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parkinson’s disease prognostic 
scores for progression of cognitive 
decline
Galina Gramotnev1, Dmitri K. Gramotnev1* & Alexandra Gramotnev1,2

clinical and biochemical diversity of parkinson’s disease (pD) presents a major challenge for accurate 
diagnosis and prediction of its progression. We propose, develop and optimize pD clinical scores as 
efficient integrated progression biomarkers for prediction of the likely rate of cognitive decline in PD 
patients. We considered 269 drug-naïve participants from the Parkinson’s Progression Marker Initiative 
database, diagnosed with idiopathic PD and observed between 4 and 6 years. Nineteen baseline 
clinical and pathological measures were systematically considered. Relative variable importance and 
logistic regressions were used to optimize combinations of significant baseline measures as integrated 
biomarkers. parkinson’s disease cognitive decline scores were designed as new clinical biomarkers 
using optimally categorized baseline measures. Specificities and sensitivities of the biomarkers reached 
~93% for prediction of severe rate of cognitive decline (with more than 5 points decline in 4 years on 
the Montreal Cognitive Assessment scale), and up to ~73% for mild-to-moderate decline (between 1 
and 5 points decline). The developed biomarkers and clinical scores could resolve the long-standing 
clinical problem about reliable prediction of pD progression into cognitive deterioration. the outcomes 
also provide insights into the contributions of individual clinical and pathological measures to pD 
progression, and will assist with better-targeted treatment regiments, stratification of clinical trial and 
their evaluation.

Parkinson’s disease (PD) is a clinically and biochemically heterogeneous neurodegenerative disorder whose diag-
nosis, prognosis and evaluation of the likely progression remain essentially clinical and present significant chal-
lenge1–4. So far, there are no accepted diagnostic or progression biomarkers for PD2,5–7. The difficulties with the 
development of biomarkers for this disorder are largely related to heterogeneity of PD, its poor clinicopathologi-
cal correlation and instability of the clinical phenotypes, and significant overlaps of the clinical and biochemical 
characteristics with healthy controls and patients suffering from other neurodegenerative disorders1,2,5–9. This 
significantly impedes optimal therapy advice and evaluation of new drugs and therapies for PD.

Significant focus of the search for PD biomarkers has been on the identification of suitable individual clinical 
or biochemical measures (markers). These included biochemical compounds in the cerebrospinal fluid (CSF), 
including such potential biomarkers as alpha synuclein (α-syn), total tau (t-tau), phosphorylated tau 181 (p-tau), 
and beta-amyloid 1–42 (Aβ42)3,6,10–15. The other significant group of measures as potential PD biomarkers were 
derived from blood, including insulinlike growth factor 1 (IGF-1) and epidermal growth factor (EGF)1,3,14–18, and 
from other peripheral tissue biopsies3,18. Genetic markers19,20 and dopamine transporter (DaT) imaging21,22 were 
also considered as potential biomarkers for PD diagnosis and progression.

However, despite the apparent success with identifying numerous individual measures that could aid with 
PD diagnosis and prognosis, it has become apparent that no such measure could be an efficient biomarker for 
this disorder and its progression2,6,23. This is because no individual measure is capable of reflecting the vast het-
erogeneity of the clinical and biochemical presentation of this disease. For example, although DaT imaging was 
recently indicated by the European Medicines Agency and Food and Drug Administration as an ‘enrichment 
biomarker’ for inclusion in clinical trials24, significant deficiencies and lack of reliability of this biomarker (when 
it comes to prediction of PD progression) have also been highlighted25. A way out of these difficulties has been 
seen in simultaneous use of multiple individual measures to ensure more accurate PD diagnosis and progno-
sis2,6,23. It is expected that integrated biomarkers constructed as combinations of individual measures could be 
capable of capturing and properly reflecting the heterogeneous nature of PD, thus enabling its reliable prognosis. 
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In integrated biomarkers, failure of individual measures as PD markers for a particular patient could be effectively 
compensated by other better-performing measures.

It was demonstrated that integrated biomarkers constructed as combinations of multiple CSF measures could 
be efficient in distinguishing PD patients from healthy controls and from patients with multiple system atrophy 
and Alzheimer disease26. Other integrated biomarkers for PD diagnosis combined such measures as olfactory 
function determined by the University of Pennsylvania Smell Identification Test (UPSIT) score, age, gender, fam-
ily history of PD and genetic risk score (GRS)27, and several different CSF metabolites28. Integrated biomarkers 
were also described for prediction of cognitive impairment and dementia in PD patients within 2 and 10 years 
of the diagnosis29,30. However, the choices of the clinical and pathological measures for the developed integrated 
biomarkers26–30 were not sufficiently justified or optimized. The effects of age and other clinical and pathological 
measures are still unclear because of their possible non-linearities that were not considered in the previous pub-
lications. Finally, the previously proposed integrated PD biomarkers26–30 resulted in rather complex evaluating 
techniques with little chance of their direct clinical application.

Our goal is to use 19 commonly evaluated clinical and pathological measures to systematically construct 
and optimize integrated biomarkers for prediction of severe and mild-to-moderate rates of cognitive decline 
among patients with PD. This will include the development and characterization of Parkinson’s Disease Cognitive 
Decline (PDCD) scores as new clinical progression biomarkers. These scores that are similar to the Framingham 
Risk Score (assessing the 10-year risk of cardiovascular disease31,32) and DRAGON score (predicting outcomes 
for ischemic stroke patients33) will enable simple clinical evaluation of risks for newly diagnosed PD patients to 
experience severe or mild-to-moderate rates of cognitive decline.

