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A wide variety of estimators of the between‐study variance are available in

random‐effects meta‐analysis. Many, but not all, of these estimators are based

on the method of moments. The DerSimonian‐Laird estimator is widely used

in applications, but the Paule‐Mandel estimator is an alternative that is now

recommended. Recently, DerSimonian and Kacker have developed two‐step

moment‐based estimators of the between‐study variance. We extend these

two‐step estimators so that multiple (more than two) steps are used. We

establish the surprising result that the multistep estimator tends towards the

Paule‐Mandel estimator as the number of steps becomes large. Hence, the

iterative scheme underlying our new multistep estimator provides a hitherto

unknown relationship between two‐step estimators and Paule‐Mandel estimator.

Our analysis suggests that two‐step estimators are not necessarily distinct

estimators in their own right; instead, they are quantities that are closely related

to the usual iterative scheme that is used to calculate the Paule‐Mandel estimate.

The relationship that we establish between the multistep and Paule‐Mandel

estimator is another justification for the use of the latter estimator. Two‐step

and multistep estimators are perhaps best conceptualized as approximate

Paule‐Mandel estimators.
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1 | INTRODUCTION

Meta‐analysis statistically combines effect size estimates from different studies in order to calculate a quantitative
summary of the evidence base. Two important outcomes from a meta‐analysis are the estimates of the overall effect size
and the between‐study variance (the variance of the studies' true effect sizes). Between‐study heterogeneity refers to the
possibility that there is more variation in the studies' observed effect sizes than what would be expected by sampling
variability alone1,2 and is often present in meta‐analyses.3-5 Characteristics of the included studies (eg, differences
between populations from which participants were sampled or treatments across studies) can be incorporated as
moderators in meta‐regressions to explore and explain the between‐study heterogeneity.6-8 However, random‐effects
meta‐analyses are often used to account for, but not explain, between‐study heterogeneity.
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A wide variety of estimators are available for the between‐study variance. Two recent papers9,10 review existing
research on these estimators and recommended either the Paule‐Mandel (PM) estimator11 or the restricted maximum
likelihood (REML) estimator.12 However, the DerSimonian‐Laird (DL) estimator is most often used in practice.5,13,14

The popularity of the DL estimator is due to its simplicity, because it is calculated from an easily computed noniterative
method and also because it is already familiar to applied meta‐analysts. In this paper, we focus on estimators that are
motivated by the method of moments, which includes the DL and PM estimators, but not REML.

In particular, we use the general method of moments estimator (ie, with an arbitrary set of weights for the effect
sizes) proposed by DerSimonian and Kacker15 to develop a new multistep DL estimator. This idea extends the two‐step
DL (DL2) estimator, which was also proposed by DerSimonian and Kacker.15 The usual (one‐step) DL estimator uses the
inverse of the studies' within‐study sampling variances as weights to estimate the between‐study variance. In the
two‐step–estimation procedure, the estimate of the usual DL estimator is calculated in the first step and this estimate
is then included in the weights of the second step. Full details of the DL2 estimator are provided in Section 3. The
statistical properties of the DL2 estimator are largely unknown, because the method has rarely been topic of further
study. Bhaumik et al16 studied the statistical properties of the DL2 estimator and concluded that for rare events, both
the DL2 and PM estimators are negatively biased. It was our initial intuition that allowing the number of steps to tend
to infinity in our new multistep estimator would define a new type of estimator. However, working empirically to begin
with and then mathematically, we will demonstrate that the PM estimator is obtained if the number of steps tends
towards infinity. Hence, we will instead establish the relationship between the two‐step estimators and PM estimator,
which is another justification for the use of the PM estimator.

The rest of the paper is set out as follows. We continue with describing the random‐effects model for meta‐analysis
in Section 2. In Section 3, we describe three existing moments‐based estimators, DL, DL2, and PM. Our new multistep
estimator is introduced in Section 4. Subsequently, we apply these estimators to three contrasting examples in Section 5
where we empirically show that the multistep estimator tends towards the PM estimator as the number of steps becomes
large, where this convergence occurs quickly in practice. Section 6 contains mathematics that formally establishes the
relationship between the multistep estimators and PM estimator. We explore the use of meta‐regression models in
Section 7, and we conclude with a short discussion in Section 8.
2 | THE RANDOM ‐EFFECTS MODEL

The random‐effects model assumes that the effect size estimates yi, i=1, …, n, are extracted from separate studies. This
model can be written as

yi ¼ μþ μi þ ϵi; (1)

where μ is the average true effect size, μi is a random effect indicating the difference between the ith study's true effect
size and μ, and ϵi is the ith study's sampling error. It is commonly assumed that μi∼N(0,τ2) where τ2 is the between‐study
variance and ϵi∼Nð0; σ2i Þ, where σ2i is the within‐study sampling variance of the ith study. Furthermore, all μi and ϵi are
assumed to be mutually independent. The within‐study sampling variances σ2i are usually estimated in practice and then
assumed to be known in the analysis. We will emphasize that the σ2i are estimated by writing σ̂2

i as their estimates.
The parameter μ is usually of primary interest. The usual method for making inferences about μ initially estimates τ2

and then treats the resulting estimate as fixed and known.9,17 Hence, the conventional weights in the random‐effects
model, 1=ðσ̂2

i þ τ̂2Þ, are treated as fixed and known and the usual inferential procedure for μ is straightforward.8 However,
the estimate of the between‐study variance, τ̂2, is our primary interest here with moment‐based estimators as our focus.
3 | MOMENT ‐BASED METHODS FOR ESTIMATING THE BETWEEN ‐STUDY
VARIANCE

Most of the moment‐based estimators for τ2 are a special case of a general method of moments estimator.15 To derive
this general estimation method, DerSimonian and Kacker15 propose methodology for estimating τ2 using an arbitrary
set of weights ai, i=1, …, n, where all ai are fixed positive constants. To estimate τ2, DerSimonian and Kacker15 propose
equating∑n

i¼1aiðyi−μ̂Þ2, where μ̂ ¼ ∑n
i¼1aiyi=∑

n
i¼1ai, to its expected value. As explained by DerSimonian and Kacker,15

this results in the estimating equation
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τ̂ 2MM ¼ ∑n
i¼1aiðyi−μ̂Þ2

