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Abiotic environmental factors override 
phytoplankton succession in shaping 
both free‑living and attached bacterial 
communities in a highland lake
Huan Wang1, Rong Zhu1, Xiaolin Zhang1, Yun Li1,2, Leyi Ni1, Ping Xie1,3* and Hong Shen1*

Abstract 

Bacterial communities are an important part of biological diversity and biogeochemical cycling in aquatic ecosys-
tems. In this study, the relationship amongst the phytoplankton species composition and abiotic environmental 
factors on seasonal changes in the community composition of free-living and attached bacteria in Lake Erhai were 
studied. Using Illumina high-throughput sequencing, we found that the impact of environmental factors on both 
the free-living and attached bacterial community composition was greater than that of the phytoplankton commu-
nity, amongst which total phosphorus, Secchi disk, water temperature, dissolved oxygen and conductivity strongly 
influenced bacterial community composition. Microcystis blooms associated with subdominant Psephonema occurred 
during the summer and autumn, and Fragilaria, Melosira and Mougeotia were found at high densities in the other 
seasons. Only small numbers of algal species-specific bacteria, including Xanthomonadaceae (Proteobacteria) and 
Alcaligenaceae (Betaproteobacteria), were tightly coupled to Microcystis and Psephonema during Microcystis blooms. 
Redundancy analysis showed that although the composition of the bacterial communities was controlled by species 
composition mediated by changes in phytoplankton communities and abiotic environmental factors, the impact of 
the abiotic environment on both free-living and attached bacterial community compositions were greater than the 
impact of the phytoplankton community. These results suggest that the species composition of both free-living and 
attached bacterial communities are affected by abiotic environmental factors, even when under strong control by 
biotic factors, particularly dominant genera of Microcystis and Psephonema during algal blooms.
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Introduction
Bacterial communities adapt to environmental changes 
due to their small size, short biological life cycles and 
genetic variability (Lenski 2017; McAdams et  al. 2004). 
Moreover, the species composition of bacterial communi-
ties is a robust indicator of ecological dynamics in aquatic 
ecosystems (Glasl et al. 2017: Harnisz 2013; Karimi et al. 

2017). The Baas Becking in the widely referenced quote, 
“everything is everywhere, but environments select” (De 
Wit and Bouvier 2006) assumes a common existence of 
microorganisms based on high dispersion ratios. Follow-
ing the widespread application of molecular biological 
techniques, studies on the species composition of bac-
terial communities have shaped by both biotic commu-
nities (Berry et  al. 2017; Camarena-Gómez et  al. 2018) 
and abiotic environmental factors (Fraser et  al. 2018; 
Scofield et  al. 2015). For example, in lakes, both phyto-
plankton biomass (Luria et  al. 2017) and physicochemi-
cal environmental conditions (Adamovich et al. 2019; Liu 
et al. 2015) influence the species composition of bacterial 
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communities. Understanding the response of bacterial 
communities to the seasonal changes of the abiotic envi-
ronment, including changes in the phytoplankton spe-
cies composition, are necessary to understand changes in 
species composition or the functional roles of the bacte-
rial communities in lakes (Gilbert et al. 2012; Luria et al. 
2017; Paver and Kent 2017; Yannarell and Triplett 2005).

Abiotic environmental factors, such as water tempera-
ture (Paver and Kent 2017; Yannarell and Triplett 2005), 
pH (Liu et al. 2015), total nitrogen (Tian et al. 2009), total 
phosphorus (Fraser et  al. 2018; Romina Schiaffino et  al. 
2011), salinity (Fraser et  al. 2018; Kirchman et  al. 2017; 
Wu et  al. 2006) and dissolved oxygen (Tian et  al. 2009) 
affect the species composition of bacterial communities 
in lakes as many bacterial taxa exhibit specific environ-
mental preferences. Moreover, the phytoplankton com-
munity acts as a biotic influence and interacts with the 
bacterial community through direct or indirect inter-
actions including mutualism, commensalism, parasit-
ism, amensalism and competition (Kazamia et  al. 2016; 
Kirchman et  al. 2017; Landa et  al. 2016; Lovdal et  al. 
2007; Seymour et al. 2017; Sison-Mangus et al. 2016). For 
example, phytoplankton provide habitats and species-
specific exudates for some bacterial species (Paver et al. 
2013; Sapp et  al. 2007; Seymour et  al. 2017) and bacte-
ria can support the growth of phytoplankton via nutrient 
recycling (Harte and Kinzig 1993). Competition between 
phytoplankton and bacterial communities are regarded 
as important biological interactions controlled by limit-
ing nutrients (Currie and Kalff 1984; Danger et al. 2007), 
allelopathic chemicals (Cole 1982) and other physiologi-
cal traits (Rooney-Varga et  al. 2005). Therefore, bacte-
rial communities are important components of lakes, 
and their species composition is affected by abiotic and 
biotic factors, particularly the phytoplankton community 
(Goecke et al. 2013; Tujula et al. 2010).

