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Many functional units in biology, such as enzymes or molecu-
lar motors, are composed of several subunits that can reversibly
assemble and disassemble. This includes oligomeric proteins com-
posed of several smaller monomers, as well as protein com-
plexes assembled from a few proteins. By studying the generic
spatial transport properties of such proteins, we investigate
here whether their ability to reversibly associate and dissoci-
ate may confer on them a functional advantage with respect to
nondissociating proteins. In uniform environments with position-
independent association–dissociation, we find that enhanced dif-
fusion in the monomeric state coupled to reassociation into the
functional oligomeric form leads to enhanced reactivity with
localized targets. In nonuniform environments with position-
dependent association–dissociation, caused by, for example, spa-
tial gradients of an inhibiting chemical, we find that dissociating
proteins generically tend to accumulate in regions where they are
most stable, a process that we term “stabilitaxis.”

protein complexes | intracellular transport | first passage | reactivity |
self-organization

I t has become increasingly clear in recent years that, in order to
fully understand intracellular reaction pathways, it is not suffi-

cient to know reaction rates and equilibrium constants: Under-
standing the transport properties of the biomolecules involved is
also crucial (1). For example, it is now known that many enzymes
undergo enhanced diffusion as well as chemotaxis in the pres-
ence of their chemical substrates (2–9). In turn, chemotaxis in
response to chemicals that are being produced or consumed may
lead to spontaneous self-organization of catalytic particles into
chemically active clusters (10–12). Other works have shown the
importance of segregation of different biomolecular components
into phase-separated fluid compartments within the cell (13, 14),
or how differences in diffusion coefficients between membrane-
bound and cytosolic molecules are crucial for pattern formation
and polarization in cells (15–20).

One particularly ubiquitous feature of functional units in biol-
ogy, be it proteins, enzymes, or molecular machines, is that they
are oligomeric, that is, complexes composed of several subunits
that can reversibly associate and dissociate (21–31). These pro-
teins are typically fully functional only in their oligomeric state.
One may thus wonder why oligomers are so prevalent, rather
than highly stable proteins and protein complexes with irre-
versibly bound components. We note that, physically, reversibil-
ity implies that the associated binding energies and energy
barriers are of the order of the thermal energy kBT (where kB

is the Boltzmann constant and T is temperature). Could there
be, perhaps, a functional advantage to proteins being able to
disassemble and reassemble?

Inspired by this puzzle, we investigate here the transport prop-
erties of dissociating proteins (Fig. 1). One important question
is how association–dissociation might affect the reactivity of a
protein that needs to reach and react with a given target. Such
problems, in which a protein diffuses until it finds a certain tar-
get, are typically known as “first passage” problems, and have

been subject of many studies in recent years. The effects of
different spatial geometries and heterogeneous media (32–36),
anomalous diffusion (37, 38), or intermittently switching trans-
port kinetics of the protein (39–42) on first passage times have
all been explored, to a certain extent. A common feature of all
these studies, however, is that they deal with systems of nonin-
teracting particles, in which each particle behaves independently
from the others: The first passage time is thus related only to the
transport properties of a single particle, and is independent of
particle concentrations.

This is not the case for dissociating proteins; see Fig. 1C.
Indeed, whereas dissociation does occur independently for each
protein, reassociation requires that two protein subunits find
each other, and is thus dependent on the overall protein con-
centration in the system. The first passage time, therefore,
becomes a collective property of the system. In fact, we find that
association–dissociation can lead to an enhancement in reactivity
with respect to a stable nondissociating protein, but this occurs
cooperatively, only for protein concentrations above a critical
value. Enhanced reactivity due to association–dissociation is thus
a markedly different phenomenon than that obtained in switch-
ing diffusion models (41, 42), which represent, for example, a
protein undergoing conformational changes.

