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Purpose: Matrix metalloproteinases (MMPs) are postulated to be involved in the development of retinal angiogenesis
through the regulation of extracellular matrix. The objective of the present study was to test for a possible association of
five single nucleotide polymorphisms (SNPs) in the MMP-2 gene and two polymorphisms in the MMP-9 gene with
proliferative diabetic retinopathy (PDR) and to determine their plasma levels.
Methods: The study comprised 490 Caucasian participants, who were divided into three groups: diabetics with PDR,
diabetics without PDR, and nondiabetics. Genotypes were detected by polymerase chain reactions followed by restriction
analyses with specific endonucleases and their frequencies determined. Plasma levels of MMP-2 and MMP-9 proteins
were analyzed by ELISA.
Results: Neither MMP-2 SNPs nor MMP-9 SNPs revealed significant association with PDR in single-locus comparisons;
similarly, MMP-2 haplotype frequencies did not differ notably between groups, although the C-allele of the −1306C/T
polymorphism and the C-allele containing haplotype (CGCG) in MMP-2 exhibited marginally significant association with
PDR in males (p<0.05, pcorr=NS). Both MMP-2 and MMP-9 plasma levels showed statistically significant differences
among the studied groups (p<0.001 and p=0.001, respectively) with highest levels in the PDR group. MMP-2 plasma
levels were markedly higher in carriers of either the −1306CC and −1306CT genotypes and (p=0.009) or CGCG haplotype
(p=0.043).
Conclusions: These findings indicate that genotype- and haplotype-specific effects on MMP-2 expression corresponding
with its plasma levels may contribute to the susceptibility to PDR.

Proliferative diabetic retinopathy (PDR) is characterized
by active angiogenesis in the retina and the formation of
fibrovascular tissue at the vitreoretinal interface [1].
Angiogenesis involves migration, proliferation,
differentiation, and adhesion of cells and is influenced by the
surrounding extracellular matrix (ECM). These processes
require regulation and local production of angiogenic factors
[2,3] as well as synthesis of ECM components necessary for
the anchorage of migrating endothelial and other cells, such
as retinal pigment epithelium, glial cells, and fibroblasts [4,
5]. Degradation of ECM proteins is exerted by matrix
metalloproteinases (MMPs), whose activity is, in turn,
regulated by natural inhibitors known as tissue inhibitors of
MMPs [6]. During angiogenesis, MMPs have an important
role in connective tissue remodeling and in the degradation of
basement membrane and surrounding ECM [7,8]. Thus, the
regulation of angiogenesis may be dependent on the intensity
of expression of these enzymes as well as endocrine and
growth factors. Any genetic polymorphism in the loci
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encoding MMPs and their corresponding plasma levels could
belong to the risk factors participating in PDR development.

MMPs belong to a family of zinc-containing ECM-
degrading enzymes that share common structural and
functional properties [9]. The important molecules controlling
the formation of new vessels are gelatinase A (MMP-2) and
gelatinase B (MMP-9), which have the ability to cleave type
IV collagen, a major component of the basement membrane.
Some studies reported that both MMPs play an important role
in the regulation of angiogenesis and may be relevant to the
development of the proliferative phase of DR [10-12].

Genetic variability in the regulatory regions of the genes
is one of the significant factors that influence levels of MMPs.
Several polymorphisms have been identified in the promoter
and coding regions of MMP-2 and MMP-9 [13-16]. In this
study, we examined five polymorphisms in MMP-2 (−168G/
T, −735C/T, −790T/G, −1306C/T, and –1575G/A) and two
polymorphisms in MMP-9 (−1562C/T and R279Q). We
employed the following selection criteria: frequency of the
minor allele ≥5%; and previous evidence that sequence
variants in the promoters influence expression as well as levels
of MMPs. Polymorphism –1306C/T of MMP-2 was shown to
be linked to a strikingly lower promoter activity associated
with the T-allele [14]. Similarly, SNP –1562C/T of MMP-9
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was found to influence transcription in an allele-specific
manner, the T-allele having a greater strength than the C-
allelic promoter [17]. We hypothesized that susceptibility to
the development of PDR may be associated with the presence
of particular alleles at the MMPs loci.

The aim of the present study was to employ PDR to find
a possible association of genetic variations in MMP-2 and
MMP-9. Furthermore, we determined MMP-2 and MMP-9
plasma levels in subjects studied and analyzed mutual
relationships between plasma level of product and genetic
variability within the particular gene.