More specifically, bacterial communities in lakes can 
be divided into two components, attached and free-liv-
ing bacteria (Tang et al. 2017). Attached bacteria (parti-
cles ≥ 5 μm in diameter that are retained by a glass fiber 
filter) and free-living bacteria (that pass through the fil-
ter) are considered separate populations (Niu et al. 2011; 
Rooney-Varga et  al. 2005). Attached bacteria have been 
found growing on the surface of algal cells and show sym-
biotic associations with algae (Seymour et al. 2017); free-
living bacteria are less closely associated with algal cells, 
particularly during algal blooms when extremely high cell 
densities occur (Sison-Mangus et  al. 2016). For bacteria 
attached to phytoplankton, the phytoplankton provide 
distinct metabolic functions and enzymes (Bagatini et al. 
2014). Functionally similar bacterial species are often 
attached to similar algal taxa or groups (Rooney-Varga 
et  al. 2005; Sapp et  al. 2007). However, it remains to be 

elucidated how abiotic environmental factors and phy-
toplankton species composition interactively influence 
attached and free-living bacterial communities.

To address this issue, we investigated the seasonal 
variation in the species composition of free-living and 
attached bacteria over an 18-month period, and analyzed 
the response of the community composition of free-living 
and attached bacteria to changes in both phytoplankton 
composition and abiotic environmental factors in Lake 
Erhai. Three hypotheses were assessed: (1) based on the 
findings of previous studies that showed the importance 
of abiotic environmental factors and that phytoplank-
ton succession occurs between attached and free-living 
bacteria (Sapp et al. 2007; Tang et al. 2017), we assessed 
changes in the species composition of free-living and 
attached bacterial communities according to phytoplank-
ton species composition and abiotic environmental fac-
tors; (2) although bacterial communities are impacted 
by the coupled effects of changes in phytoplankton spe-
cies composition and abiotic factors (Niu et  al. 2011; 
Paver and Kent 2017), we assessed whether abiotic envi-
ronmental variations are dominant factors in shaping 
bacterial community composition; and (3) since phyto-
plankton provide habitats and exudates for some bacte-
rial species (Paver et al. 2013; Sapp et al. 2007; Seymour 
et al. 2017), we tested whether the impact of changes in 
phytoplankton species composition on the attached bac-
terial communities are greater than free-living bacterial 
community. Understanding the effects of changes in phy-
toplankton species composition and abiotic factors on 
the seasonal patterns of bacterial species composition 
will provide important insight into the factors control-
ling species composition of the bacterial communities in 
lakes, and will improve our ability to predict the bacte-
rial response to both abiotic and biotic environmental 
changes.

Methods
Study zones and site description
This study was performed in Lake Erhai (25°36′–25°58′N, 
100°05′–100°17′E), the second largest high-altitude fresh-
water lake on the Yunnan Plateau, in the central zone of 
the Dali Bai Autonomous Prefecture in Yunnan Prov-
ince, China (Fig.  1). The lake has a total surface area 
of ~ 250  km2, an elevation of 1974  m and a volume of 
nearly 28.8 × 108 m3. The average and maximum depths 
are 10.5 m and 20.5 m, respectively. Our published study 
show that the total nitrogen and total phosphorus levels 
of Lake Erhai are approximately 0.7 mg/L and 0.03 mg/L, 
respectively (Zhu et  al. 2018). Lake Erhai is now in the 
early stage of eutrophication. Prior to the 1970s, Lake 
Erhai was an oligotrophic lake (Jin et al. 2005). Since the 
1980s, the Erhai Lake has been affected by man-made 
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eutrophication with an increasing population of residents 
(Wang et al. 2012). After the 1990s, as the district popu-
lation continued to increase and human activities grew, 
the ecological environment deteriorated and nutrient 
loading increased, resulted in the frequent occurrence 
of cyanobacterial blooms (Tan et  al. 2017). Five large 
blooms occurred in the lakes in 1998, 2003, 2006, 2009, 
and 2013 (Zhu et al. 2018).

