]. If the structural change
(R group) is small and the scaffold in a chemical series is conserved,
the MMP represents a relevant and easy to interpret chemical space
representation. The MMP approach can further be extended to
Table 1
Classified MMP algorithms.

Non-supervised methods
R. Guha (2012) [46]
Fuchs et al. (2015) [15]
T.J. Ritchie et al. (2015) [36]
Matsy (2014) [13]
VAMMPIRE (2013, 2014) [10,49]
C.E. Keefer et al. (2011) [25]
J. Bajorath et al. (2010–2016) [12,14,19,27,43,50–52]
J. Hussain et al. (2010) [11]
L. Cururull-Sanchez (2010) [35]
Papadatos et al. (2010) [42]
WizePairs (2010) [8]
Raymond et al. (2009) [47]
R. Sheridan et al. (2002, 2006) [9,28]

Supervised methods ThricePairs (2010) [34]
Gleeson et al. (2009) [26]
Buy me Grease (2009, 2010) [7,35]
P.J. Hajduk et al. (2008) [33]
D.Y. Haubertin et al. (2007) [30]
Drug Guru (2006) [6]
N.T. Southall et al. (2006) [53]
A. G. Leach et al. (2006) [29]
T.J. Ritchie (2016) [48].

a MMP: Molecular Matched Pair.
b HRF: Hussain and Rea fragmentation.
c RECAP: Retrosynthetic Combinatorial Analysis Procedure.
d MCS: Maximum common substructure.
e SMIRKS: SMILES reaction specification.
f MSM: molecular substructure modification.
g SMARTS: SMiles ARbitrary Target Specification.
h RXN: MDL Molfile Reaction Format.
systematically analyse non-additivity in a structure property relation-
ship (SPR) series [21].

2. Application and Limitation

The assumption that the effect of chemical substitution can be
generalized, is inherently assumed in all QSAR methods, including
the MMP approach, successfully highlighted by the work of Lipinski
et al. who correlated physicochemical properties to oral bioavailability
[22]. With the increasing availability of public databases containing
millions of structure–activity-relationship (SAR) [23,24] or SPR
data, multiple papers have been published applying MMP
concept to: ADME [25,26], bioisosterism [9,27,28], aqueous solubility
[29–32], plasma protein binding [29,30], oral exposure [29], logD
[8,30,32], potency [8,9,27,31,33], intrinsic clearance [7,34], herG
and P450 metabolism [29,32,34], in vitro UGT (Uridine 5′-diphospho-
glucuronosyltransferase) glucuronidation clearance [35], half-life [31],
selectivity against off-targets [31], impact of N- and O-methylation on
aqueous solubility and lipophilicity [36] or mode of action; [31] the
analysis differing only in the MMP algorithm used.

In two relatively recent publications [31,37] an apparently simple
MMP transformation of CH → C-CH3 is analysed in greater detail and
highlights some general limitations and drawbacks of using the MMP
concept prospectively in drug design. The methyl group is a commonly
occurring carbon fragment in small-molecule drugs and can modulate
both the biological and physical properties of a molecule. Two literature
analysis of N2000 cases ofmethylation revealed that an activity boost of
a factor of 10 or more is found with an approximate 8% frequency, and
the probability of achieving a 100-fold boost is less than 1% [33]. How-
ever, the distribution of potency changes in respect to the MMP is
often nearly symmetrical and centred at or near zero resulting in a sim-
ilar likelihood of causing potency gains or losses. A consistent bias of
specific substituents towards improved potency could not be observed.
Nevertheless an understanding of these rare events affecting the bind-
ing potency by improving the IC50 value of a compound by more than
BCI structural fingerprints, CDK 1024-bit path fingerprint 2016
Sequence alignment for peptide MMPa 2015
HRFb 2015
HRFb 2014
MCS and HRFb 2013
Modified HRFb (Pairfinder) 2011
HRFb, modified HRFb, RECAPc fragmentation 2010
Hussain and Rea fragmentation (HRFb) 2010
ECFP6 fingerprints with sub-structure search 2010
dt_commonsubstruct and findsub routine from Daylight and HRFb 2010
MCSd and SMIRKSe 2010
MSMf rule framework based on MCSd 2009
Similarity and MCSd method (T-Analyse) 2008

Defined transformations, SMARTSg

Substructure Search 2010
Defined transformations, RXNh format 2009
Findsub routine from Daylight and defined transformations, SMIRKSe 2009
RECAPc method 2008
Defined transformations, SMIRKSe 2007
Topological torsion similarity and MCSd 2006
Defined transformations, SMARTSg (Leatherface) 2006
SMIRKSe