Study participants
The data for this study was obtained from the Parkinson’s Progression Marker Initiative (PPMI) sponsored by the 
Michael J. Fox Foundation for Parkinson’s Research34. The PPMI database contained 269 participants who satis-
fied the following criteria for inclusion in the current study: (1) all of them were diagnosed with idiopathic PD 
within 2 years prior the initial screening visit and record of their baseline characteristics in the PPMI database13; 
(2) the period of the subsequent observation of each participant was no less than 48 months, (3) none of them 
were treated for PD prior to recording their baseline characteristics in the database; (4) all of them had evidence 
of dopamine deficiency (determined by means of DaT imaging35–37); and (5) cognitive function of each partic-
ipant was evaluated at least 4 times during the period of observation. For some participants, certain measures 
were not available in the PPMI database, and this constituted missing values. The numbers of observations for the 
considered variables in this study are presented in Supplementary Table 1.

As was explained above in the Introduction, early accurate diagnosis of PD is difficult because of its hetero-
geneity and poor distinguishability from other DaT deficit Parkinsonian syndromes, including dementia with 
Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and cortical basal syndrome35,36. Therefore, 
it was acknowledged that the PPMI PD cohort used in the current study is likely to include a small number of 
participants with the indicated atypical Parkinsonian syndromes, although at each study visit (at PPMI) the PD 
diagnosis was reassessed to identify and exclude non-PD subjects35. This aspect could be regarded in two differ-
ent ways. Firstly, this could be considered as a limitation of the current study, if only PD patients are of interest. 
Alternatively, the developed integrated biomarkers could be regarded as predictors of the rate of cognitive decline 
among patients who has early-stage PD or another mimicking syndrome (which is still of significant clinical 
importance). More information on the selection of the study participants can be found elsewhere35.

Results and Discussions
Variables. Global cognitive function of the study participants and its decline over time were evaluated using 
the Montreal Cognitive Assessment (MoCA) scale, which is often used for the evaluation of global cognitive 
function in PD patients29,30. As indicated in the Introduction, integrated biomarkers were described for predic-
tion of cognitive impairment and dementia in PD patients within 2 and 10 years of the diagnosis29,30. However, 
prediction of cognitive impairment or dementia developing within a certain time interval29,30 may not always be 
a reflection of the severity of PD progression. Patients may reach cognitive impairment but not experience rapid 
or severe progression (rate) of their cognitive decline, if their baseline (pre-existing) cognitive state was already 
low. On the other hand, patients who do not reach cognitive impairment within a specified time interval could 
still be progressing in their cognitive decline rapidly if their baseline cognitive state was high. Such cases may 
not be reliably captured by the integrated biomarkers for prediction of cognitive impairment29,30. Therefore, the 
dependent variable adopted in this study was the rate of cognitive decline (RoCD), defined for each participant 
as the negative coefficient of the linear regression fitted to the changing with time MoCA scores. Thus, RoCD was 
the average reduction of the MoCA score within one month.

The RoCD variable was categorized to reasonably differentiate between severe and mild-to-moderate cog-
nitive declines. As follows from Supplementary Fig. 1, just under 10% of patients with early stages of PD had 
RoCD > 0.11 month−1, which corresponds to the average decline of their MoCA scores by more than 5 points 
in 4 years. Such rate of cognitive decline was regarded as severe, as it is likely to cause cognitive impairment 
within around 4 years, even where the baseline MoCA score (MoCAb) is high. At the same time, the values 
of RoCD between 0.02 month−1 and 0.11 month−1 (corresponding to the 4-year decline in the MoCA score 
between 1 and 5 points) were regarded as mild-to-moderate cognitive decline. The proportion of participants 
with mild-to-moderate cognitive decline was about 30% (Supplementary Fig. 1).

Twenty-two predictor variables were considered, including clinical measures, CSF measures, blood plasma 
measures, and dopamine transporter single-photon emission computer tomography (DaT) measures37 includ-
ing the caudate-to-background (DaTc) and putamen-to-background (DaTp) specific binding ratios. The clinical 
measures included age at baseline, gender, years of prior education, past or present depression and/or anxiety 
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(DA) as a medical condition, baseline MoCA score (MoCAb), baseline Geriatric Depression Scale (GDS) score, 
baseline total State-Trait Anxiety Inventory (STAI) score, baseline University of Pennsylvania Smell Identification 
Test (UPSIT) score, baseline combined score for sections 1, 2 and 3 of the Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale (UPDRS1–3), genetic risk score (GRS) calculated by summing the risk allele 
counts for the 30 variants (see the Methods section below) associated with risk of PD27,38, and baseline rapid 
eye movement sleep behavior disorder (RBD) score. The CSF measures at baseline included α-syn, t-tau, p-tau, 
p-tau/t-tau, and Aβ42. The collection process for the CSF measures was described elsewhere13. Baseline plasma 
measures included EGF, IGF-1, triglycerides, and cholesterols. The summary description of the 22 predictor var-
iables used in this study, including their corresponding observation numbers, mean and median values, and the 
respective standard deviations, are presented in Supplementary Table 1.

Relative variable importance. Relative variable importance for the 19 variables (excluding EGF, triglycer-
ides and cholesterols) obtained using the model averaging approach (see Methods below) is shown in Fig. 1. EGF, 
triglycerides and cholesterols had limited sample sizes of 123 (Supplementary Table 1), which is why they could 
not be consistently involved in the model averaging procedure with all other variables. However, the analysis of 
these three variables within the available limited samples and involving various subsets of other predictors indi-
cated their low importance for prediction of probabilities of the adopted characteristic levels of cognitive decline. 
Therefore, these three variables were not considered any further in this study.