Sampling was performed monthly from May 2013 to 
October 2014 at two sampling sites (site 1, 25°50′7.78″N, 
100°11′31.48″E; site 2, 25°47′59.49″N, 100°11′49.25″E) in 
the central lake region (Fig. 1). Based on field surveys in 
Lake Erhai performed from 2013 to 2016 (unpublished 
data), the patterns in algal succession regarding the dom-
inant phytoplankton species showed comparable patterns 
in different areas within the pelagic zone. We were there-
fore confident that our sampling sites accurately repre-
sented the dynamics of the pelagic zone. A composite 
sample was collected by combining water samples from 
the upper (0.5 m below the water surface), middle (mid-
way between the surface and the bottom: site 1: 7 m; site 
2: 3.5 m), and lower (0.5 m above the sediment surface: 
site 1: 14 m; site 2: 7 m) portions of the water column at 
each site. The composite samples were used to analyze 

hydrochemical parameters and phytoplankton composi-
tion. Samples (200 to 500 mL) for bacterial analysis were 
collected on 0.2 μm pore-size filters after prefiltration 
through 5.0 μm pore-size filters (diameter 47 mm; What-
mann, UK) (Niu et  al. 2011; Rooney-Varga et  al. 2005). 
The 5.0 μm filters were used to collect attached bacterial 
species, and 0.2 μm filters were used to collect free-living 
bacteria. The filters were immediately frozen in liquid 
nitrogen and stored at − 80 °C until processing.

Chemical analysis
Composite samples were used to analyze the concentra-
tions of total phosphorus (TP), dissolved total phospho-
rus (DTP), phosphate phosphorus (PO4-P), total nitrogen 
(TN), nitrate (NO3-N), ammonium (NH4-N), and chloro-
phyll a (Chl a) as described by Huang et al. (1999). PH, 
dissolved oxygen (DO), water temperature (T) and con-
ductivity (COND) were measured 0.5 m below the water 
surface between 10 a.m. and 2 p.m. at each sampling site 
using a YSI ProPlus multiparameter water quality meter 
(Yellow Springs, OH, USA). The Secchi depth (SD) was 
measured using a black and white Secchi disk (20  cm 
diameter).

Fig. 1  A map of Lake Erhai with the locations of the sampling sites
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Identification and phytoplankton counting
One liter water samples were preserved using 1% Lugol’s 
iodine solution and concentrated to 50  mL after set-
tling for 48 h in Utermohl chambers and used to analyze 
phytoplankton composition (Huang et  al. 1999). Con-
centrated samples (0.1  mL) were used for phytoplank-
ton counting under 400× magnification using a light 
microscope (Olympus BX21, Tokyo, Japan) after mixing. 
Colonial Microcystis spp. cells were separated using an 
ultrasonic device (JY88-II, Scientiz, Ningbo, Zhejiang, 
China), and single cells of the colonies were counted. 
Taxonomic identification of the phytoplankton species 
was performed as described by Hu and Wei (2006). Phy-
toplankton counts revealed 46 clearly recognizable but 
rare species that were excluded from statistical analyses, 
as these species were either in very low numbers or found 
only on single sampling dates.

Aquatic bacterial DNA extraction and 16S rRNA PCR 
and sequencing
Bacterial phylogenetic identities were assessed by PCR 
amplification and sequencing of the 16S rRNA gene. Total 
bacterial genomic DNA was extracted using the HiPure 
Water DNA Kit (Magen, Guangzhou, China) according 
to the manufacturer’s protocols. Total DNA was puri-
fied using a QIAGEN Plasmid Mega Kit (25) (QIAGEN, 
Valencia, CA, USA). Total DNA samples were character-
ized by 2.0% agarose gel electrophoresis. Extracted DNA 
was stored at − 80 °C prior to use for template analyses. 
Bacterial 16S rRNA genes were amplified using the fol-
lowing universal primers: barcodes 341F (CCT​AYG​
GGRBGCASCAG) and 806R (GGA​CTA​CNNGGG​TAT​
CTAAT). Primers were also designed to amplify the V3 
and V4 regions (~ 466 bp) of the 16S rRNA gene (Yu et al. 
2005). PCR (ETC811, Beijing, China) kits (50 μL) con-
tained 5 μL of 10 × KOD buffer, 3 μL of 25 mM MgSO4, 
5 μL of each 2 mM dNTPs, 1.5 μL of each primer, 1 μL 
of KOD-plus, and 100–300  ng of template DNA. PCR 
cycling parameters included a 2 min initial denaturation 
at 94  °C followed by a thermal cycling program as fol-
lows: 2 min initial denaturation at 94  °C, 10 s denatura-
tion at 98 °C, 30 s annealing at 62 °C, and a 30 s extension 
at 68 °C for 30 cycles, followed by a final 5 min extension 
at 68 °C. Amplicons were pooled, purified and quantified 
using the ABI Stepone Real-Time PCR System (Thermo 
Scientific, USA). Next-generation sequencing (NGS) was 
performed using the Illumina Hi-Seq 2500 PE250, which 
was operated by Genedenovo Inc. (Guangzhou, China).