A second important question with regards to the transport
properties of oligomeric proteins is how they respond to het-
erogeneous environments; see Fig. 1D. We demonstrate here
that dissociating proteins tend to spontaneously accumulate in
regions in which they are most stable, via a generic mechanism
which we term “stabilitaxis.” This behavior may be exploited
in order to trigger nonuniform patterns of protein in response
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Fig. 1. (A) Minimal model of an oligomeric protein. The monomers of a homodimeric protein can associate and dissociate with rates k+ and k−, which may
be dependent on environmental conditions (concentration of salt or a chemical inhibitor, pH, illumination, etc.). The protein is functional (in this case, able
to bind and react with the red ligand) only in its dimer form. (B) A nondissociating but otherwise identical protein. (C) Faster diffusion of the monomers
coupled to reassociation into dimers helps a dissociating protein reach a reactive target in less time than its nondissociating counterpart. (D) In the presence
of externally imposed spatial gradients of the dissociation rates, dissociating proteins undergo stabilitaxis; that is, they tend to accumulate in regions where
the oligomeric form is most stable.

to gradients of any stimuli that affects protein stability, be it
concentration of a chemical inhibitor, salt, pH, or light.

The paper is organized as follows. In Results, we first describe
the basic model for a dissociating homodimer protein, and pre-
dict enhanced diffusion and stabilitaxis arising from dissociation.
We then show how enhanced diffusion coupled to reassocia-
tion leads to enhanced reactivity with localized targets through a
cooperative mechanism, and demonstrate how stabilitaxis leads
to nonuniform steady-state patterns of protein in the presence
of dissociation gradients. Finally, in Discussion, we embed our
results within the context of biology and materials engineering.

Results
Enhanced Diffusion and Dissociation-Induced Drift Velocity. We
consider the simplest model for the reversible association and
dissociation of two identical monomers to form a homodimeric
protein; see Fig. 1A. The concentrations of monomer and of
dimer, respectively, ρ1 and ρ2, are governed by the coupled time
evolution equations

∂tρ1 =D1∇2ρ1− 2k+ρ
2
1 +2k−ρ2, [1]

∂tρ2 =D2∇2ρ2 + k+ρ
2
1− k−ρ2,

where both the association and dissociation rates k+ and k− can
depend arbitrarily on the environmental conditions (concentra-
tion of salt or a chemical inhibitor, pH, illumination, etc.), which,
in turn, may be space dependent. The monomer diffuses with
coefficient D1, and the dimer diffuses with coefficient D2. Note
that, in general, the bulkier dimer will diffuse more slowly than
the monomer, so that D2 <D1. In fact, we have shown in pre-
vious work that, for two subunits that are linked into a dimer,
the diffusion coefficient of the dimer goes as D2 =D1/2− δDfluc,
where δDfluc > 0 corresponds to a fluctuation-induced hydrody-
namic correction (43–45). We therefore generically expect the
even stronger condition D2 <D1/2.

Direct analytical solution of the coupled nonlinear evolution
equations in Eq. 1 is hard. However, further progress can be
achieved if we focus on the total protein concentration ρtot≡
ρ1/2+ ρ2, defined as the equivalent amount of dimeric protein,
where the factor 1/2 reflects the fact that two monomers are
needed to generate a dimer. Summing both equations, we can
write an evolution equation for the total protein concentration
given by

∂tρtot =
D1

2
∇2ρ1 +D2∇2ρ2. [2]

For sufficiently weak protein gradients, the typical timescale
for diffusion is much slower than the association–dissociation
timescale, and we can make a local equilibrium approximation
k+ρ

2
1≈ k−ρ2, implying that ρ1 and ρ2 quickly equilibrate at every

point in space. Under this approximation, the local monomer
and dimer concentrations are related to the local total protein
concentration by

ρ1≈
Kd

4

(√
1+16

ρtot

Kd
− 1

)
, and ρ2≈

ρ2
1

Kd
, [3]

where we have defined the dissociation constant Kd≡ k−/k+,
which carries the environment dependence (or position depen-
dence) of the association and dissociation rates.

Inserting the values resulting from the local equilibrium
approximation into Eq. 2, we finally obtain an explicit evolution
equation for the total protein concentration,

∂tρtot =∇· (Deff∇ρtot− ρtotVdis), [4]

with the effective diffusion coefficient

Deff ≡D2 +
D1−D2√

1+16ρtot/Kd

, [5]

and the dissociation-induced drift velocity

Vdis≡−
D1−D2

8

(
1+8ρtot/Kd√
1+16ρtot/Kd

− 1

)
∇Kd

ρtot
. [6]

Because the dimer diffuses more slowly than the monomer, with
D2 <D1, the effective diffusion coefficient is always larger than
the dimer diffusion coefficient, Deff >D2; that is, dissociation
leads to enhanced diffusion. The effective diffusion coefficient
decreases monotonically with increasing protein concentration,
from Deff =D1 at low protein concentration (ρtot�Kd, in which
case all proteins are in the form of monomers) to Deff =D2 at
high protein concentrations (ρtot�Kd, in which case all pro-
teins are in the form of dimers). Equivalently, the effective
diffusion coefficient increases monotonically with increasing Kd,
from Deff =D2 to Deff =D1.