� �
− ∑n

i¼1aiσ̂
2
i−∑

n
i¼1a

2
i σ̂

2
i =∑

n
i¼1ai

� �
∑n

i¼1ai−∑
n
i¼1a

2
i =∑

n
i¼1ai

; (2)

where negative estimates τ̂ 2MM from (2) are truncated to zero (because τ2 ≥ 0). An often overlooked point is that the
calculation of the expectation of ∑n

i¼1aiðyi−μ̂Þ2, which gives rise to the estimating Equation 2, ignores the uncertainty
in the σ̂2

i and has taken σ2i ¼ σ̂2
i . Although when presenting Equation 2, we have emphasized that the estimates σ̂2

i are
used in the calculation; this does not clearly convey the fact that the estimation does not take their uncertainty into
account. Kulinskaya and Dollinger18 and Hoaglin19 criticize moment‐based methods for this type of reason, because
ignoring uncertainty in σ̂2

i may cause bias in the estimate of τ2 especially if the sample size of the studies is small. By
ignoring the uncertainty in the within‐study variances, we have that E½τ2MM � ¼ τ2 before truncation to zero, but the
truncated estimator is positively biased.20,21

3.1 | The DerSimonian‐Laird (DL) estimator

The DL estimator,1τ̂ 2DL, is obtained by taking ai ¼ 1=σ̂2
i in Equation 2. We then have∑n

i¼1aiσ̂
2
i−∑

n
i¼1a

2
i σ̂

2
i =∑

n
i¼1ai ¼ n−1,

so that Equation 2 simplifies when using this standard set of weights. Negative estimates are again truncated to zero.
Uncertainty in σ̂2

i is, as in Equation 2, neglected by treating the weights ai ¼ 1=σ̂2
i as fixed constants. This may result

in bias when estimating τ 2 using the DL estimator especially if sample sizes of the studies is small.18,19

3.2 | The two‐step DerSimonian‐Laird estimator

DerSimonian and Kacker15 propose an alternative estimator that is an extension of the DL estimator. The usual DL esti-
mate τ̂ 2DL, described in the previous section, is calculated in the first step. The two‐step DL (DL2) estimator adds a second
step by incorporating τ̂ 2DL into the weights and computes τ̂ 2DL2 using estimating Equation 2 with ai ¼ 1=ðσ̂2

i þ τ̂ 2DLÞ.
To describe the two‐step DL estimator more explicitly, and also to define the PM and multistep DL estimators below,

it is convenient to define the quantity

QGENðτ2Þ ¼ ∑
n

i¼1

ðyi−μ̂ðτ2ÞÞ2
σ̂2
i þ τ2

; (3)

where μ̂ðτ2Þ ¼ ∑n
i¼1yi= σ̂2

i þ τ2
� �

=∑n
i¼11= σ̂2

i þ τ2
� �

. Then QGEN(0) is the usual Q statistic used in meta‐analysis.22,23 From
Equation 2 with ai ¼ 1= σ̂2

i þ τ̂ 2DL
� �

, we have

τ̂ 2DL2 ¼
QGEN τ̂2DL

� �
− ∑n

i¼1σ̂
2
i = σ̂2

i þ τ̂2DL
� �

−∑n
i¼1σ̂

2
i = σ̂2

i þ τ̂2DL
� �2

=∑n
i¼11= σ̂2

i þ τ̂2DL
� �h i

∑n
i¼11= σ̂2

i þ τ̂2DLð Þ−∑n
i¼11= σ̂2

i þ τ̂ 2DLð Þ2=∑n
i¼11= σ̂2

i þ τ̂ 2DLð Þ ; (4)

where we again truncate negative estimates to zero. The weights ai ¼ 1= σ̂2
i þ τ̂2DL

� �
are intuitively appealing, because

we then weight by estimates of the studies' total precisions which are also the standard weights when making inferences
about μ in the random‐effects model.8,24 Using these weights raises further statistical issues, because they are now
functions of both the σ̂2

i and the estimated between‐study variance τ̂2DL. There is statistical error in both of these
estimated variance components, and so treating the weights ai ¼ 1= σ̂2

i þ τ̂2DL
� �

as fixed constants continues to have
the potential to have unfortunate implications for the estimation.

It is possible to use other estimators in the first step, and DerSimonian and Kacker15 also propose using the Cochran
analysis of variance (ANOVA) estimator22,25 that is based on an unweighted sum of squares for this purpose. However,
the DL estimator is so common in application that we only explore the use of two‐step and multistep estimators that use
this particular estimator. Nonetheless, our main results will apply regardless of the type of estimator used in the first
step as we will explain below. Hence, generalizability of our results is not restricted by using the DL estimator in the
first step, but the results also apply if, for instance, the Cochran ANOVA estimator is used in the first step.

3.3 | The Paule‐Mandel (PM) estimator

Anothermoment‐based estimator for τ 2 is the PMestimator.11 This estimationmethod exploits the fact thatQGENðτ2Þ∼χ2n−1
under the assumptions made in the random‐effects model (normal sampling distribution for all yi and known within‐
study variances σ2i ). Hence, τ̂2PM is obtained by matching QGEN(τ

2) to its expected value and τ̂2PM is the solution to
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QGENðτ̂ 2PMÞ ¼ n−1: (5)

For any given dataset, QGEN(τ
2) is a monotonically decreasing continuous function of τ2. As a consequence,

Equation 5 always provides a unique estimate15,26-28 if QGEN(0)≥(n−1). If QGEN(0)<(n−1), then no positive solution to
the estimating Equation 5 exists, and we take τ̂ 2PM ¼ 0. The estimating Equation 5 is nonlinear and so must be solved
numerically, but this is straightforward in practice. An empirical Bayes estimator for estimating τ 229,30 was developed
independently, but this has subsequently been shown to be equivalent to the PM estimator.9,28