It can be seen that the sets of important variables for prediction of the severe and mild-to-moderate cogni-
tive declines are significantly different (Fig. 1). The most important variables for predicting the severe cognitive 
decline (with RoCD > 0.11 month−1) are t-tau, α-syn, Aβ42, GDS, RBD, Gender, STAI, UPSIT, DaTp, years of prior 
education, and UPDRS1–3, and (Fig. 1a). These variables have probabilities of around 50% or greater to appear 
in the most probable model predicting severe cognitive decline (Fig. 1a). At the same time, the most important 
variables (with the probability more than 50% to appear in the most probable model) for predicting RoCD > 0.02 
month−1 include Aβ42, Age, MoCAb, years of prior education, RBD, UPDRS1–3, GDS, and GRS (Fig. 1b). This 
suggests that integrated markers predicting the severe and mild-to-moderate cognitive declines should be signif-
icantly different and must be based on different sets of variables.

Logistic regressions. The outcomes of the multiple logistic regressions determining significant effects 
(with p < 0.1) of the considered 19 variables on the probabilities for the patients with early stages of PD to 
experience RoCD > 0.11 month−1 and RoCD > 0.02 month−1 are shown in Table 1. Any categorization was 
chosen/optimized to ensure maximum significance of the categorized variables. Any missing coefficients in 
Table 1 indicate that these coefficients were not significant. The significant variables in Table 1 are not limited 
to those indicated by their high relative variable importance (Fig. 1). Although the development of the logistic 
regressions was informed by the outcomes in Fig. 1, all 19 predictors were additionally checked directly for 

Figure 1. Relative variable importance (probabilities for the variables to appear in the most probable model) 
for prediction of: (a) severe cognitive decline with RoCD > 0.11 month-1; and (b) decline with RoCD > 0.02 
month−1.
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their significance in numerical and categorical forms. The significant intrinsic similarities between the sets of 
variables that were significant in the developed logistic regressions (Table 1) and those identified by the model 
averaging approach (Fig. 1) further corroborated the validity of both the methods and their outcomes for the 
considered data.

Interactions between the variables involved in the models were also checked, including any possible 
non-linear effects. Significant non-linear effects of Age and p-tau/t-tau were included in the model for prediction 
of RoCD > 0.02 month−1 (Table 1). Age at baseline was previously regarded as the main predictor variable, and 
its combination with different groups of other baseline clinical measures, CSF parameters, genetic characteris-
tics, and DaT imaging parameters were considered29,30. However, the uncovered significant non-linearities of 
age effects on cognition (Table 1) raise questions about the accuracy of the previously obtained outcomes. The 
non-linear dependence of the probability/risk of RoCD to exceed 0.02 month−1 on baseline age is shown in 
(Fig. 2), with the largest slope between 48 and 62 years. Above 62 years, there was no significant dependence of 
the probability of cognitive decline on age (Fig. 2).

It can be seen that the GRS variable is not important for prediction of the severe rate of cognitive decline 
(Fig. 1 and Table 1), but it is significant (under 10%) for prediction of mild-to-moderate RoCD (Table 1). Because 
the GRS variable might not be easily available in the clinical practice, we also considered the multiple logistic 
regression model for RoCD > 0.02 month−1 in the absence of the GRS variable. In this case the model presented 
in Table 1 for RoCD > 0.02 month−1 remained essentially the same – with the same characteristic levels of signif-
icance of the remaining variables and variations of the regression coefficients under 4%.

integrated biomarkers for pD progression. The linear combinations of the significant variables/
measures in Table 1 weighed by their respective regression coefficients were considered as the integrated PD 
progression biomarkers for the severe and mild-to-moderate cognitive declines. For the biomarker predicting 
RoCD > 0.02 month−1, we have:
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whereas for the biomarker predicting RoCD > 0.11 month−1 (severe cognitive decline):

Predictor variables

RoCD > 0.11 month−1 RoCD > 0.02 month−1

Coefficient p-value Coefficient p-value

Aβ42 (pg/ml) − 0.0156 0.013 −0.00559 0.005

α-syn (pg/ml) − 0.00363 0.005

α-syn < 1950 pg/ml (base: α-syn ≥ 1950 pg/ml) 1.05 0.015

t-tau (pg/ml) 0.150 0.001

t-tau > 60 pg/ml (base: t-tau ≤ 60 pg/ml) 1.17 0.039

p-tau ≥ 17 pg/ml (base: p-tau < 17 pg/ml) 2.66 0.026

p-tau / t-tau −8.89 0.007

(p-tau / t-tau)2 7.63 0.007

MoCAb (score at baseline) 0.257 0.002

UPDRS1–3 (score at baseline) 0.0633 0.074 0.0302 0.028

RBD (score at baseline) 0.339 0.090 0.161 0.019

GDS (score at baseline) 0.457 0.022 0.132 0.079

STAI (score at baseline) 0.109 0.055

Gender (base: male) − 3.64 0.067

Education (years) −0.151 0.010

Age (years) −13.53937 0.014

Age2 0.3564239 0.014

Age3 – 0.0040239 0.016

Age4 0.0000166 0.018

GRS < – 0.01 (base: GRS ≥ – 0.01) 0.758 0.060

DaTp (putamen average) 2.94 0.074

Table 1. Logistic regression outcomes for the significant effects of the clinical and pathological measures on the 
probabilities of RoCD > 0.11 month−1 and RoCD > 0.02 month−1 in patients with early stages of PD. Samples: 
232 participants (RoCD > 0.11 month−1); 241 participants (RoCD > 0.02 month−1).
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Figures 3a,b show the outcomes of the quantitative analysis of these biomarkers using the ROC regression 
analysis, with the corresponding areas under the curve (AUC), sensitivities (Se) and specificities (Sp) pre-
sented in Table 2 for the Ms and Mm markers. It can be seen that the marker Ms for prediction of RoCD > 0.11 
month−1 (severe cognitive decline) has excellent sensitivity and specificity (both above 90% – Table 2). The 
sensitivity and specificity for the marker Mm predicting RoCD > 0.02 month−1 are 73% and 74%, respectively 
(Table 2).