Noting that the coefficient multiplying ∇Kd in Eq. 6 is
always negative, we see that the dissociation-induced velocity
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Vdis always points in the direction of decreasing Kd, which is
toward regions where the dimer is more stable. We term this
behavior stabilitaxis. Moreover, we note that the magnitude of
the velocity depends nonmonotonically on the protein concen-
tration, tending to zero for low (ρtot�Kd) and high (ρtot�
Kd) protein concentrations, and reaching a maximum value
at ρtot' 0.3Kd.

The approach that we just followed, based on using the local
equilibrium approximation in order to obtain a closed evolu-
tion equation for the total protein concentration in a reaction–
diffusion system with mass conservation, has been developed in
great detail in the context of pattern formation by systems that
exhibit a Turing instability (16–18). In these studies, the reac-
tion rates are typically position independent [or at most, varying
step-wise (18)], but the system itself can become laterally unsta-
ble. In the problem that we consider here, on the other hand,
the association–dissociation rates may have an arbitrary space
dependence, but the system would otherwise be laterally stable.
The local equilibrium approximation was also used in the latter
context in ref. 5, which studied enzyme chemotaxis in response
to arbitrary substrate gradients.

Cooperatively Enhanced Reactivity. We have shown that the effec-
tive diffusion of the total amount (in both monomeric and
dimeric form) of a dissociating protein is faster than that of a
nondissociating protein; that is, we always have Deff >D2. This
conclusion was to be expected, given that the smaller monomers
will diffuse faster than the bulkier dimers. A less obvious ques-
tion, and one more relevant to biology as well as technological
applications, is whether association–dissociation can help a pro-
tein reach and react with a distant reactive target more rapidly.
Note that, while dissociation helps in enhancing diffusion, it
also hinders the reaction by rendering the protein nonfunc-
tional, which suggests a nontrivial competition between these
two effects.

To this end, we have investigated the first passage time
of dimers placed at the center of a one-dimensional (1D)
domain of length L, with absorbing boundary conditions for the
dimers [ρ2(x =0)= ρ2(x =L)= 0] and no-flux boundary condi-
tions [ρ′1(x =0)= ρ′1(x =L)= 0] for the monomers. This repre-
sents a system in which a target located at the boundaries reacts
instantaneously with dimers (diffusion-limited reaction) but is
insensitive to monomers. The results for the dissociating case,
obtained from numerical solution of the coupled partial differ-
ential equations in Eq. 1 with position-independent k+ and k−,
are compared with those for the diffusion of a nondissociating
protein, governed simply by ∂tρnd

2 =D2∇2ρnd
2 (see Methods).

Because dimers are absorbed at the boundaries, the total pro-
tein number N (t)=N1(t)/2+N2(t) within the box decreases
with time. Here, N1 and N2 are the monomer and dimer
numbers, with Ni =

∫ L

0
ρidx . We can then define a time-

dependent reaction rate as R(t)=−[1/N (t =0)]dN /dt . The
reaction rate defined in this way verifies the normalization con-
dition

∫∞
0

R(t)dt =1, and serves as a mean-field generalization
of the first passage time probability distribution to a system
with many interacting particles, which will coincide with the
results of a stochastic approach in the limit of a large number of
particles.

We find that, in a system of associating and dissociating par-
ticles, first passage is indeed a collective property of the system
(Fig. 2). In particular, the reaction rate curve R(t) depends on
the total initial protein number, as given by the number N2(t =
0)≡ ρ2,0L of dimers initially placed at the center of the box. The
R(t) curves for several values of ρ2,0 are shown in Fig. 2A and
compared with that of a nondissociating protein (black dotted
line). At low concentrations, the dissociating protein is mostly in
monomer form, and reacts more slowly than a nondissociating

protein (red line). At intermediate values of protein concentra-
tion, however, a positive interplay between faster diffusion in
the monomer state, coupled to sufficiently frequent reassociation
into the reactive dimer state, leads to enhanced reactivity with
respect to the nondissociating protein (yellow line). As the pro-
tein concentration is further increased, the proteins spend most
of the time in the dimer state and react with a rate very similar to
a nondissociating protein (green line).