2006
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100-foldwould provide great value in prospective affinity optimisation.
From logD measurements the free energy of binding can be estimated
for this specific transformation to be about 0.8 kcal/mol [31]. This corre-
sponds to an approximate 3.5-fold boost in potency from methylation
based on partitioning effect alone. A more empirical evaluation of liter-
ature examples by Jorgensen and co-workers suggested that a single
methyl group might actually boost potency approximately 10-fold if
the newmethyl group sits optimally in a hydrophobic pocket of the ac-
tive site [37]. Further they found that methyl substitutions ortho to an
aryl ring can be particularly effective at modulating activity due to the
induction of a conformational change. Coupling the conformational
gain with the correct placing of the methyl group in a hydrophobic
pocket of the protein might therefore result in the greatest improve-
ments of activity. It must be emphasized that this does not explain all
observations of a N100-fold boost in potency and the reasons for this
increase are not necessarily straightforward to rationalize.

Besides the rationalization of the observed property change in a
structural context, the prospective use of MMP is further hampered by
several additional limitations. These are discussed in various publica-
tions [12,38] and include: the problem of generalized relationships
like global versus local effects, molecular context, database, time and
data set dependencies and definition of the relevance of observed differ-
ence (e.g. cut-off at 2 fold change). The interpretation of the relative
property value change in theMMP analysis is also dependent on the ex-
perimental error [39,40]. Commonly authors use e.g. Z-Scores to define
the significance of the potency difference [9], the mean, standard
deviation and standard error [33,41] or a specific value cut-off [42,43].
By assuming different experimental errors Kramer et al. showed how
the minimum number of pairs necessary to achieve significance can
be calculated, as they explained thedifference between statistical signif-
icance and effect size estimation [21,44]. Relevant experimental errors
for public and industry SAR databases are nowadays published [21,39].

Finally, MMP analysis as a linear substituent contribution model
generally assumes additivity and thus do not work in cases of non-
additivity [21]. Matched Square Pairs, an extension of MMP analysis,
can allow a judgement of the quality of generalized relationships. By
looking at squares (pairs of matched-pairs) it is possible to check for
non-additivity and for outliers. The matched square shows four trans-
forms, which could involve a change of the core and two R-groups or
one core and three R-groups as shown in Fig. 2. Non-additivity is calcu-
lated as (pAct3-pAct4)-(pAct2-pAct1) [21] and indicates if there is an
apparent non-linear SAR for a subset of compounds. This in turn could
lead to new binding or interaction hypothesis e.g. conformational
changes or restrictions leading to different binding mode or protein
dynamics.
Core 1 Core 2

Core 1 Core 2

Nonadditivity

pAct1 pAct2

pAct3pAct4

Fig. 2.Matched Square Pairs cycle to determine non-additivity in a SAR analysis.
3. MMP Algorithms

In principle all published MMP algorithms can be defined as super-
vised or non-supervised methods. In supervised methods the chemical
transformation that generates the MMP is predefined, while in the un-
supervised methods an algorithm is used to find all possible pairs in a
set of compounds, mainly using maximum common substructure
(MCS) or fragmentation approaches [38,45]. The advantage with super-
vised methods lies within the precise control of the definition of the
MMP to address a particular question [7,29,34]. On the other hand,
these methods cannot find new and surprising MMPs in the way that
unsupervised methods can.

In the 90s Van Drie and coworkers defined structure activity
landscape index as:

SALIi; j ¼
Ai−Aj
�
�

�
�

1−sim i; jð Þ

where Ai and Aj are the activities of the ith and the jth molecules, and
sim(i, j) is the similarity coefficient between the two molecules [16] in
an approach to find compounds with small structural differences and
large difference in properties. Guha further extended the structure ac-
tivity landscape to predict compounds with ability to have activity cliffs
[46]. Later, Wassermann et al. [27] analysed matched molecular pairs,
generated by a modified reimplementation of the Hussain-Rea algo-
rithm, in respect to their ability to introduce activity cliffs using public
domain compound data. Approximately 250 nonredundant substitu-
tionswere identifiedwith tendency to display activity cliffs. A definition
of activity cliff is given and distribution of MMPs is shown. Hu et al. [43]
further looked at these activity cliffs with substructures (MMP) in con-
trast to similarity searches and could identify more relevant cases with
MMP. Sheridan et al. [9] screened for the most common chemical re-
placements in a large collection of drug-like molecules from the MDL
Drug Data Report. Different treatments of replacements in rings are im-
plemented and used to identify potential bioisosteres. A maximum
common substructure (MCS) approach was used to define the MMP,
based on a clique detection method and one single replacement side.
Similarly, Haubertin and Bruneau [30] used about 9000 predefined
functional groups to analyse the effects on a corporate compound
deck in respect to various compound properties. For MMP creation
they used a RECAP fragmentation algorithm which identified one of
the predefined groups. Hajduk and Sauer [33] looked at the influence
of common chemical substitutions on ligand potency. Overall 127differ-
ent chemical changes were compared and shifts analysed. MMPs were
identified by a pairwise comparison with the findsub routine from
Daylight, which looks at terminal or side chain groups only. The
analysed database consisted of 84,000 compounds from lead optimisa-
tion of more than 30 different targets. They couldn't find a substituent
which perfectly biased the result in an always gain or loss, the distribu-
tionwas normal and nearly symmetrical centred at or near 0, with a po-
tency change probability of 10 fold gain around ~8.5%, 100 fold less than
1%; similar to the findings of Schönherr et al. [31].