The integrated biomarkers Ms and Mm (Eqs. (1) and (2)) were developed for RoCD > 0.11 month−1 and 
RoCD > 0.02 month−1. For each of the two cases, optimized sets of variables and measures constituting the inte-
grated biomarkers Ms and Mm were determined (Eqs. (1) and (2)). In particular, it was shown that the optimized 
sensitivities and specificities were notably higher for RoCD > 0.11 month−1 compared to RoCD > 0.02 month−1 
(Table 2). As indicated above, the selection of these RoCD categories was reasonable, as these categories contained 
reasonable proportions of the study participants (Supplementary Fig. 1) and reflected distinctly different progres-
sions of cognitive decline associated with PD.

Supplementary Fig. 2 illustrates variations of the sensitivities and specificities of the optimally constructed 
integrated biomarkers, if the boundary values of the RoCD categories (for the severe and mild-to-moderate 
cognitive declines) are different from 0.02 month−1 and 0.11 month−1. Optimal construction of the biomarkers 
means that, for each boundary value of RoCD, the corresponding set of significant independent variables was 
constructed and optimized independently (by maximizing the levels of significance of the independent variables 
in the model). As a result, it was shown that the sensitivities and specificities of the optimized integrated bio-
markers monotonically (albeit non-linearly) increase from their values for Mm for RoCD0 = 0.02 month−1 to the 
values for Ms for RoCD0 = 0.11 month−1 (Supplementary Fig. 2), which further corroborated the consistency of 
the obtained outcomes.

The integrated biomarkers Ms and Mm should be used in sequence. For example, firstly, we may use the Mm 
biomarker for a particular PD patient to predict the probability of RoCD > 0.02 month−1. If this probability is low, 
then the patient is unlikely to develop cognitive decline. If this probability is large, the patient is likely to expe-
rience mild-to-moderate decline or severe cognitive decline. In this case the Ms integrated biomarker (Eq. (2))  
should be used to determine the probability for the patient to have severe cognitive decline. If this probability is 
low, then the conclusion should be that the patient is likely to develop mild-to-moderate cognitive decline (with 
0.02 month−1 < RoCD ≤ 0.11 month−1). If, however, this probability is large, then the final conclusion should be 
that the patient is likely to develop severe cognitive decline (with RoCD > 0.11 month−1). Using this procedure, it 
will be possible to categorize any PD patient as not likely to have any cognitive decline (RoCD ≤ 0.02 month−1), 
or as likely to have mild-to-moderate cognitive decline (0.02 month−1 < RoCD ≤ 0.11 month−1), or as likely to 
have severe cognitive decline (RoCD > 0.11 month−1). The probabilities of experiencing RoCD > 0.11 month−1 
and RoCD > 0.02 month−1 as functions of Ms and Mm, respectively, are shown in Figs. 3c,d. The precise definition 
of thresholds for ‘low’ and ‘large’ probabilities is beyond the scope of the current paper and should be based upon 
a reasonable clinical convention.

Figure 2. The predicted dependence of the probability of RoCD > 0.02 month−1 on baseline age, adjusted to 
average values of all other significant variables included in the model for RoCD > 0.02 month−1 in Table 1. The 
shaded band shows the 95% prediction interval for the predicted dependence.
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Validity of the developed biomarkers Ms and Mm (Eqs. (1) and (2)) was further confirmed by way of 
their cross-validation using the available cohort of participants (see the Supplementary Information and 
Supplementary Fig. 3). Control for blood contamination of the CSF samples by removing participants whose 
baseline CSF samples contained hemoglobin levels exceeding 200 ng/ml13 did not cause any significant alterations 
in the developed models. This demonstrated good stability of the conducted analyses, and blood contamination 
in the considered database was not a significant issue for the development of the integrated biomarkers (Eqs. (1) 
and (2)). However, it is important to note that application of these biomarkers to patients with significant blood 

Figure 3. ROC regressions including the marker cut-off points with their respective 95% confidence intervals 
for the sensitivities and specificities for: (a) RoCD > 0.11 month−1; and (b) RoCD > 0.02 month−1. Subplots 
(c,d) show the dependences of probabilities of RoCD > 0.11 month−1 and RoCD > 0.02 month−1, respectively, 
as functions of the values of the integrated biomarkers Ms and Mm defined by Eqs. (1) and (2). The shaded bands 
show the 95% prediction intervals for the probability curves, and the vertical dashed lines indicate the positions 
of the marker cut-off points: Msc = 15.26 and Mmc = − 178.69.