Enhanced reactivity thus arises as a cooperative effect from
the interaction of a sufficiently large number of proteins. This is
clearly seen in Fig. 2B, which shows both the median first pas-
sage time t50 and the peak reaction rate Rmax, relative to those
of a nondissociating protein tnd

50 and Rnd
max, as a function of pro-

tein concentration. The median first passage time obtained from
R(t) is a mean-field quantity representing the time after which
50% of the initial proteins have reacted with the target, which,
for a many-particle system such as the one under consideration,
is a more intuitive measure of reaction speed than the mean first
passage time.

Moreover, we find that reactivity is enhanced when the dynam-
ics of association–dissociation is sufficiently fast as compared to
the diffusion timescale; see Fig. 2C. For very slow dynamics,
with k−L

2/D1� 1, the protein does not have time to dissoci-
ate before reaching the target, and thus behaves effectively as
a nondissociating protein. At intermediate values, dissociation is
counterproductive, as the protein has sufficient time to dissociate
before reaching the target, but still takes a long time to reas-
sociate in order to react. Finally, when the dynamics becomes
sufficiently fast, dissociation is always favorable, as it enhances
diffusion (Eq. 5), while reassociation is fast enough to not hinder
the reaction.

The combined effect of protein concentration and association–
dissociation dynamics on the median first passage time is sum-
marized in Fig. 2D, for the particular case D2 =0.5D1. Coop-
eratively enhanced reactivity is found at an intermediate range
of protein concentrations and for sufficiently fast association–
dissociation dynamics. The optimal value of concentration that
minimizes the median first passage time decreases with increas-
ing k− (yellow line). Within the range of values explored, the
median first passage time can be up to 40% smaller for a dis-
sociating protein than for a nondissociating protein, and will
decrease even further for larger values of k−L2/D1. Note that
our results remain qualitatively similar if a measure of reaction
speed other than the median first passage time is used. As an
example, we also show the line t99 = tnd

99 (dotted line), repre-
senting the values above which the time it takes for 99% of the
proteins to react is shorter for a dissociating protein than for a
nondissociating one.

The enhancement in reactivity (reduction in median first pas-
sage time) that can be achieved due to dissociation increases as
the ratio D2/D1 is decreased; see SI Appendix, Fig. S1 for the
case D2/D1 =0.3. In fact, we expect that the minimal median
first passage time that can be achieved is t50 =(D2/D1)t

nd
50 ,

which will occur in the limit in which the protein concentra-
tion is very low, ρ2,0�Kd. In this regime, the protein is mostly
in monomer form. However, if the association and dissocia-
tion rates are very fast, namely, k−L2/D1� 1, reassociation can
occur very rapidly near the target. Note that all of the results just
described were obtained from numerical solution of the full evo-
lution equations (Eq. 1) at finite k−L

2/D1. In order to examine
the limit of very fast association–dissociation, we can, instead,
consider the first passage time problem using the local equilib-
rium approximation in Eq. 4, which, in fact, corresponds to the
limit k−L2/D1→∞. We have solved this equation numerically,
for the case D2 =0.5D1, to obtain the median first passage time
as a function of total protein concentration, and, indeed, we find
that the first passage time goes from that expected of a monomer
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Fig. 2. (A) Reaction rate as a function of time for a dissociating protein at three different concentrations, as well as that of a nondissociating protein.
(B and C) Median first passage time t50 (time at which half of all proteins have reacted) and maximal reaction rate Rmax relative to those of a nondissociating
protein tnd

50 and Rnd
max (B) as a function of protein concentration and (C) as a function of k−L2/D1 which compares the rate of association–dissociation to

the diffusion rate. (D) The t50/tnd
50 as a function of both protein concentration and association–dissociation rate. The “disadvantage” region corresponds to

t50/tnd
50 > 1; the red, yellow, and green stars refer to the reaction rate curves in A; the line labeled tmin

50 indicates the concentrations that minimize t50 for a
given k−; and the line t99 = tnd

99 denotes the values above which 99% of the proteins react faster in the dissociating case. In all cases, we set D2 = 0.5D1; in
A and B, k−L2/D1 = 104; and, in C, ρ2,0 = 0.4Kd.
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(t50 =0.5tnd
50 ) at very low concentration to that expected of

a dimer (t50 = tnd
50 ) at very high concentration (SI Appendix,

Fig. S2). Note that the limit k−L
2/D1→∞ corresponding to

the local equilibrium approximation shows qualitatively differ-
ent behavior than that seen at finite k−L

2/D1, because, in this
limit, there is no optimal concentration for which the median first
passage time is minimal; instead, the first passage time increases
monotonically with increasing concentration. This implies that
the optimal concentration tends to zero as k−L

2/D1 tends
to infinity.