Raymond et al. [47] used a MCS based MMP algorithm to identify
chemical changes within a collection of 2,7 million compounds and
discussed statistical relevance of these modifications. Also published
in 2009, Gleeson et al. [26] used a partial supervised MMP algorithm
by defining a given transformation described by a substructure com-
bined with a retrieval algorithm to find all transformations of this sub-
structure to derive ADMET rules of thumb. Hussain and Rea [11,34]
introduced in 2010 an efficient fragmentation algorithm to systemati-
cally extract all MMPs from a given compound data set. They perform
single, double and triple cuts at all bonds, without breaking ring
bonds. Some retrieval problems are discussed e.g. alcohol to amide
would retrieve compounds where a carboxylic acid has been substituted
with an amide.

Image of Fig. 2
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Dossetter [34] analysed groups in a similar fashion as Topliss [1] in
applying a statistical analysis to in vitro human microsomal metabolic
stability data for small phenyl group substituents using AstraZeneca
inhouse proprietary software, ThricePairs. ThricePairs uses SMARTS
patterns to specify substructures. This was later followed by WizePairZ
[8], described in 2010 byWarner et al. as a tool which can automatically
detect and identify matched molecular pairs and encoded them in
SMIRKS reaction notation. In essence, it is aMCSmethodwhich captures
different levels of the local single site environment similar to the ap-
proach of Sheridan. Using SMIRK definitions Ritchie et al. [48] looked
at the replacement of mono-substituted benzene ring with aromatic
or aliphatic heterocycle MMPs and the effect on nine ADME properties.

Weber et al. [10] published in 2013 a strategy to relate the substitu-
tion effect within matched molecular pairs to the atom environment
within the cocrystallized protein–ligand complex with the aim to pre-
dict ligand binding from extrapolation of the effect of the substitution
with the molecular environment taken into account [49].

In 2014 Leon et al. [50] introduced amethod to automatically gener-
ate synthetically accessible MMPs by applying reaction rules following
the retrosynthetic combinatorial analysis procedure (RECAP) with the
aim to generate more chemically interpretable and accessible pairs. A
library of more than 92,000 RECAP-MMPs was generated from public
domain compounds active against 435 different targets exclusively
utilizing high-confidence activity data.

MMP has also lately been coupled to network analysis of composi-
tion and topology to be able to predict potency as in QSAR type ap-
proaches [51]. Similarly, Ghosh et al. [52] recently published a study
where pairs from matched molecular series (MMS) were coupled to
SAR information creating a database of MMS with SAR characteristics
to be used in future medicinal chemistry work. They applied the frag-
mentation technique of Hussain and Rea to a set of 48,000 bioactive
compounds.
4. Conclusion

MMP has been used for more than 40 years withinmolecular design
and is still an important tool to analyse potency data and many other
compound properties. The methods used to identify matched pairs
range from manual inspection, through supervised methods to unsu-
pervised methods. The MMP framework allows one to study numerous
properties (most commonly binding affinity or potency) and to ratio-
nalize the design of the next compound tomakewithin a series. Despite
its usefulness several limitations have to be considered, including: the
representation of molecular structures, selection of the most appropri-
ate algorithm for the task, and the statistical analysis method applied
to the data to ensure that the found property difference is indeed rele-
vant. This is especially important in respect to identifying activity cliffs,
where a small chemical change relates to a large change in potency or
another property of interest. These activity cliffs are often the most im-
portant MMPs to study within a lead series. In contrast to traditional
SAR analysis, where similar compounds are assumed to have similar
properties, activity cliffs describe the substitution pattern with the
most impact upon a small structural change.

Because of the intuitive nature of the MMP concept through
connecting small structural changes to a property change, and the ma-
turity of its framework and simplicity of use, it will remain one of the
most important tools in the toolbox of a drug designer.
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