Unlike the DL and DL2 estimator and other moment‐based estimators, the PM estimator does not directly use esti-
mating Equation 2. This is because the general method of moments treats the weights ai as fixed (and therefore known)
constants, but the PM estimator uses weights 1=ðσ̂2

i þ τ2Þ that are explicitly unknown (because τ 2 is unknown). The PM
estimator is motivated using the method of moments, but otherwise, there is no direct connection between the PM esti-
mator and other moment‐based estimators. We introduce our new multistep estimator in the next section, and we will
illustrate the relationship between the PM and the two‐step estimator.
4 | THE MULTISTEP DERSIMONIAN AND LAIRD ESTIMATOR

In this section, we develop the multistep DL estimator as a natural extension of the DL2 estimator. From Equation 4, we
have that the DL2 estimator is simply the estimate from the more general estimating Equation 2 where the weights
are ai ¼ 1= σ̂2

i þ τ̂ 2DL
� �

. The key observation is that the two‐step estimator uses weights that are the reciprocal of the
estimated total study variances, where the between‐study variance is estimated using the usual DL estimator. A natural
way to extend this estimator to define a three‐step estimator is to use weights that are reciprocal of the estimated total
study variances, where the between‐study variance is estimated using the DL2 estimator. Hence, we define τ̂ 2DL3 to be

τ̂ 2DL3 ¼
QGEN τ̂ 2DL2

� �
− ∑n

i¼1σ̂
2
i = σ̂2

i þ τ̂ 2DL2
� �

−∑n
i¼1σ̂

2
i = σ̂2

i þ τ̂ 2DL2
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DL2
� �� 	

∑n
i¼11= σ̂2

i þ τ̂ 2DL2
� �

−∑n
i¼11= σ̂2

i þ τ̂ 2DL2
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DL2
� � ;

where as before, we truncate negative estimates to zero. We can then define a four‐step estimator in a similar way, using

Equation 2 with weights ai ¼ 1= σ̂2
i þ τ̂ 2DL3

� �
, and then a five‐step estimator using weights ai ¼ 1= σ̂2

i þ τ̂2DL4
� �

, and so

on. In general, we define the (k+1)th step DL estimator as

τ̂ 2DLkþ1
¼

QGEN τ̂ 2DLk
� �

− ∑n
i¼1σ̂

2
i = σ̂2

i þ τ̂ 2DLk
� �

−∑n
i¼1σ̂

2
i = σ̂2

i þ τ̂ 2DLk
� �2

=∑n
i¼11= σ̂2

i þ τ̂2DLk
� �� 	

∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� �

−∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� � ; (6)

for k ≥ 1, where τ̂ 2DL1 is defined to be the usual DL estimator τ̂ 2DL. As usual, we truncate the resulting estimate

from Equation 6 to zero if the solution is negative. Written explicitly in terms of this truncation, the (k+1)th step DL
estimator is

τ̂2DLkþ1
¼ max 0;

QGEN τ̂2DLk

� �
− ∑n

i¼1σ̂
2
i = σ̂2

i þ τ̂ 2DLk

� �
−∑n

i¼1σ̂
2
i = σ̂2

i þ τ̂ 2DLk

� �2
=∑n

i¼11= σ̂2
i þ τ̂ 2DLk

� �� 	
∑n

i¼11= σ̂2
i þ τ̂ 2DLk

� �
−∑n

i¼11= σ̂2
i þ τ̂ 2DLk

� �2
=∑n

i¼11= σ̂2
i þ τ̂ 2DLk

� �
0
BB@

1
CCA: (7)

In practice, we compute τ̂ 2DLk recursively by first computing τ̂ 2DL, then τ̂2DL2 , then τ̂ 2DL3 , and so on until we reach the
required value of k. However, all of these estimators are available in closed form and so it is in principle also possible to
write τ̂ 2DLk in this way. Assuming that the limit exists, we define lim

k→∞
τ̂ 2DLk ¼ τ̂ 2DL∞ . We will see below that, whenever con-

vergence occurs, τ̂ 2DL∞ ¼ τ̂2PM , so that instead of defining a new estimator, we establish the relationship between existing
estimates by taking this limit.
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5 | EXAMPLES

In this section, we apply the DL, PM, DL2, and multistep DL estimators to three contrasting examples. Having illus-
trated our main findings empirically using these examples, we will demonstrate them mathematically in Section 6.
5.1 | Characteristics of the 3 examples

Our first example is a meta‐analysis by Bangert‐Drowns et al31 studying the effect of school‐based writing‐to‐learn inter-
ventions on academic achievement. This meta‐analysis consists of 48 estimated standardized mean differences
(ie, Hedges' g). The second example is obtained from Sterne et al32 and is a meta‐analysis on the effectiveness of intra-
venous magnesium in acute myocardial infarction. This meta‐analysis consists of 16 estimated log odds ratios. The third
example is a meta‐analysis on the efficacy of two treatments for post‐traumatic stress disorder.33 This meta‐analysis
consists of 10 standardized mean differences. The metafor package34 was used to calculate the DL and PM estimators,
and we used our own bespoke code to recursively calculate the multistep DLk estimator. R code for applying these esti-
mators to the examples is available via https://osf.io/paqzm/.
5.2 | Results