Statistical analyses
Sequences (excluding cyanobacterial sequences) were 
grouped into operational taxonomic units (OTUs) with 
similarities ≥ 97%. To test the initial hypothesis, heatmap 

correlations were generated amongst the phytoplank-
ton genera, bacterial OTUs, and abiotic environmental 
parameters using linear regression (α = 0.05). Domi-
nant bacterial OTUs that contained > 85% of the total 
sequences were selected. Dominant phytoplankton 
genera containing > 95% of the total cell density were 
selected. To test the second hypothesis, variation par-
titioning of the response variables was employed (i.e., 
bacterial the community compositions at an OTU resolu-
tion) to examine the relationships between phytoplank-
ton genera and environmental parameters. The statistical 
approaches included variation partitioning (Anderson 
and Cribble 1998) in redundancy analysis (Rao 1964) and 
linear regression with multiple variables based on Man-
tel tests (Mantel 1967). To ensure the community data 
suited the requirements of linear ordination methods, 
we used Hellinger-transformed abundance data (Leg-
endre and Gallagher 2001). We present only adjusted R2 
values of our models. The ‘vegan’ package in R was used 
to run the variation partitioning analyses (Oksanen et al. 
2013). We used a forward selection method developed by 
Blanchet et al. (2008) to select explanatory variables (i.e., 
the taxonomy of the phytoplankton and environmental 
variables) for final statistical analyses, thereby preventing 
exaggeration of the explanatory power of our constrained 
ordination models. We performed an ANOVA-like per-
mutation test for redundancy analysis to assess the signif-
icance of constraints. We used the function ‘ordiR2step’ 
in the ‘vegan’ package in R to select explanatory variables 
(Oksanen et al. 2013). Identical methods were then used 
to examine the relationships amongst attached bacte-
rial OTUs and free-living bacterial OTUs, abiotic envi-
ronmental parameters and phytoplankton genera, the 
manner in which the free-living bacterial OTUs were 
influenced by the attached bacterial OTUs, abiotic envi-
ronmental parameters and phytoplankton genera. All 
sequences used in the study are publicly available at the 
NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.
gov/Trace​s/sra) under accession IDs PRJNA488008 and 
PRJNA487989.

Results
Abiotic environmental parameters
The nutrient concentrations (TN, TP) and physical 
parameters [Secchi depth (SD), water temperature (T), 
dissolved oxygen (DO), conductivity (COND), pH and 
oxidation–reduction potential (ORP)] of the two sam-
pling sites are shown in Additional file 1: Figure S1. The 
average TN of the two sites was 0.69 mg/L. The average 
TP of the two sites was 0.03 mg/L. The highest concen-
trations of TN at Site 1 (Additional file 1: Figure S1a) and 
Site 2 (Additional file  1: Figure S1b) occurred on Octo-
ber 2014, whilst the maximum TP at Site 1 (Additional 
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file 1: Figure S1a) and Site 2 (Additional file 1: Figure S1b) 
occurred during August 2013 and May 2013, respectively.

Phytoplankton successions
The sampling campaign lasted 18 months and included 
two cyanobacterial blooms. The successional patterns 
in the phytoplankton community composition during 
the sampling period (May 2013 to October 2014) are 
shown in Fig. 2. We quantified 55 phytoplankton genera 
(27 Chlorophyta, 9 Bacillariophyceae, 8 Cyanophyceae, 
4 Chrysophyceae, 3 Euglenophyceae, 2 Dinophyceae and 
2 Cryptophyta). Cyanophyta, Chlorophyta and Bacil-
lariophyta were the dominant phyla at both sites (the 
compositions of Cyanophyta, Chlorophyta and Bacil-
lariophyta at Site 1: 67%, 23% and 7%; Site 2: 72%, 22% 
and 6%, respectively) (Fig. 2). Cyanophyta was the dom-
inant phylum from July to December 2013 and from 
May to October 2014 (cyanobacterial bloom period), 
whilst Bacillariophyta dominated from February to 

June 2014 (diatom-dominated period). Chlorophyta 
was dominant in the summer and decreased in num-
bers from summer to winter.

Cyanobacterial blooms in Lake Erhai occurred during 
the summer and autumn when the water temperatures 
exceeded 13 °C (Fig. 2). The counts varied amongst the 
dominant groups (Additional file  1: Figure S2). The 
nine dominant algal genera (> 95% of the total cell den-
sity at the two sites are shown (Additional file 1: Figure 
S2). Microcystis was the dominant genus in the phy-
lum Cyanophyta (cell density > 60% at both sites) and 
Aphanizomenon and Anabaena occurred at high water 
temperatures. The abundance of Fragilaria and Melo-
sira were maximal during the winter and spring. Both 
sites had varying cell densities of Microcystis during 
the sampling period (Additional file  1: Figure S2). In 
addition, Chlorophyta Psephonema dominated during 
Microcystis blooms, particularly in September at both 
sites (Additional file 1: Figure S2).