RoCD Marker AUC 95%CI Se 95%CI Sp 95%CI

>0.11 month−1

Ms 0.97 (0.95; 1) 0.93 (0.82; 1) 0.91 (0.82; 1)

(PDCDs)0.5 0.98 (0.96; 1) 0.93 (0.82; 1) 0.93 (0.85; 1)

(PDCDs)1 0.98 (0.96; 1) 0.92 (0.81; 1) 0.94 (0.87; 1)

>0.02 month−1

Mm 0.81 (0.76; 0.87) 0.73 (0.64; 0.82) 0.74 (0.64; 0.84)

(PDCDm)0.5
0.79
[0.78]

(0.73; 0.85)
[0.72; 0.84]

0.73
[0.78]

(0.63; 0.82)
[0.69; 0.87]

0.70
[0.63]

(0.61; 0.80)
[0.52; 0.73]

(PDCDm)1
0.79
[0.77]

(0.73; 0.85)
[0.71; 0.83]

0.67
[0.75]

(0.57; 0.77)
[0.66; 0.84]

0.76
[0.65]

(0.67; 0.85)
[0.55; 0.76]

Table 2. Quantitative characteristics (AUC, sensitivity (Se), specificity (Sp), and their respective 95% 
confidence intervals) for the developed biomarkers Ms and Mm and the respective PDCD scores [with the 
contributing regression coefficients rounded to the nearest half-integers (index 0.5) and integers (index 1) – 
see the next section on the PDCD scores]. AUCs, sensitivities and specificities in square brackets are for the 
versions of PDCDm without GRS.
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contamination of their CSF samples could cause significant prognostic errors. Therefore, clinical use of the devel-
oped biomarkers requires CSF samples free from significant blood contamination (with hemoglobin levels below 
200 ng/ml13).

parkinson’s disease cognitive decline (pDcD) scores. The complexity of the integrated biomarkers Ms 
and Mm (Eqs. (1) and (2)) could be a hindrance for their effective clinical use. The significant success and clinical 
impacts of the previously developed Framingham Risk Score for prediction of risk of coronary heart disease31,32 
and DRAGON score for prognosis of acute ischemic stroke patients33 motivated the development and validation 
of similar simplified clinical scores for Parkinson’s disease cognitive decline (PDCD).

To derive the PDCD scores, all numerical variables in the logistic regressions (Table 1) were categorized to 
obtain characteristic ranges (categories) for these variables. The boundaries for the variable categories (Table 3) 
were determined and optimized to ensure maximum significance of the categorized variables in the respective 
logistic regression models. Numerical variables that were not significant in Table 1 were also categorized and their 
significance was further checked in the models with the categorized variables. The outcomes of the logistic regres-
sions with the categorized variables are presented in Table 3. Compared to Table 1 for the numerical biomarkers, 
Table 3 does not contain Gender and DaTp. This is because these variables were not significant in the model with 
the categorized variables.

Each category of each variable in the logistic regression models (Table 3) was assigned a score that was equal to 
the regression coefficient for this category, rounded to the nearest half-integer or integer (Table 4). Any base cate-
gories were assumed to correspond to a zero score (Table 4). Patient’s PDCD score for prediction of RoCD > 0.11 
month−1 (or RoCD > 0.02 month−1) was then defined as a sum of all respective category scores. Rounding of 
the category scores to the nearest integer was considered to be less accurate, but more convenient in the clinical 
practice, as only integer numbers are to be summed in this case to calculate the PDCD score(s). This is similar to 
how the Framingham Risk Score and DRAGON score are calculated31–33.

Table 4 is a guideline for the clinical determination of the PDCD scores. For each patient, the clinical and 
pathological variables fall within one of the categories shown in Table 4. This determines the respective cate-
gory scores for the patient. Sum of all these scores gives the respective PDCD score. For example, if for a patient 
Aβ42 = 300 pg/ml; α-syn = 1500 pg/ml; t-tau = 100 pg/ml; p-tau = 20 pg/ml; p-tau/t-tau = 0.2; UPDRS1–3 = 40; 
GDS = 2; Education = 25 years; RBD = 10; and STAI = 110, then the corresponding PDCD scores for severe rate 
of cognitive decline are calculated as (Table 4):

Predictor
RoCD > 0.11 month−1 
Categories

RoCD > 0.11 
month−1

RoCD > 0.02 month−1 
Categories RoCD > 0.02 month−1

Coef p-value Coef p-value

Aβ42 (pg/ml) (1) < 255
(base: ≥255) 2.54 0.020 (1) < 420

(base: ≥420) 0.858 [0.793] 0.040 [0.049]

α-syn (pg/ml) (1) < 1060
(base: ≥1060) 8.15 0.004 (1) < 1950

(base: ≥1950) 1.07 [1.11] 0.009 [0.006]

t-tau (pg/ml) (1) > 75
(base: ≤75) 5.74 0.007 (1) > 60

(base: ≤60) 1.37 [1.38] 0.011 [0.010]

p-tau (pg/ml) (1) ≥ 17
(base: < 17) 4.73 0.008 — — —

p-tau/t-tau (1) < 0.55
(base: ≥ 0.55) 7.10 0.034 (1) < 0.3

(base: ≥0.3) 0.64 [0.63] 0.045 [0.047]

UPDRS1–3
(at baseline)

(1) > 49
(base: ≤49) 3.77 0.020 (1) > 43

(base: ≤43) 0.92 [0.92] 0.031 [0.027]

GDS (at baseline) (1) > 3
(base: ≤3) 2.93 0.023 (1) > 1

(base: ≤ 1) 0.66 [0.58] 0.043 [0.70]

Education (years) (1) ≤ 10
(base: > 10) 4.20 0.060 (1) ≤ 12

(base: > 12) 1.04 [0.92] 0.014 [0.026]

GRS (at baseline) — — — (1) < – 0.01
(base: ≥– 0.01) 0.97 [−] 0.017 [−]

MoCAb (at baseline) — — — (1) > 27
(base: ≤27) 0.94 [0.92] 0.006 [0.006]

Age (years) — — —
(1) 52 < Age ≤ 62;
(2) Age > 62
(base: ≤52)

(1) 1.32 [1.32]
(2) 2.18 [2.14]

(1) 0.021 [0.018]
(2) < 0.001 [< 0.001]

RBD (at baseline) (1): > 7
(base: ≤7) 4.96 0.006 (1) > 7

(base: ≤7) 1.01 [0.94] 0.028 [0.039]