The results just described were obtained for the first passage
time of dimers initially placed at the center of a 1D domain with
reactive boundaries, but our results hold more generally. In par-
ticular, we find that dimensionality does not play a role, and
dimers placed at the center of a two-dimensional (2D) circular
domain or a three-dimensional (3D) spherical domain with reac-
tive boundaries also show cooperatively enhanced reactivity, with
nearly identical enhancements (SI Appendix, Fig. S3). Moreover,
cooperatively enhanced reactivity is also robust to the choice of
initial conditions for the monomer and dimer distributions. As a
particularly relevant example, we have considered, as initial con-
dition, a laterally uniform distribution of monomers and dimers
at association–dissociation equilibrium (ρ2 = ρ2

1/Kd), instead of
a highly concentrated distribution of dimers at the center of the
domain. This would correspond to a case in which the system is
first allowed to relax to equilibrium in the absence of the bound-
ary reaction, and then the boundary reaction is switched on. We
find that there is also cooperatively enhanced reactivity for this
choice of initial conditions, with very similar enhancements as
above (SI Appendix, Fig. S4).

Stabilitaxis: Accumulation in Regions of Higher Stability. The exis-
tence of the dissociation-induced drift velocity (Eq. 6) suggests
that, in environments with position-dependent dissociation, dis-
sociating proteins will tend to preferentially accumulate in the
regions of higher stability after some time. Indeed, we can verify
the existence of such stabilitaxis by calculating the steady-state
concentrations for the monomer, dimer, and total amount of
protein in a nonuniform environment. From Eq. 2, we see that
the total flux of protein is given by J=−∇(D1ρ1/2+D2ρ2).
Requiring that this flux be equal to zero, J=0, we find that,
in a steady state with no influx or outflux of proteins into the
system, the combination D1ρ1/2+D2ρ2 must be a position-
independent constant. Combining this condition with the results
of the local equilibrium approximation in Eq. 3, we finally find
the steady-state profiles

ρ1,∞≈
Kd

4

D1

D2

(
−1+

√
1+

C

Kd

)
,

ρ2,∞≈
ρ2

1,∞

Kd
, and ρtot,∞≈

ρ1,∞

2
+
ρ2

1,∞

Kd
, [7]

where C is a constant with units of concentration, which is used
to satisfy the constraint on the total amount of protein. The same
approach, based on combining the local equilibrium approxi-
mation with the condition of zero total protein flux at steady
state, has been recently used to understand pattern formation
in reaction–diffusion systems that display a lateral instability,
including a novel geometric interpretation of the concepts of
local equilibrium and zero total flux, both in the case of spatially
uniform reaction rates (17) and in environments with a step-wise
position dependence of the reaction rates (18).

To confirm the validity of our steady-state results, we have
compared them to the long time limit of the numerical solution
of the coupled partial differential equations (Eq. 1), with no-
flux boundary conditions ρ′1(x =0)= ρ′2(x =0)= ρ′1(x =L)=
ρ′2(x =L)= 0 for all species, for two different examples of

position-dependent association and dissociation rates k+ and
k−, which naturally lead to a position-dependent Kd = k−/k+

(Fig. 3). The steady-state profile given by Eq. 7 reproduces
well the numerical results, although it deviates near the box
boundaries. This can be understood by noting that the no-
flux boundary conditions are not appropriately captured by the
local equilibrium approximation, nor are regions with sharp
changes in Kd and thus in the protein concentration. The
width of the region over which deviations are significant is
governed by the length scale

√
D1/k−, as can be under-

stood from a first-order approximation valid for small devia-
tions around the local equilibrium approximation (SI Appendix).
Therefore, these deviations become progressively smaller, and
the local equilibrium approximation becomes increasingly more
accurate, with increasing k−L