Table 1 shows the DL, DL2, DLk, and PM estimates of τ2 for all three examples. For each example, we calculated the
multistep DL estimator until the (k+1)th step DL estimator was the same as the kth step estimator up to 4 decimal
places. Convergence was taken to have been reached at this point, so that any further steps would result in the same
estimate to this level of numerical accuracy. From Table 1, we can see that this convergence was reached in 6, 10,
and 4 steps, for example, one, two, and three, respectively. Furthermore, we can see that in each case, the DL2 estimate
is closer to the PM estimate than the DL estimate and that the DLk estimate converges to the PM estimate. The way in
which this convergence occurred was different for each example. For the first example obtained from Bangert‐Drowns
et al,31 the DL estimate was notably less than the PM estimate. Then the DL2 estimate took a large step towards the PM
estimator and after this convergence was quickly reached. For the second example obtained from Sterne et al,32 the DL
estimate was notably greater than the PM estimate and once again, the DL2 estimate took a large step towards the PM
estimator (and in fact “overshot” this). Convergence of the multistep DL estimator was reasonably fast although the
sequence produced by the DLk estimates was not monotone until k ≥ 7. For the third example obtained from Ho et al,33

the DL and PM estimators are similar and convergence was very quickly reached.
TABLE 1 The DerSimonian‐Laird (DL), two‐step DerSimonian‐Laird (DL2), multistep DerSimonian‐Laird (DLk) (where k refers to the kth

step), and Paule‐Mandel (PM) estimates for the three example datasets

Estimate Bangert‐Drowns et al31 Sterne et al32 Ho et al33

DL 0.0455 0.2239 0.0076

DL2 0.0652 0.1587 0.0078

DL3 0.0684 0.1841 0.0079

DL4 0.0688 0.1736 0.0079

DL5 0.0689 0.1778

DL6 0.0689 0.1761

DL7 0.1768

DL8 0.1765

DL9 0.1766

DL10 0.1766

PM 0.0689 0.1766 0.0079

https://osf.io/paqzm/
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5.3 | Conclusions

Although the way in which the multistep DL estimator converged to the PM estimator was different in each case, all

three examples illustrated the surprising finding that lim
k→∞

τ̂2DLk ¼ τ̂2DL∞ ¼ τ̂2PM . A large number of simulations (see

https://osf.io/dpuzs/ for R code) using ai ¼ 1=σ̂2
i and ai ¼ 1= σ̂2

i þ τ̂2
� �

, where τ̂2 is either the DL estimate or the
Cochran ANOVA estimate, as study weights in the first step confirmed that multistep estimators converge to the PM
estimator. Hence, this indicates that convergence was not only a property of the selected data sets and that convergence
also occurred if the DL estimator was not used in the first step. Our findings are in agreement with the observation by
DerSimonian and Kacker15 that two‐step estimators better approximate the method of Paule and Mandel, and the con-
clusion by Bhaumik et al16 that performance of the DL2 and PM estimator is similar. This is because we have observed
that DL2 is the second step in an iterative scheme that takes us from τ̂ 2DL to τ̂2PM .
6 | PROVING (WHEN CONVERGENCE OCCURS) THAT THE MULTISTEP
ESTIMATOR CONVERGES TO THE PAULE ‐MANDEL ESTIMATOR

As explained above, in addition to our three examples, many simulated datasets have shown that multistep estimators
converge to the PM estimator. In this section, we provide mathematical proofs to formally establish this limit. We will
explain why it is not necessary that the DL estimator is used in the first step, so that our findings apply to multistep
estimators regardless of the nature of the estimation used in the first step.
6.1 | Lemma: agreement with respect to truncation to zero of the DerSimonian and Laird
and Paule‐Mandel estimators

We start by proving the lemma that the DL and the PM estimators always agree in the sense that, for any given dataset,
they are either both zero (if QGEN(0)≤(n−1)) or both positive (if QGEN(0)>(n−1)). It is conceptually appealing that these
two estimators agree in this way, and this is easily proved, but we do not think that this result has been stated
previously.

Proof: If QGEN(0)<(n−1), where QGEN(τ
2) is defined in Equation 3, then the PM estimator is truncated to zero as

explained in Section 3.3. Furthermore, the first term in the numerator of Equation 2 is also QGEN(0) when the DL
weights of ai ¼ 1=σ̂2

i are used. As noted in Section 3.1, we then also have ∑n
i¼1aiσ̂

2
i−∑

n
i¼1a

2
i σ̂

2
i =∑

n
i¼1ai ¼ ðn−1Þ in the

numerator of Equation 2. Hence, the DL estimator is also truncated to zero if QGEN(0)<(n−1). If QGEN(0)=(n−1), then
immediately from their estimating equations, both the DL and PM estimators are zero. Finally, if QGEN(0)>(n−1), then
no truncation for either estimator is required, so that the DL and PM estimators are both positive.
6.2 | Proving that if convergence of the multistep estimator occurs, then it is to the Paule‐
Mandel estimate

Having established our lemma, we will prove that the estimate of the multistep estimator equals the PM estimate if con-
vergence occurs. We will prove this first for cases where the convergence is to a positive estimate and then to an esti-
mate of zero.
6.2.1 | The case where the estimate converged to is positive

Assume that convergence occurs and the resulting estimate is positive, so that τ̂ 2DLkþ1
¼ τ̂2DLk ¼ τ̂2>0. We substitute

τ̂2DLkþ1
¼ τ̂ 2DLk ¼ τ̂ 2 into Equation 6, where this equation correctly describes the iteration from DLk to DLk+1

(because the estimate is positive and no truncation is necessary). Then solving the resulting equation for QGENðτ̂2Þ
results in

QGENðτ̂2Þ ¼ ∑
n

i¼1

σ̂2
i þ τ̂ 2

σ̂2
i þ τ̂ 2

−
∑n

i¼1 σ̂2
i þ τ̂ 2

� �
= σ̂2

i þ τ̂ 2
� �2

∑n
i¼11= σ̂2

i þ τ̂ 2ð Þ ¼ ðn−1Þ;

which from Equation 5 means that τ̂ 2 ¼ τ̂ 2PM .

https://osf.io/dpuzs/
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6.2.2 | The case where the estimate converged to is zero

Assume that convergence occurs and the resulting estimate is either zero or truncated to zero, so that τ̂2DLkþ1
¼

τ̂ 2DLk ¼ τ̂ 2 ¼ 0. If we substitute τ̂ 2DLkþ1
¼ τ̂2DLk ¼ τ̂2 ¼ 0 into Equation 7, the term in square brackets of 7 simplifies to