STAI (at baseline) (1) 92 < STAI ≤ 102
(base: otherwise) 2.42 0.032 — — —

Table 3. Logistic regression outcomes for significant effects of the categorized clinical and pathological 
parameters/measures on probabilities of RoCD > 0.11 month−1 and RoCD > 0.02 month−1 in patients with 
early stages of PD. Numbers in square brackets are for RoCD > 0.02 month−1 without the GRS variable. 
Samples: 240 participants (RoCD > 0.11 month−1); 241 participants (RoCD > 0.02 month−1).
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= + + . + . + + + + + + =.PDCD( ) 0 0 5 5 4 5 7 0 0 0 5 0 22;s 0 5

= + + + + + + + + + = .PDCD( ) 0 0 6 5 7 0 0 0 5 0 23s 1

Using this procedure, the PDCD scores were calculated for all study participants. ROC regression analysis 
was then used to validate the PDCD scores as new integrated biomarkers, and to determine their sensitivities 
and specificities in predicting RoCD > 0.11 month−1 and RoCD > 0.02 month−1 (Table 2). It can be seen that the 
sensitivities and specificities for the RoCD scores are close to (or even better than) those for Ms and Mm (Table 2). 
This illustrates high level of stability of the obtained outcomes and the appropriateness of the adopted categori-
zation procedure.

Rounding to the nearest integer might be expected to give less accurate outcomes compared to rounding to the 
nearest half-integer. At the same time, there are no differences between the values of AUC for the PDCD markers 
with rounding to the nearest half integer or integer (Table 2). This is a further illustration of stability of the devel-
oped PDCD scores as PD progression biomarkers on the considered sample of participants.

Note that sensitivities and specificities for the PDCD scores in Table 2 are presented for the cut-off values of 
the respective scores (Table 4). Some fluctuations of the sensitivities and specificities for the PDCDm scores in 
Table 2 are caused by the discrete nature of the scores (Table 4) and relatively low values for the discrete cut-off 
scores. In this case, alterations in the cut-off values (e.g., due to rounding to the nearest half integer instead of the 
nearest integer, or due to discarding the GRS variable – Table 4) cause notable variations in the resultant sensitiv-
ities and specificities of the markers.

The sensitivities and specificities for the PDCDs integrated markers are notably higher than those for the 
PDCDm markers (Table 2). This is particularly important for accurate identification of PD patients with high risk 
of developing of severe cognitive decline, which will be important for more accurate clinical advice and targeted 
development of clinical trials. Further, it is also important to observe that the areas under the ROC curves for 
the PDCDs and PDCDm markers (Table 2) are about the same (for the PDCDm markers), and significantly higher 
(for the PDCDs markers), compared to those for the widely accepted Framingham Risk Score (below 0.7532) and 
DRAGON score (around 0.8433). This is a further indication of the practical usefulness of the developed PDCD 
scores for prediction of possible rates of cognitive decline in early-stage PD patients.

RoCD > 0.11 
month−1 Categories (PDCDs)0.5 (PDCDs)1

RoCD > 0.02 month-1 
Categories (PDCDm)0.5 (PDCDm)1

Predictor

Aβ42 (pg/ml) (1) < 255
(base: ≥255)

2.5
0

3
0

(1) < 420
(base: ≥420)

1
0

1
0

α-syn (pg/ml) (1) < 1060
(base: ≥1060)

8
0

8
0 (1) < 1950 (base: ≥ 1950) 1

0
1
0

t-tau (pg/ml) (1) > 75
(base: ≤75)

5.5
0

6
0 (1) > 60 (base: ≤ 60) 1.5

0
1
0

p-tau (pg/ml) (1) ≥ 17
(base: < 17)

4.5
0

5
0 — — —

p-tau/t-tau (1) < 0.55
(base: ≥ 0.55)

7
0

7
0

(1) < 0.3
(base: ≥ 0.3)

0.5
0

1
0

UPDRS1–3 (at baseline) (1) > 49
(base: ≤49)

4
0

4
0

(1) > 43
(base: ≤ 43)

1
0

1
0

GDS (at baseline) (1) > 3
(base: ≤3)

3
0

3
0

(1) > 1
(base: ≤ 1)

0.5
0

1
0

Education (years) (1) ≤ 10
(base: > 10)

4
0

4
0

(1) ≤ 12
(base: > 12)

1
0

1
0

GRS (at baseline) — — — (1) < – 0.01
(base: ≥ – 0.01)

1 [0]
0

1 [0]
0

MoCAb (at baseline) — — — (1) > 27
(base: ≥ 27)

1
0

1
0

Age (years) — — —
(1) 52 < Age ≤ 62
(2) Age > 62
(base: ≤ 52)

1.5
2
0

1
2
0

RBD (at baseline) (1) > 7
(base: ≤7)

5
0

5
0

(1) > 7
(base: ≤ 7)

1
0

1
0

STAI (at baseline) (1) 92 < STAI ≤ 102
(base: otherwise)

2.5
0

2
0 — — —

Maximum total 46 47 11.5 [10.5] 1211

Cut-off 17.5 18 5.5 [4.5] 65

Table 4. Guideline for calculation of the PDCD scores for RoCD > 0.11 month−1 and RoCD > 0.02 month−1 
for PD patients. Cut-offs for the PDCD scores are shown in the last row. The indices 0.5 and 1 in the PDCD 
notations indicate rounding of the regression coefficients to the nearest half-integer and nearest integer, 
respectively. Numbers in square brackets are for the PDCDm scores without the GRS variable. Samples: 240 
participants (RoCD > 0.11 month−1); 241 participants (RoCD > 0.02 month−1).
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The cut-off value for PDCDm score (Table 4) separates PD patients for whom RoCD is likely to exceed 0.02 
month−1 from those who are unlikely to experience such decline. Similarly, the cut-off values for PDCDs scores 
(Table 4) separate patients who are likely to experience severe cognitive decline (RoCD > 0.11 month−1) from 
those who are unlikely to experience such decline. For an ideal marker (with the 100% sensitivity and specific-
ity), the cut-off point perfectly separates the two groups of people that this marker is supposed to identify. If the 
sensitivity and specificity are below 100%, exceeding a PDCD score cut-off does not necessarily mean that the 
respective cognitive decline is inevitable. A better and more accurate understanding of risks for PD patients to 
experience cognitive decline can be obtained from the probability graphs (Fig. 4).