Fig. 2  Seasonal variations in the phytoplankton phyla in Lake Erhai from May 2013 to October 2014 at the two sampling sites (a, b for site 1; c, d 
for site 2). a, c Densities of the phytoplankton phyla; b, d compositions of the phytoplankton phyla. Color codes represent the same phyla in each 
panel, and the Y-axis scales differ
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Composition of the bacterial communities
High-throughput sequencing of the 16S rRNA genes 
reflected the seasonal succession in the bacterial commu-
nities; a total of 273 bacterial families from the attached 
and free-living communities affiliated with nine bacterial 
phyla were determined. Both the free-living and attached 
bacterial communities harbored similar dominant phyla 
composed of Proteobacteria (23 families), Bacteroidetes 
(16 families), Actinobacteria (56 families) and Firmicutes 
(32 families), but their proportions changed seasonally 
(Additional file 1: Figure S3). The attached bacterial com-
munity was composed of Proteobacteria (Site 1: 56%; Site 
2: 56%), Firmicutes (Site 1: 15%; Site 2: 24%), Bacteroi-
detes (Site 1: 13%; Site 2: 9%), and Actinobacteria (Site 1: 
10%; Site 2: 7%) (Additional file 1: Figure S3a, c), while the 
free-living bacteria had the same dominant phyla: Actino-
bacteria (Site 1: 54%; Site 2: 44%), Proteobacteria (Site 1: 
35%; Site 2: 27%), Firmicutes (Site 1: 4%; Site 2: 22%), and 
Bacteroidetes (Site 1: 4%; Site 2: 5%) (Additional file  1: 
Figure S3b, d).

Effects of abiotic environmental factors and phytoplankton 
on attached and free‑living bacteria
The heatmap (Fig. 4) shows the correlation amongst the 
dominant phytoplankton genera, bacterial families and 
abiotic environmental parameters. Figure 3a and c show 
that the attached bacterial communities were domi-
nated by three families: Firmicutes Streptococcaceae, 
Proteobacteria Moraxellaceae and Proteobacteria Rho-
dobacteraceae. In addition, the four endemic dominant 
families included the Bacteroidetes Flavobacteriaceae, 
Betaproteobacteria Alcaligenaceae, Proteobacteria Rho-
dobacteraceae and Xanthomonadaceae. Members of the 
Streptococcaceae group dominated the attached bac-
terial community throughout the year. Moraxellaceae 
and Rhodobacteraceae showed no significant correla-
tion with algae, but members of the Streptococcaceae 
group positively correlated with Chlorophyta Psepho-
nema (p < 0.05) and negatively correlated with PO4-P 
(p < 0.05) (Fig.  4). Moraxellaceae positively correlated 
with the pH (p < 0.05). With the onset of summer, the 
relative abundance of Proteobacteria increased, followed 
by Xanthomonadaceae, Betaproteobacteria and Alca-
ligenaceae. As soon as the Cyanophyta Microcystis and 
the Chlorophyta Psephonema increased (bloom phase), 
Xanthomonadaceae (Proteobacteria) and Alcaligenaceae 
(Betaproteobacteria) showed steep increases in numbers 
(Fig. 3). The heatmaps (Fig. 4) showed highly significant 
correlations of the bloom algae (Microcystis and Psepho-
nema) and positive correlations between Xanthomona-
daceae and Microcystis (p < 0.001), Xanthomonadaceae 
and Psephonema (p < 0.001), Alcaligenaceae and Micro-
cystis (p < 0.01), and Alcaligenaceae and Psephonema 

(p < 0.001). The Rhodobacteraceae negatively correlated 
with the TN (p < 0.05). Flavobacteriaceae positively cor-
related with the SD (p < 0.05). Figure 3b, d show that the 
free-living bacterial communities were dominated by 
the top four families of Actinobacteriage ACK-M1 and 
C111, the Proteobacteria Pelagibacteraceae and Firmi-
cutes Streptococcaceae. In addition, C111, Actinobacteria 
Mycobacteriaceae and Pelagibacteraceae were the three 
endemic families that dominated the free-living bacteria. 
Figure 4 shows a significant positive correlation between 
ACK-M1 and ORP (p < 0.05), and a significant negative 
correlation between C111 and TP (p < 0.01). Pelagibacte-
raceae positively correlated with the SD (p < 0.05). Myco-
bacteriaceae positively correlated with the DO (p < 0.05) 
but negatively correlated with the TN (p < 0.05). ACK-
M1, C111, Mycobacteriaceae, Pelagibacteraceae and 
Streptococcaceae showed no significant positive correla-
tions with the algae.