(n−1) and this equation becomes

0 ¼ max 0;
QGENð0Þ−ðn−1Þ

c


 �
; (8)

where c ¼ ∑n
i¼11=σ̂

2
i−∑

n
i¼11=σ̂

4
i =∑

n
i¼11=σ̂

2
i>0. Equation 8 is satisfied only if QGEN(0)−(n−1)≤0, from which the

lemma in Section 6.1 implies that both the DL and PM estimators are zero (which is also the assumed value of
τ̂ 2DLkþ1

¼ τ̂2DLk ¼ τ̂2). Hence, if the convergence of the multistep estimator is to zero, then the PM estimate is also zero,
so that τ̂ 2 ¼ τ̂ 2PM .
6.2.3 | Failure of convergence of the multistep estimator

Although we have observed convergence of the multistep estimators in thousands of simulated datasets (see https://osf.
io/dpuzs/), it is possible to create examples where the multistep estimator does not converge. As a concrete example of
nonconvergence, imagine a meta‐analysis with 4 effect sizes y1=−0.2, y2= 0.1, y3=−0.05, and y4=−0.3, with corre-
sponding σ21 ¼ σ22 ¼ 0:01 and σ23 ¼ σ24 ¼ 0:2. The DL estimate is τ̂ 2DL ¼ 0:016. Using this τ̂ 2DL in estimating Equation 4
gives τ̂ 2DL2 ¼ 0. Hence, τ̂ 2DL3 is then the usual DL estimator and, instead of achieving convergence, the multistep estima-
tor oscillates between 0.016 and 0, and does not converge to τ̂ 2PM ¼ 0:0066. The difficulties for achieving convergence in
this example would appear to be because the DL and PM estimates differ so substantially and also because the within‐
study variances are of different magnitudes (so that QGENðτ2Þ is sensitive to the value of τ 2 when this is small). This
example is a counterexample to the conjecture that the multistep estimator always converges to the PM estimator.
6.2.4 | Conclusions

Regardless of whether or not the convergence of the multistep estimator is to a positive estimate, we have proved that if
convergence occurs, then this is to the PM estimate. Simulating thousands of meta‐analyses (see https://osf.io/dpuzs/)
did not reveal the convergence problems suggesting that these problems only occur in rare cases such as the artificial
one described above. We conclude that that, in practice, multistep estimators converge to the PM estimate and also that
they cannot converge to anything other than the PM estimate.

Although the finding that multistep estimators may not converge reduces the utility of our analysis, our analytical
results are more general than might be supposed, because it is not limited to using the DL estimator in the first step. All
that is necessary for our results is that subsequent steps weight by the reciprocal of the estimated total study variances
where the estimated between‐study variance is the estimate at the previous step. Hence, our work establishes a link
between multistep estimators per se and the PM estimator rather than between just the DLk and PM estimators.
6.3 | The relationship with an established Newton‐Raphson method for calculating the
Paule‐Mandel estimate

DerSimonian and Kacker15 propose a Newton‐Raphson algorithm for calculating the PM estimate (see their Appendix A).
This algorithm sets τ̂ 2PM to zero if QGEN(0) ≤ (n−1). If QGEN(0) > (n−1), then τ̂2PM>0 and an initial value for the algorithm
must be chosen. Then the Newton‐Raphson algorithm takes τ̂2kþ1 ¼ τ̂ 2k þ Δτ̂ 2NR, where

Δτ̂2NR ¼ QGEN τ̂ 2k
� �

−ðn−1Þ
∑n

i¼1
1

σ̂2
i þ τ̂ 2k

� �2 yi−μ̂ τ̂ 2k
� �� �2; (9)

where μ̂ τ̂ 2k
� � ¼ ∑n

i¼1yi= σ̂2
i þ τ̂ 2k

� �
=∑n

i¼11= σ̂2
i þ τ̂2k

� �
. Negative estimates are truncated to zero, and the algorithm keeps

iterating until convergence is reached. Jackson et al35 explain how to generalize this Newton‐Raphson procedure so that
it can be applied to meta‐regression models.

https://osf.io/dpuzs/
https://osf.io/dpuzs/
https://osf.io/dpuzs/
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We can also calculate the corresponding Δτ̂ 2 when using Equation 6 in the iterative scheme that produces our
multistep estimators as Δτ̂ 2 ¼ τ̂ 2DLkþ1

−τ̂ 2DLk . From Equation 6, this is

Δτ̂ 2 ¼
QGENðτ̂ 2DLk Þ− ∑n

i¼1σ̂
2
i = σ̂2

i þ τ̂ 2DLk
� �

−∑n
i¼1σ̂

2
i = σ̂2

i þ τ̂2DLk
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� �� 	

∑n
i¼11=ðσ̂2

i þ τ̂2DLkÞ−∑
n
i¼11= σ̂2

i þ τ̂2DLk
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� � − τ̂ 2DLk :

Putting the right‐hand side of the numerator over a common denominator results in

Δτ̂ 2 ¼
QGEN τ̂2DLk

� �
−ðn−1Þ

∑n
i¼11= σ̂2

i þ τ̂2DLk
� �

−∑n
i¼11= σ̂2

i þ τ̂2DLk
� �2

=∑n
i¼11= σ̂2

i þ τ̂ 2DLk
� �: (10)

Equation 10 also illustrates why the multistep estimator converges to the PM estimator in practice. This is because
the multistep estimator converges if and only if Δτ̂ 2 ¼ 0, so that QGEN τ̂2DLk

� �
−ðn−1Þ ¼ 0 and τ̂ 2DLk ¼ τ̂ 2PM . If instead the

PM estimate has not been converged to, Equation 10 shows that the estimator takes a step in the direction of the PM

estimate in the kth step, because if QGENðτ̂ 2DLkÞ<ðn−1Þ, then Δτ̂ 2<0 and if QGEN τ̂2DLk
� �

>ðn−1Þ, then Δτ̂2>0.