The probability graphs are an essential tool for simple clinical evaluation of risks for a PD patient to experience 
severe or mild-to-moderate cognitive decline. For example, if (PDCDm)0.5 = 8, then the probability for this patient 
to experience cognitive decline with RoCD > 0.02 month−1 is nearly 90% (Fig. 4b). In this case, (PDCDs)1 should 
be calculated to check if the patient is likely to experience severe cognitive decline with RoCD > 0.11 month−1. If 
the patient scores, for example, 20 points on the (PDCDs)1 scale, then the probability for him/her to experience 
severe cognitive decline is around 20% (Fig. 4a). However, if the patient’s score on the (PDCDs)1 scale is 17, then 
the probability that this patient will experience severe cognitive decline is rather negligible (Fig. 4a), and it should 
be concluded that he/she is likely to have mild-to-moderate decline with 0.02 month−1 < RoCD ≤ 0.11 month−1 
(with the probability of nearly 90%, as indicated above).

The sequence of using the two developed PDCD scores could be reversed, and the (PDCDs)1 score could 
be used first to check if the patient is likely to have severe cognitive decline (RoCD > 0.11 month−1). If the 
probability of this is low, then the (PDCDm)0.5 score should be checked to see if the patient is likely to develop 
mild-to-moderate cognitive decline with 0.02 month−1 < RoCD ≤ 0.11 month−1.

conclusions
This study has conducted consistent consideration and analysis of 19 baseline clinical, pathological and demo-
graphic variables to develop and optimize the effective integrated biomarkers for prediction of progression of 
PD in the form of severe or mild-to-moderate cognitive declines. Severe cognitive decline was considered to 
occur where RoCD > 0.11 month−1, corresponding to more than 5 point decline on the MoCA scale within 4 
years. Mild-to-moderate cognitive decline was considered to occur where 0.02 month−1 < RoCD ≤ 0.11 month−1, 
which is approximately between 1 and 5 points decline on the MoCA scale in 4 years.

Sensitivities and specificities of the integrated biomarkers exceeded 90% for prediction of severe cognitive 
decline, demonstrating the excellent capacity of these biomarkers to resolve the long-standing clinical issue with 

Figure 4. Probabilities for a PD patient to experience cognitive declines with: (a) RoCD > 0.11 month−1 (severe 
cognitive decline); and (b) RoCD > 0.02 month−1 as functions of the values of the respective PDCD scores. 
The vertical bars show the 95% prediction intervals for the corresponding predicted probabilities. For a similar 
probability graph for RoCD > 0.02 month−1 without the GRS variable see Supplementary Fig. 4.
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unreliable prognosis of cognitive decline in PD. This will aid with the development of effective targeted treatments 
and clinical trials.

Recognizing difficulties with use of complex computational tools in the clinical practice, the current study 
proposed, developed and validated (as new integrated biomarkers) the Parkinson’s disease cognitive decline 
scores. These scores are similar to the previously developed and widely recognized Framingham Risk Score for 
cardiovascular conditions31,32 and DRAGON score for prognosis of acute ischemic stroke patients33.

The PDCD scores demonstrated exceptional capabilities and stability in predicting the severe cognitive decline 
in PD, with the sensitivities and specificities around 93%. Combined with the simplicity of their determination 
in the clinical environment (provided that the measures constituting the markers are available), these scores are 
expected to be an invaluable tool for neurologists in their evaluation of PD progression and selection of optimal 
treatments and management approaches.

The main limitations of the study and obtained outcomes include the reliance on a single PPMI cohort of 269 
participants. Future multi-cohort validation of the developed biomarkers and PDCD scores will be beneficial. 
The study was limited to the 22 variables and measures available from the PPMI database, although the developed 
approach is not limited to these particular variables. Nineteen of the 22 parameters were systematically consid-
ered, while the consideration of EGF, cholesterols and triglycerides was rather limited due to their sample size 
limitations. Future involvement of other relevant parameters and measures may be useful for further improve-
ment of the integrated progression biomarkers and PDCD scores. All study participants with the severe cognitive 
decline were older than 60 years. This highlights a possible limitation of the considered sample with regard to the 
Age variable – it is unclear whether the age of 60 years is a threshold for the possibility of the severe cognitive 
decline or this is a sample limitation, which further highlights the need for further investigation of this question 
and consideration of other PD cohorts. The determination of the rate of cognitive decline was based on the MoCA 
scale for general cognition. This should be considered as another potential limitation, although the MoCA scale 
is widely recognized as a valid instrument for evaluation of the general cognition functions including in PD patie
nts13,21,29,30,39. The period of observation of the study participants was for the duration between 4 years and 6 years 
after the initial screening visit. Taking into account that all participants were diagnosed with idiopathic PD within 
2 years prior to the initial screening visit, the obtained predictions of the likelihood of progression of cognitive 
decline may not extend significantly beyond 6–8 years after PD diagnosis. Finally, the PPMI baseline data was 
collected within 2 years after the initial PD diagnosis. Therefore, this is the earliest stage at which the scoring sys-
tem developed in the current paper was designed to predict possible cognitive decline among PD patients. Earlier 
prognosis would require the analysis of other databases collected at earlier stages (e.g., during prodromal stages 
of PD), which is beyond the scope of the current paper.