Variation partitioning of the phytoplankton genera and 
abiotic environmental parameters showed scale-depend-
ent processes that structured attached and free-living 
bacterial communities (Fig.  5). Abiotic environmental 
parameters had higher and more significant association 
with changes in the bacterial community compared to 
the phytoplankton community. For the attached bacteria, 
independently described abiotic environmental varia-
tions (10%) were higher than independent phytoplankton 
variations (3%), and the shared fraction explained part 
of the total variation (14%) (Fig.  5a). Moreover, for 
free-living bacteria, the effects of abiotic environmen-
tal changes explained 9% of the variation, alterations in 
the phytoplankton species composition explained 4%, 
and the shared fraction explained 5% of the total vari-
ation (Fig.  5b). For total bacteria, the coupled effects of 
the abiotic environmental and phytoplankton variations 
described 8% of the variation, whilst abiotic environ-
mental factors and phytoplankton variations explained 
only 6% of the total variation (Fig. 5c). We analyzed the 
relationships amongst the attached bacteria, free-living 
bacteria, phytoplankton genera and abiotic environmen-
tal parameters (Fig.  5d, e). Variation partitioning analy-
sis showed that the free-living bacteria independently 
described 11% of the variations in the attached bacterial 
community composition, abiotic environmental factors 
explained 9% of the variation, whilst phytoplankton vari-
ations explained 3% (Fig. 5d). The variation partitioning 
analysis showed that the attached bacteria accounted 
for 16% of the variation in the free-living bacterial com-
munity, environmental factors accounted for 9% of the 
variation, and phytoplankton accounted for 2% of the 
variation (Fig.  5e). Taken together, the species compo-
sition of the bacterial community (either free-living or 
attached) changed not only with the species composition 
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Fig. 3  Seasonal variations in the top 10 dominant bacterial families in Lake Erhai from May 2013 to October 2014 at the two sampling sites (a, b for 
site 1; c, d for site 2). a, c Composition of the 10 dominant attached bacterial families; b, d composition of the dominant free-living bacterial families. 
Color codes represent the same phyla in all pictures, and the Y-axis scales differ
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of the phytoplankton community, but also with abiotic 
environmental factors which were the dominant influ-
ence. The species composition of the attached bacterial 
communities were shaped by a combination of free-living 

bacteria, abiotic environmental factors and phytoplank-
ton, but the phytoplankton affected only several rare 
families, particularly during bloom periods (Xanthomon-
adaceae and Alcaligenaceae).

Fig. 4  Correlation heatmap amongst dominant phytoplankton genera, bacterial families and environmental parameters. a Attached bacterial 
families and environmental parameters; b free-living bacterial families and environmental parameters; c attached bacterial families and 
phytoplankton genera; d free-living bacterial families and phytoplankton genera. Different colors and spots represent shifted species associations. 
For clarity, connections between the remaining species are not displayed (starred numbers show the degree of significance; different colors show 
the different degrees of positive and negative connections)

Fig. 5  Variation partitioning in redundancy analysis ordination of phytoplankton genera, bacterial families, and environmental parameters. 
a Attached bacterial families with environmental parameters and phytoplankton genera; b free-living bacterial families with environmental 
parameters and phytoplankton genera; c bacterial families with environmental parameters and phytoplankton genera; d attached bacterial families 
with free-living bacterial families, environmental parameters and phytoplankton genera; e free-living bacterial families with attached bacterial 
families, environmental parameters and phytoplankton genera. (Starred numbers indicate the level of significance)
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Discussion
In this study, the relationships amongst the free-living 
and attached bacterial community compositions, phy-
toplankton species composition and abiotic environ-
mental factors in Lake Erhai were investigated using 
partitioning analysis. The results revealed that the abiotic 
environmental had a greater effect than phytoplankton 
succession on both free-living and attached bacterial 
compositions, even though the attached bacteria were 
strongly associated with the phytoplankton community 
during specific periods. The impact of environmental 
factors on both free-living and attached bacterial com-
munity compositions were greater than those of the 
phytoplankton community, amongst which the TP, SD, 
water temperature, DO and COND strongly affected bac-
terial community composition. The Microcystis bloom 
and the sub-dominance of Psephonema resulted in spe-
cies-specific bacteria (families Xanthomonadaceae and 
Alcaligenaceae) that dominated the attached bacterial 
communities. Recent studies highlight how the power 
of variation partitioning analysis can vary depending on 
the quality of the data (Jones et al. 2008) and the spatial 
and temporal nature of the study (Mykrä et  al. 2010). 
This is due to the classical forward selection methods in 
regression or canonical redundancy analysis presenting 
a highly inflated Type I errors and overestimates of the 
variances (Legendre et  al. 2009). In this study, the high 
residual variation partitioning analysis (the low power of 
the statistics) were due to a low number of explanatory 
variables in seasonal site scales, which can be improved 
by utilizing more explanatory variables based on the cur-
rent knowledge of microbial environments across differ-
ent scales.