Comparing Equations 9 and 10, we can also see that the iterative scheme for the multistep estimator is closely
related to the established Newton‐Raphson method for calculating τ̂2PM . In Appendix A, we show that the expectation
of the denominator of Equation 9, under the model yi∼N μ; σ̂2

i þ τ̂2k
� �

and where the yi are independent (where we sup-
press the distinction between τ̂ 2k and τ̂2DLk ), is equal to the denominator of Equation 10. This is reminiscent of the rela-
tionship between Fisher's scoring and Newton‐Raphson methods in maximum likelihood estimation. This is because
Fisher's scoring algorithm solves the likelihood‐based estimating equation by replacing the observed information in
the denominator in a Newton‐Raphson procedure by its expectation (the expected information). This observation
provides us with intuition into why multistep estimators tend towards the PM estimator as the number of steps
becomes large.
7 | THE RANDOM ‐EFFECTS META ‐REGRESSION MODEL

For ease of exposition, we have presented our main results for random‐effects meta‐analyses, but these are readily
extended to meta‐regression models where study level covariate effects are included in the model. To establish that
our results generalize in this way, we consider meta‐regression models with an arbitrary number of covariates in this
section. All of the results in this section simplify to those shown previously.

The random‐effects meta‐regression model is an extension of model 1, where we assume that

yi ¼ xiβþ μi þ ϵi;

where xi is the 1×p row vector of covariates associated with this study and β is the p×1 column vector of regression
parameters of interest. Unless an intercept‐free regression is required, the first “covariate” in each study is taken to
be one to include the intercept. A matrix formulation of this standard model is

Y jX∼NðXβ;Δþ τ2IÞ; (11)

where Y is a column vector containing the yi, X is the n×p design matrix (sometimes referred to as the model matrix)

whose ith row is xi, Δ ¼ diagðσ̂2
i Þ and I is the n×n identity matrix. The parameter τ 2 in model 11 is called the residual

between‐study variance and describes the heterogeneity in the effect size estimates that is not explained by the
covariates.
7.1 | The general method of moments for meta‐regression

Jackson et al35 generalize the general method of moments (Equation 2) to the meta‐regression setting. They
define A = diag(ai), a diagonal matrix containing the weights, and B = A−AX(XtAX)−1XtA. They also define the
Qa statistic
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Qa ¼ Y tBY :

Jackson et al35 use the subscript a to emphasize that the weights ai are used, and so use the notation Qa for this
quadratic form. This Qa statistic reduces to the the quadratic form in the numerator of Equation 2 in the meta‐
analysis setting. Jackson et al35 show that the meta‐regression version of the generalized method of moments in
Equation 2 is

τ̂ 2MM ¼ Qa−trðBΔÞ
trðBÞ ; (12)

where tr(·) denotes the trace of a matrix and tr(B)>0. As in the meta‐analysis setting, we truncate τ̂ 2MM when the
solution to Equation 12 is negative.
7.2 | Paule‐Mandel and DerSimonian and Laird estimators for meta‐regression

7.2.1 | The Paule‐Mandel estimator

The PM‐type estimator in the meta‐regression setting proposed by Jackson et al35 uses weights ai ¼ 1=ðσ̂2
i þ τ2Þ when

computing the Qa statistic. We denote the resulting Qa statistic using the notation QGEN(τ
2) in order to emphasize

the dependence of the weights on the unknown parameter τ 2. This is a direct generalization of QGEN(τ
2) in Equation 3.

Since QGEN(τ
2) follows a χ 2

‐distribution with n−p degrees of freedom, the PM estimator is obtained by solving

QGENðτ̂2PMÞ ¼ n−p: (13)

If QGEN(0)<n−p, then because for any given dataset QGEN(τ
2) is a monotonically decreasing continuous function in

τ 2, there is no solution to this equation and we take τ̂2PM ¼ 0.35 Following similar arguments as in the meta‐analysis
case, if QGEN(0) ≤ n−p, then τ̂ 2PM ¼ 0 and if QGEN(0) > n−p, then τ̂2PM > 0.
7.2.2 | The DerSimonian and Laird estimator

The standard weights of ai ¼ 1=σ̂2
i produce a DL‐type estimator of τ 2 when using Equation 12, so that this estimator is

just a special case of the general method of moments. We then have A=Δ−1 so that B=Δ−1−Δ−1X(XtΔ−1X)−1XtΔ−1.
Hence, with these weights, the numerator of Equation 12 becomes

QGENð0Þ−trðBΔÞ ¼ QGENð0Þ−trðΔ1=2BΔ1=2Þ;

where this final equality is because tr(CD)=tr(DC), where C and D are square matrices of the same size, and because
Δ1/2Δ1/2=Δ. We can then further simplify this expression by taking

trðΔ1=2BΔ1=2Þ ¼ n−p:

This identity is because tr(Δ1/2BΔ1/2)=tr(I)−tr(Δ−1/2X(XtΔ−1X)−1XtΔ−1/2), where tr(I)=n and
tr(Δ−1/2X(XtΔ−1X)−1XtΔ−1/2)=p. This final equality follows from the observation that the hat matrix corresponding to
a design matrix X is given by X(XtX)−1Xt, where tr(X(XtX)−1Xt)=tr(XtX(XtX)−1). For an identifiable regression
XtX(XtX)−1 is a p×p identity matrix, which results in the well‐known result that the trace of the hat matrix is p. Then
we simply observe that Δ−1/2X(XtΔ−1X)−1XtΔ−1/2 is the hat matrix corresponding to the design matrix Δ−1/2X, so that
its trace is also p. The numerator of Equation 12 therefore simplifies to QGEN(0)−(n−p) for the DL estimator.
7.3 | Multistep estimators for meta‐regression