The developed approach to the determination of the PDCD scores has general neurology implications. It 
should be applicable to the development of similar clinical scores for PD diagnostics, progression of its motor 
symptoms, as well as for other neurodegenerative conditions with significant heterogeneity and prognostic/diag-
nostic difficulties including dementia with Lewy bodies, multiple system atrophy, Alzheimer’s disease, multiple 
sclerosis, etc.

Methods
Statistical methodology. The analysis was conducted using the Stata14 software package40. Logistic regres-
sions were used to determine predictor variables with significant effects on the probabilities for participants to 
experience RoCD > 0.02 month−1 and RoCD > 0.11 month−1. As explained in the Section ‘Variables’ above and 
in the Supplementary Information (Supplementary Fig. 1), these category boundaries for RoCD were chosen to 
ensure reasonable numbers of participants in each category (around 10% with RoCD > 0.11 month−1 and around 
30% with 0.02 month−1 < RoCD ≤ 0.11 month−1). In addition, the adopted RoCD categories also ensured high 
levels of statistical significance of the effects of the considered predictor variables in the developed logistic regres-
sion models. Other options for choosing the category boundaries for the RoCD variable are also considered in the 
Supplementary Information (Supplementary Fig. 2).

The large number of predictors having potential impacts on RoCD caused difficulties with understand-
ing of which variables and/or their combinations should be involved in the integrated biomarkers. Therefore, 
model-averaging procedure was used to determine relative variable importance for each of the markers41. In 
this procedure, more than 500000 logistic regression models (e.g., for the probability to experience RoCD > 0.11 
month−1) with all possible combinations of the clinical and pathological measures were computed, and the fit for 
each model evaluated using the Akaike Information Criterion41. An Akaike weight for a model is the probability 
that this model is the true (most probable) model. Relative importance of a variable is calculated as a sum of the 
Akaike weights for all models involving this variable41. It is equal to the probability that the variable appears in 
the most probable model. If this probability (relative variable importance) is large, then the variable is likely to be 
important for prediction of the considered cognitive decline. Sets of most important predictors were found for 
severe and mild-to-moderate cognitive declines in PD.

The sets of most important predictors were the starting point for the development of logistic regressions 
for prediction of risks of RoCD > 0.11 month−1 and RoCD > 0.02 month−1. Further variable categorizations 
were also considered and used (for some of the variables) to ensure better levels of statistical significance of 
any predictor variables in the developed multiple logistic regressions. Such categorization allowed taking into 
account possible non-linearities of the effects of some of the predictor variables. Linear combinations of the sig-
nificant variables in the logistic regressions, weighed by their respective regression coefficients, were considered 
as the integrated biomarkers for prediction of cognitive decline in PD. These biomarkers were analyzed using the 
receiver operating characteristic (ROC) regression analysis42, including the respective cut-off values, sensitivities, 
specificities, and their prediction intervals.
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In each of the developed models, only participants with full sets of the significant predictor variables were 
considered, and any participants with missing values of one or more significant variables involved in the model 
were automatically removed from the model sample. As a result, the actual samples for the developed models 
varied (as indicated above for each model), depending on the numbers of discarded participants with missing 
values of significant variables. The observation numbers for all considered predictor variables are shown in 
Supplementary Table 1. Cross-validations of the developed integrated biomarkers Ms and Mm were conducted 
using bootstrapping re-samplings for the ROC regressions41,43 - see the Supplementary Information for more 
detail.

Variants for calculating genetic risk score (GRS). GRS was calculated by summing the risk allele counts 
for the 30 variants associated with risk of PD, which are shown in Table 5, including the respective nearest genes27,38.

ethical approval. The PPMI study and protocols were approved by the appropriate local ethics committees 
and review boards at the 24 enrolment sites (18 in the US, 5 in Europe, and 1 in Australia), including the provi-
sion of written informed consent to participate from all participants35,44. The methods in the current study were 
carried out in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later 
amendments. The approval for the use of the data in the current study was given by the Parkinson’s Progression 
Markers Initiative.

Data availability
The data used in the preparation of this article is available from the Parkinson’s Progression Markers Initiative 
(PPMI) database (www.ppmi-info.org/data).
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rs ID Nearest gene(s)

rs114138760 GBA/SYT11

rs76763715 GBA

rs71628662 GBA/SYT11

rs823118 RAB7L1/NUCKS1

rs10797576 SIPA1L2

rs6430538 ACMSD/TMEM163

rs1955337 STK39

rs12637471 MCCC1

rs34884217 TMEM175/GAK/DGKQ

rs34311866 TMEM175/GAK/DGKQ

rs11724635 BST1

rs6812193 FAM47E/SCARB2

rs356181 SNCA

rs3910105 SNCA

rs8192591 HLA-DQB1

rs115462410 HLA-DQB1

rs199347 GPNMB

rs591323 FGF20

rs118117788 INPP5F

rs329648 MIR4697

rs76904798 LRRK2

rs34637584 LRRK2

rs11060180 CCDC62

rs11158026 GCH1

rs2414739 VPS13C

rs14235 BCKDK/STX1B

rs11868035 SREBF/RAI1

rs17649553 MAPT

rs12456492 RIT2

rs55785911 DDRGK1

Table 5. The 30 variants (single nucleotide polymorphisms) associated with risk of PD, including the respective 
nearest genes27,38.
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