Bacterial community compositions are influenced 
by abiotic and biotic factors
The diversity, abundance and composition of the bac-
terial communities in aquatic ecosystems are prone to 
environmental fluctuations and can be strongly affected 
by physicochemical environmental factors, including 
salinity, latitude, PO4, light, dissolved organic carbon 
(DOC), T, pH, TN, TP and DO (Bachmann et  al. 2018; 
Fraser et al. 2018; Kirchman et al. 2017; Luria et al. 2017; 
Paver and Kent 2017; Romina Schiaffino et  al. 2011). 
However, as a major contributor to the primary produc-
tivity in eutrophic lakes, the phytoplankton plays impor-
tant roles in shaping bacterial community composition 
(Berry et al. 2017; Goecke et al. 2013; Landa et al. 2016; 
Luria et  al. 2017). Furthermore, several studies demon-
strate that the effects of phytoplankton species composi-
tion on bacterial communities is closely related to DOC 
exudates from the phytoplankton, and this indirect effect 

temporally lags behind the algal bloom (Landa et al. 2016; 
Luria et al. 2017). Our previous studies also showed that 
the DOC is an important contributor to bacterial com-
munity compositions in Lake Taihu (Pang et  al. 2014). 
As a result, the influence of phytoplankton succession on 
the bacterial community may be underestimated when 
monthly scale sampling is used. In future studies, more 
frequent sampling will provide further insight into the 
relationship between DOC exudates and bacterial spe-
cies composition. In this study, both the physicochemical 
environmental factors and phytoplankton communities 
explained the variations in bacterial community com-
position in Lake Erhai. Similar results were observed in 
other lakes, showing that the combined effects of the 
abiotic environmental factors and phytoplankton spe-
cies composition regulated the abundance and compo-
sition of the bacterial communities (Table  1), implying 
that physicochemical factors, such as Chl a, phytoplank-
ton biomass or phytoplankton structures, are capable of 
changing the bacterial community composition. How-
ever, quantification of the relative level of influence of 
each factor on the bacterial community composition was 
not investigated in the studies.

Abiotic environmental factors override phytoplankton 
succession in shaping the bacterial community
Abiotic environmental factors have a direct and indi-
rect influence on seasonal variations in the abundance 
and composition of bacterial communities. Nutrient 
concentrations and ratios, in addition to other abiotic 
environmental factors, are crucial for bacterial succes-
sion (Fraser et al. 2018; Kirchman et al. 2017; Paver and 
Kent 2017; Tang et al. 2017). Bacterial biomass positively 
correlates with the trophic status of the lakes (Scofield 
et  al. 2015) but does not correlate with the chlorophyll 
level (Adamovich et  al. 2019). Abiotic factors invariably 
serve as restriction factors for bacterial communities 
as each bacterial taxon has optimal, minimal and maxi-
mal environmental conditions (temperature, TP and TN 
concentration) (Scofield et  al. 2015), and fluctuations 
in the abiotic environmental conditions result in a suc-
cession of bacteria (Luria et  al. 2017; Paver and Kent 
2017). Succession in the phytoplankton community is 
mediated by abiotic environmental factors, which likely 
contribute to variations in the bacterial community com-
position. We therefore used variation partitioning analy-
ses to determine whether the bacterial communities were 
independently related to changes in the phytoplankton 
composition and abiotic environment. Of particular 
interest was that the top four dominant families of the 
free-living bacteria (ACK-M1, C111, Pelagibacteraceae 
and Streptococcaceae) significantly correlated with 
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physicochemical environmental factors, but did not cor-
relate with the algal community composition.

Phytoplankton community composition is related 
to species‑specific bacterial communities
Although phytoplankton species composition plays a key 
role in regulating the bacterial community composition 
in experimental and natural systems (Berry et  al. 2017; 
Camarena-Gómez et al. 2018; Gomez et al. 2019; Kirch-
man et al. 2017), this study suggested that succession in 
the phytoplankton community plays an important role in 
influencing attached and free-living bacterial communi-
ties during specific periods. We found that phytoplankton 
significantly influenced the dynamics of bacterial com-
munities only when Microcystis and Psephonema rapidly 
increased rapidly during the bloom period. This could be 
because closely related phytoplankton taxa produce simi-
lar metabolic products (Jasti et  al. 2005; Rooney-Varga 
et  al. 2005) and subsequently support similar bacterial 
communities. We verified that differences in the phyto-
plankton species composition support the development 
of specific bacterial families during different phases (Dai 
et al. 2016; Tang et al. 2017). The families Xanthomona-
daceae and Alcaligenaceae showed steep increases in 
numbers as the density of Microcystis and Psephonema 
increased. The families Xanthomonadaceae and Alcali-
genaceae were be considered species-specific bacteria for 
Microcystis and Psephonema in Lake Erhai. The highly 
significant positive correlation between dominant algae 