2/D1 (SI Appendix, Fig. S5). As

A

B

Fig. 3. Steady-state concentrations for a protein in the presence of a dis-
sociation gradient. The numerical solution of Eq. 1 (solid lines) can be
compared to the local equilibrium approximation in Eq. 7 (dotted lines).
The protein undergoes stabilitaxis, accumulating in regions of higher stabil-
ity. Insets show the corresponding dissociation gradients (arbitrary units): (A)
linear gradient in k− leading to linearly increasing Kd; and (B) discrete jump
in k− and thus Kd. In both cases, we have set D2 = 0.5D1. In A, kmax

− L2/D1 =

102 and ρ2,0 = Kmax
d . In B, kmax

− L2/D1 = 105 and ρ2,0 = 10−2Kmax
d .
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predicted, the protein does preferentially accumulate in regions
of higher stability (lower Kd), whether one considers the total
protein amount including monomer and dimer forms (black
lines), or just the dimer form (blue lines). These results are
independent of the dimensionality of the system, and we
obtain similar profiles, well captured by the local equilibrium
approximation, for 2D and 3D circular and spherical domains
(SI Appendix, Fig. S6). The fact that the steady-state pro-
files depend on the ratio of diffusion coefficients (see Eq.
7) clearly demonstrates that stabilitaxis is a nonequilibrium
phenomenon, which must be sustained by externally imposed
gradients.

The dependence of stabilitaxis on the ratio of diffusion coef-
ficients is most evident if we consider the limit of a space
containing two connected regions; one with very weak dissoci-
ation Kd→ 0, for which we expect ρtot≈ ρ2 and ρ1≈ 0, and the
other with very strong dissociation Kd→∞, for which we expect
ρtot≈ ρ1/2 and ρ2≈ 0. Taking these limits in Eq. 7, and solving
for C , we obtain the relation

D2ρtot,∞(Kd→ 0)≈D1ρtot,∞(Kd→∞), [8]

between the protein concentrations in both regions. For D2 =
0.5D1, we thus expect twice as much protein in the region where
it is stable as compared to the region where it is unstable. This
prediction is confirmed by the numerical result in Fig. 3B.

In order for a protein gradient to be established via stabilitaxis,
the underlying dissociation gradient should be sufficiently long
lived. The typical timescale over which the steady-state distribu-
tion is reached is given by L2/D1, and thus the required minimal
lifetime of the underlying gradient will strongly depend on the
system size. Using D1 =10 µm2/s as a typical protein diffusion
coefficient in the cytoplasm, we find characteristic times of 0.1 s
for a small cell with L=1 µm, 10 s for a cell with L=10 µm, or
1,000 s for a large cell with L=100 µm.

Discussion
We have predicted here a number of nontrivial features in
the diffusion, reactivity, and gradient response of dissociating
oligomeric proteins. Some of these features could be seen as
conferring a functional advantage to dissociating proteins over
nondissociating ones, which might explain why biological evolu-
tion has resulted in many important enzymes and proteins being
multimeric.

Firstly, we have shown that it can be advantageous for a
protein, enzyme, or molecular machine to dissociate into non-
functional but smaller subunits that can diffuse faster, and later
reassociate to perform their function at a distant location. This
can lead to significantly faster reaction rates for dissociating
proteins. We have shown that enhanced reactivity arises as a
cooperative effect, which minimizes reaction time for an inter-
mediate range of protein concentrations. Moreover, as can be
seen from Fig. 2, dissociation becomes more and more advan-
tageous with increasing values of the dimensionless quantity
k−L

2/D1, which compares the rate of unbinding with the typical
timescale of diffusion across the system. Crucially, this quan-
tity scales with the square of the system size, and therefore
can vary over many orders of magnitude for different systems.
Experimental measurements of protein complex dissociation
kinetics are not widely available, but some relevant examples
can be found, such as k−≈ 20 s−1 for the CheY–CheA com-
plex involved in the sensory response pathway of Escherichia
coli (46), or k−≈ 2 s−1 for the p53–Mdm2 complex involved
in DNA repair (47) as well as for the WASp–Cdc42 complex
involved in the remodeling of actin filaments (48). Using a mod-
erate choice of k−=1 s−1 for the dissociation rate (49–51), and
D1 =10 µm2/s for the diffusion coefficient of a protein in the
cytoplasm, we find values of k−L2/D1 ranging from 10−1 for a

small cell with L=1 µm, to 103 for a large cell with L=100 µm,
all of the way up to 107 for diffusion along a neuronal axon or
a microfluidic device with L=1 cm. For membrane-bound pro-
teins, the diffusion coefficient is greatly reduced, and thus the
corresponding values of k−L2/D1 will be significantly enhanced,
and the advantages due to dissociation will be greater. For any
given protein, the advantages due to dissociation will be largest
when the target to be reached is distant. The typical reactivity
enhancements that can be achieved are of the order of D1/D2,
and thus, for a dissociating dimer, are of the order of 10 to
50% (Fig. 2).