We can motivate multistep estimators of τ 2 for meta‐regression in exactly the same way as in meta‐analysis. For exam-
ple, using the DL estimator, we first calculate τ̂ 2DL using Equation 12 and weights of ai ¼ 1=σ̂2

i , truncating the estimate
to zero if the solution is negative. We can then calculate τ̂2DL2 using Equation 12 and weights of ai ¼ 1= σ̂2

i þ τ̂ 2DL
� �

, from
which we can then calculate τ̂ 2DL3 and so on. In general, we calculate τ̂2DLkþ1

using Equation 12 with weights of



VAN AERT AND JACKSON 2625
ai ¼ 1= σ̂2
i þ τ̂ 2DLk

� �
. Any negative solutions are truncated to zero. This process generalizes the multistep estimators for

meta‐analysis described in Section 4.
Let Aτ̂ 2DLk

¼ ðΔþ τ̂ 2DLk IÞ−1 denote the diagonal matrix containing the weights when computing the (k+1)th step
DL estimator, for k≥1. Let Bτ̂ 2DLk

denote the corresponding matrix B computed using Aτ̂ 2DLk
. From Equation 12, we can

then write

τ̂2DLkþ1
¼

QGENðτ̂2DLk Þ−tr Bτ̂ 2DLk
Δ

� �
tr Bτ̂ 2DLk

� � ; (14)

for k≥1, where we truncate the resulting estimate to zero if the solution is negative. Equation 14 is a direct generaliza-
tion of Equation 6 for meta‐regression. Written explicitly in terms of the truncation, the (k+1)th step estimator is

τ̂ 2DLkþ1
¼ max 0;

QGENðτ̂2DLkÞ−tr Bτ̂ 2DLk
Δ

� �
tr Bτ̂ 2DLk

� �
0
@

1
A; (15)

and Equation 15 is a direct generalization of Equation 7.
7.4 | Lemma: Agreement with respect to truncation to zero of the DL and PM estimators

In this section, we generalize the lemma in Section 6.1 for meta‐regression. As explained above, the PM estimator is pos-
itive if and only if QGEN(0)>n−p. As also explained above, the numerator of Equation 12 simplifies to QGEN(0)−(n−p)
when using the DL estimator (ai ¼ 1=σ̂2

i ). Hence, the DL estimator is also positive if and only if QGEN(0)>n−p. If instead
QGEN(0)≤n−p, then both the DL and PM estimators are zero. We therefore have established that the type of weak agree-
ment described in Section 6.1 between the PM and DL estimators also applies in the meta‐regression setting.
7.5 | Proving that if convergence occurs, then it is to the Paule‐Mandel estimate

Although we do not prove that the multistep estimator always converges for the meta‐regression model, we have also
simulated thousands of datasets and conducted meta‐regression analyses with one continuous covariate (see https://
osf.io/5wqvd/ for R code) and did not observe any convergence problems. We have established that artificial examples
can be created where the multistep estimator does not converge but that this nonconvergence is unlikely to occur in
practice in both meta‐analysis and meta‐regression. In the remainder of this section, we generalize the results in
Section 6.2 for meta‐regression.
7.5.1 | The case where the estimate converged to is positive

Assume that convergence occurs and the resulting estimate is positive, so that τ̂ 2DLkþ1
¼ τ̂2DLk ¼ τ̂2>0. We substitute

τ̂2DLkþ1
¼ τ̂ 2DLk ¼ τ̂ 2 into Equation 14, where this equation correctly describes the iteration from DLk to DLk+1 (because

the estimate is positive and no truncation is necessary). Then solving the resulting equation for QGENðτ̂2Þ results in

QGENðτ̂ 2Þ ¼ tr Bτ̂ 2ðΔþ τ̂2IÞÞ ¼ ðn−pÞ;�
where the final equality follows from an argument involving a hat matrix that is very similar to the one made in

Section 7.2.2. Equation 13 implies that τ̂ 2 ¼ τ̂ 2PM .
7.5.2 | The case where the estimate converged to is zero

Assume that convergence occurs and the resulting estimate is either zero or truncated to zero, so that

τ̂ 2DLkþ1
¼ τ̂ 2DLk ¼ τ̂ 2 ¼ 0. If we substitute τ̂ 2DLkþ1

¼ τ̂ 2DLk ¼ τ̂ 2 ¼ 0 into Equation 15, then this equation becomes

0 ¼ max 0;
QGENð0Þ−ðn−pÞ

c


 �
;

https://osf.io/5wqvd/
https://osf.io/5wqvd/
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where c=tr(B0)>0. Equation 8 is satisfied only if QGEN(0)−(n−p)≤0, from which the lemma in Section 7.4 implies that

both the DL and PM estimators are zero (which is also the assumed value of τ̂2DLkþ1
¼ τ̂ 2DLk ¼ τ̂ 2). Hence, if the convergence

of the multistep estimator is to zero, then the PM estimate is also zero, so that τ̂ 2 ¼ τ̂ 2PM . We have therefore established
that multistep estimates also converge to the PM estimator in meta‐regression models whenever convergence occurs.
8 | DISCUSSION

Two‐step estimators have recently been presented as estimators of the between‐study variance. We have extended these
two‐step estimators to a multistep estimator and show by means of empirical examples, simulations, and also analyti-
cally that the multistep estimator converges to the PM estimator if the number of steps is sufficiently large. This conver-
gence occurs quickly in practice. Although examples can be produced where the multistep estimator does not converge,
we have shown that the PM estimator is obtained in the limit when convergence is obtained and that convergence prob-
lems seldom occur in practice. Hence, our analysis suggests that the two‐step estimators are better conceptualized as
part of the usual iterative scheme that is used to calculate estimates using the PM estimator. Our findings also clarify
why previous work15,16 observed that the DL2 estimator was closer to the PM estimator than the DL estimator. We
therefore suggest that the two‐step estimators, as well as the proposed multistep estimator, are not seen as truly distinct
estimators but as steps in an iterative procedure that results in the PM estimator.

Now that REML and the PM estimator are computationally feasible and established in standard software, we align
ourselves with those who argue that these estimators should be preferred over the DL estimator.9,10 The case for REML
becoming the default estimation method is now strong. However, the PM estimator is a viable alternative that is cur-
rently the best estimator that uses the method of moments. An advantage of the PM estimator compared to REML is
that, in a small proportion of meta‐analyses, REML suffers from convergence problems.5 A byproduct of our work is
the development of a new iterative scheme that can be used to calculate the PM estimator.