and their species-specific bacteria in aquatic ecosystems 
suggests an important relationship between algal and 
bacterial communities (Niu et  al. 2011; Shi et  al. 2012). 
Our results show that the variation in bacterial com-
munity composition correlated with phytoplankton suc-
cession, particularly the variation in attached bacterial 
communities.

Attached and free‑living bacterial communities
In this study, the rRNA genes from the attached bacte-
ria were fundamentally homologous to those of free-liv-
ing bacteria at the family classification level, suggesting 
that attached bacterial clones originate from the free-
living bacterial community. Riemann and Winding 
(2001) also suggested a significant phylogenetic overlap 
in free-living and particle-associated bacterial assem-
blages. Our data indicate that specific bacterial com-
munities developed on attached bacteria, and these 
communities differed from those that dominated in 
free-living bacteria. However, almost all attached and 
free-living bacterial sequences were members of four 
distinct phyla: Proteobacteria, Bacteroidetes, Actino-
bacteria and Firmicutes. Several studies (Paver et  al. 
2013; Seymour et  al. 2017) suggest that phytoplank-
ton provide suitable microenvironments, which may 
explain why the dominant families of attached bacteria 
differ from those of free-living bacteria. Consequently, 
it is conceivable that the attached bacteria represent 

Table 1  Coupled effects of  environmental factors and  phytoplankton communities on  the  bacterial communities 
of the water columns

System Response variables Predicted variables References

Five lakes, Sweden Bacterial abundance (DGGE band 
number)

Nutrient content of the lakes, 
biomasses of microzooplankton, 
cryptophytes and chrysophytes

Lindström (2000)

Five mesotrophic lakes, Sweden Bacterial abundance (DGGE band 
number)

T, diatom biomass, and cryptophyte 
biomass

Lindström (2001)

Lake Toolik, Alaska Bacterial abundance (16S rRNA 
gene sequences of bacteria)

DOC (released by phytoplankton) Crump et al. (2003)

Thirteen lakes in Wisconsin, USA Bacterial abundance (ARISA frag-
ment richness)

DOC, Chl a and WT Yannarell and Triplett (2004)

Six north temperate humic lakes in 
Wisconsin, USA

Bacterial abundance (ARISA frag-
ment richness)

Meteorological, environmental and 
biological data set

Kent et al. (2007)

Thirty-five rock pools at the Baltic 
Sea coast, Sweden

Bacterial abundance (T-RFLP data) Spatial variables, salinity, Chl a, and 
water color

Langenheder and Ragnarsson (2007)

Lake Taihu, China Bacterial abundance (16S rRNA 
gene sequences of the bacteria)

Biomass of phytoplankton and WT Niu et al. (2011)

Lake Taihu, China Bacteria diversity (Shannon) and 
species richness (DGGE band 
number)

The similarities of Microcystis-asso-
ciated, settling particle-associated 
and free-living bacteria

Shi et al. (2012)

Lake Erie, USA Bacterial abundance (OTU richness) Chl a, pH, temperature Berry et al. (2017)

Two north temperate humic lakes in 
Vilas County, Wisconsin

Bacterial diversity (Bray–Curtis 
similarities)

Light, temperature, and phyto-
plankton

Paver and Kent (2017)



Page 11 of 13Wang et al. AMB Expr           (2019) 9:170 

variations in the phylotype associated with the adap-
tation of free-living bacteria to the microenvironment 
and phytoplankton.

In this study, the relationships amongst free-living 
and attached bacterial community compositions, phy-
toplankton structures and abiotic environmental fac-
tors in Lake Erhai were explored through a detailed 
field survey. Variation partitioning analysis revealed 
that abiotic environmental factors had larger effects 
on both free-living and attached bacterial community 
compositions compared to phytoplankton succession 
even though the attached bacterial community compo-
sition was strongly associated with the phytoplankton 
community during specific periods. The Microcystis 
bloom plus Psephonema domination resulted in spe-
cies-specific bacteria (families Xanthomonadaceae and 
Alcaligenaceae) that dominated the attached bacterial 
communities. In addition, the attached and free-living 
bacteria in freshwater ecosystems could interact, and 
mutually transform. Our results add a new understand-
ing of microorganism and ecosystem functioning, even 
though more detailed studies are now required.
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