Secondly, we have shown that dissociation provides a mech-
anism for proteins to sense and respond to their environment,
by undergoing stabilitaxis or motion toward regions in which
their oligomeric form is most stable. Stabilitaxis represents a
mechanism by which nonuniform patterns in the concentra-
tion of a biomolecule can be triggered. For example, polar-
ization in the concentration of a dissociating protein within
a cell can be triggered by localized production of a chemi-
cal that enhances or inhibits the association or dissociation of
the protein subunits. The precise form of the resulting protein
distribution can be predicted from Eq. 7, but, in general, the
typical difference in protein concentration between the regions
of low and high dissociation will be proportional to D1/D2; see
Eq. 8. It remains to be seen whether stabilitaxis is exploited
by the cell in the intracellular organization of oligomeric
proteins.

Although we have focused here, for simplicity, on the case of
a homodimeric protein, we expect that our general predictions
of enhanced reactivity and stabilitaxis will hold equally for more
complex cases of heteromultimeric proteins (i.e., composed of
more than two subunits, that may also be different from each
other). As an example of a more complex protein, we have con-
sidered a homohexamer, composed of six identical subunits, and
found qualitatively similar results for both enhanced reactivity
and stabilitaxis (SI Appendix, Fig. S7). Interestingly, our numer-
ical results show that the prediction in Eq. 8 for stabilitaxis still
holds if we replace the dimer diffusion coefficient by the hex-
amer diffusion coefficient. Because the ratio of monomer and
hexamer diffusion coefficients is much larger (on the order of
six), the protein accumulation due to stabilitaxis is enhanced
significantly. We expect that the maximum achievable enhance-
ment in reactivity (for sufficiently fast association–dissociation
rate) will also be larger for a multimeric protein with a large
difference in diffusion coefficient between the monomeric and
multimeric forms.

Beyond the biological implications, our predictions of en-
hanced reactivity may be useful in the context of chemical
engineering, for example, in the design of synthetic catalytic
microreactors. Moreover, our results may also be tested and
applied in purely synthetic systems, for example, using patchy
colloids coated with ligands, that can bind to each other to
form colloidal molecules. In the context of engineering of active
or responsive materials, one particularly interesting applica-
tion would be to use colloids coated with light-induced linkers
(52) that bind to each other only when illuminated. Such a
material would flow and become denser in illuminated regions
on demand.

Materials and Methods
Numerical Solution of Evolution Equations. The coupled evolution equations,
Eq. 1, are numerically solved using MATLAB’s pdepe solver for systems of
parabolic partial differential equations (53). The size of the system is given
by L, which, in 1D calculations, corresponds to the length of the domain,
and, in 2D and 3D calculations, corresponds to the diameter of the circular or
spherical domain. We can then define the dimensionless time as τ ≡ tD1/L2,
position as x̃≡ x/L in 1D calculations or as the radial coordinate r̃≡ r/L in
2D and 3D calculations, and concentrations as ρ̃≡ (k+/k−)ρ= ρ/Kd. The
system is then governed by two dimensionless parameters only, namely,
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the ratio of association–diffusion timescales k̃−≡ k−L2/D1, and the ratio of
dimer-to-monomer diffusion coefficients D̃2≡D2/D1, as well as our choice
of initial conditions. In cases with position-dependent k−, we use the max-
imum value kmax

− for the nondimensionalization. For the initial conditions,
we use (except for SI Appendix, Fig. S4) a Gaussian profile located at the cen-
ter of the box for the concentration of the dimer, with standard deviation
σ= 0.01L, and normalized so that the total amount of dimer in the box is
ρ2,0L; the initial concentration of the monomers is set to zero. We use 1,000
points in the space discretization. The system is evolved in time until 99% of

the proteins have been consumed (when calculating the reaction rate), or
until a steady state is reached (when exploring stabilitaxis).

Data Availability. All data are available in the paper and SI Appendix.
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