Our work is a good example of scientists exploring an issue of interest with the expectation of discovering something
new and then making new, but unanticipated, discoveries. However, discovering the link between the multistep and PM
estimator is in some respects even more satisfying than inventing a new class of estimators of the between‐study vari-
ance. We have already explained that the PM estimator has been found to be equivalent to the empirical Bayes estima-
tor, and our results provide another justification for the use of the PM estimator. This estimator would therefore seem to
have a very wide variety of justifications and connections with other approaches, which suggests that it has a useful role
in both methodological and applied work.

The estimation equation for the multistep estimator in Equation 6 closely resembles a fixed‐point iteration problem,36

because the estimate of the between‐study variance in the previous step is included in the weights of the estimation
equation in the next step. Studying the multistep estimator using methods for fixed‐point iteration may yield further
insights into the characteristics of meta‐analysis datasets where convergence problems occur. We leave this as an
opportunity for future research, which would probably be best undertaken by experts in numerical analysis.

We have considered the random‐effects models for meta‐analysis and meta‐regression. Both of these models assume
that the outcome data are independent. More sophisticated models that allow for correlated data include multivariate
meta‐analysis37 and network meta‐analysis.38 Jackson et al39 have already developed PM estimators for network meta‐
analysis, but our connection betweenmultistep and PM estimators provides an alternative possibility for motivating them.
There is currently no PM estimator for the between‐study covariance matrix in multivariate meta‐analysis, but two exten-
sions of the DL estimator have been proposed.40,41 Generalizing one or both of these estimators to allow an arbitrary set of
weights, and so develop a general method of moments estimator, could then motivate the development of multistep esti-
mators in the context of multivariate meta‐analysis. When convergence is reached as the number of steps becomes large,
PM estimators of the between‐study covariance matrix could then be defined in this limit. However, considerable meth-
odological development is needed to extend our work to the network andmultivariate meta‐analysis settings, because this
would first require the development of a generalized method of moments for correlated outcome data. We therefore leave
this as a tantalizing possibility for further work. However, enthusiasm for this idea is likely to be mitigated by the finding
that the multistep estimator does not always converge. Matters will become more complicated in the multivariate setting
and some convention for defining a PM estimator in this way when convergence is not obtained would be needed.

To summarize, we have extended the two‐step estimator so that multiple steps can be used and reproduced the PM
estimator in the limit when the number of steps are sufficiently large. The PM estimator therefore has another justifi-
cation as a result of its relationship with the proposed multistep estimator. We suggest that the meta‐analysis
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community should no longer consider the two‐step and multistep estimators to be truly distinct estimators but should
instead regard these type of estimators as approximate PM estimators.
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APPENDIX A

In this appendix, we prove that

E ∑
n

i¼1

1

σ̂2
i þ τ̂ 2k

� �2 yi−μ̂ τ̂ 2k
� �� �2" #

¼ ∑
n

i¼1

1
σ̂2
i þ τ̂2k

−

∑
n

i¼1

1

σ̂2
i þ τ̂2k

� �2
∑
n

i¼1

1
σ̂2
i þ τ̂ 2k

;

under the model yi∼N μ; σ̂i2 þ τ̂ 2k
� �

, where all yi are independent and μ̂ τ̂ 2k
� � ¼ ∑n

i¼1yi= σ̂2
i þ τ̂ 2k

� �
=∑n

i¼11= σ̂2
i þ τ̂ 2k

� �
.

To simplify the notation, let wi ¼ 1= σ̂2
i þ τ̂ 2k

� �
. Then the required expectation is

E ∑
n

i¼1
w2
i yi−μ̂ τ̂2k

� �� �2� 	
¼ E ∑

n

i¼1
w2
i yi−μþ μ−μ̂ τ̂ 2k

� �� �2� 	

¼ E ∑
n

i¼1
w2
i ðyi−μÞ2

� 	
þ E ∑

n

i¼1
w2
i ðμ̂ðτ̂2kÞ−μÞ2

� 	
−2E ∑

n

i¼1
w2
i ðyi−μÞðμ̂ðτ̂2kÞ−μÞ

� 	
: (A1)
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The first term in Equation A1 is

E ∑
n

i¼1
w2
i ðyi−μÞ2

� 	
¼ ∑

n

i¼1
w2
i E ðyi−μÞ2

� � ¼ ∑
n

i¼1
w2
iVar½yi� ¼ ∑

n

i¼1
wi: (A2)

The second term in Equation A1 is

E ∑
n

i¼1
w2
i μ̂ τ̂ 2k

� �
−μ

� �2� 	
¼ ∑

n

i¼1
w2
i E μ̂ τ̂ 2k

� �
−μ

� �2h i
¼ Var μ̂ τ̂ 2k

� �� �
∑
n

i¼1
w2
i ;

where Var μ̂ τ̂2k
� �� � ¼ Var ∑n

i¼1wiyi=∑
n
i¼1wi

� � ¼ 1=∑n
i¼1wi. Hence, the second term in A1 is equal to

∑n
i¼1w

2
i

∑n
i¼1wi

: (A3)

The third term in Equation A1 is

−2E ∑
n

i¼1
w2
i ðyi−μÞ μ̂ τ̂ 2k

� �
−μ

� �� 	
¼ −2∑

n

i¼1
w2
i Cov yi;

∑n
j¼1wjyj
wþ

" #
;

where wþ ¼ ∑n
i¼1wi and we have used the definition of μ̂ τ̂2k

� �
and use the summation over j to compute it, because

μ̂ τ̂ 2k
� �

takes the same value for all i in the summation. The yi are independent so that all covariances in the above
summation are zero unless i=j. Hence, the third term is

−2∑
n

i¼1
w2
i Cov yi;

∑n
j¼1wjyj
wþ

" #
¼ −2∑

n

i¼1
w2
i Cov yi;

wiyi
wþ

� 	
¼ −2

∑n
i¼1w

2
i Cov½yi;wiyi�
wþ

;

where Cov[yi,wiyi]=wiCov(yi,yi)=wiVar(yi)=1 so that the third term is

−2
∑n

i¼1w
2
i

wþ
: (A4)

The summation of Equations A2, A3, and A4, recalling that wi ¼ 1= σ̂2
i þ τ̂ 2k

� �
, gives the required expectation.