METHODS
Subjects: The present study enrolled 490 unrelated Caucasian
subjects, 304 of whom had type 2 diabetes mellitus (DM). All
participants were divided into three groups: diabetics with
PDR (PDR), diabetics without PDR (non-PDR), and
nondiabetics (non-DM). DM was diagnosed previously
according to the World Health Organization criteria. All
diabetic participants were on some form of treatment. Mean
known duration of DM was 11.4±0.56 years (mean±SE). The
PDR group consisted of 129 patients (66 men and 63 women),
and their average age was 62.3±0.72 years (range 47–79
years). All PDR subjects regularly attended a specialized
diabetology unit of the Department of Ophthalmology,
University Hospital Brno, Czech Republic. PDR was assessed
by direct ophthalmoscopy through dilated pupils of PDR
patients and classified as proliferative according to the early
treatment diabetic retinopathy (ETDR) criteria
[18].Ophthalmologic examinations of PDR patients were
performed several times per year. The non-PDR group
(n=175) was composed of 175 participants (80 men and 95
women) whose average age was 64.3±0.95 years. The non-
DM group had 186 participants (61 men and 125 women) who
had no personal history or clinical signs of diabetes. The
average age of participants in this group was 59.4±0.99 years.
Only the non-DM group (control group) had no evidence of
cardiovascular disease, cancer, or allergy, and they were not
taking any long-term medication. Signed informed consent
was obtained from every participant in each group before their
insertion in the study. The present study was conducted
according to the principles of the Declaration of Helsinki and
was approved by the Ethical Committee, Medical Faculty,
Masaryk University, Brno, Czech Republic.
PCR for MMP-2 and MMP-9 single nucleotide
polymorphisms: Peripheral blood (5 ml) of all investigated
subjects was obtained and mixed with EDTA. Genomic DNA
was isolated from 5 ml EDTA-anticoagulated peripheral
blood leukocytes by a standard extraction method and used as
a template for PCR. Reactions were performed in a final
volume of 25 µl, containing 50 mM KCl, 10 mM TRIS-HCl
buffer, pH 8.4, 1.5 mM MgCl2, 10 pmol of each primer (Table
1), 200 µM dNTP, 1 µg of genomic DNA in the presence of
0.7 U of Taq polymerase (MBI Fermentas, Glen Burnie, MD).

After the initial denaturation step (95 °C for 5 min), each cycle
(of additional 30 cycles) consisted of a 95 °C denaturation for
30 s, 30 s of annealing, a 72 °C extension for 30 s, and a final
extension lasting 8 min at 72 °C. Polymorphisms (−735C/T,
−790T/G, −1306C/T, and –1575G/A) were genotyped by
PCR and subsequent restriction with specific endonucleases
according to methods described elsewhere [15]. Those
polymorphisms were analyzed by the standard PCR method
which was mentioned above. The primer sequences,
annealing temperatures, PCR product and locations for all
methods are given in Table 1. In the case of the −168G/T
polymorphism, 15 μl aliquots of the PCR product were
digested with 3 U of BseDI (MBI Fermentas) for 5 h at 55 °C.
Digestion revealed fragments of 26 bp, 194 bp, and 205 bp for
the wild-type allele and 26 bp and 399 bp for the mutated
allele.

Polymorphisms −1562C/T and R279Q in MMP-9 were
detected using a modified PCR method based on the published
single-strand conformation polymorphism technique [16].
Aliquots (10 μl) of the −1562C/T PCR product were digested
with 3 U PaeI (MBI Fermentas) for 5 h at 37 °C. Digestion
revealed fragments of 144 and 185 bp for the mutated allele.
The wild type allele C lacked the PaeI restriction site. In the
case of the R279Q polymorphism, 10 μl of PCR product were
digested with 3 U of SmaI (MBI Fermentas) for 5 h at 30 °C.
Digestion revealed fragments of 22 and 73 bp for the wild type
allele. The mutated allele Q lacked the SmaI restriction site.
Determination of metalloproteinase-2 and
metalloproteinase-9 plasma levels: For determination of
plasma levels of MMPs the human MMP-2 and MMP-9
ELISA Kits (RayBiotech, Inc., Norcross, GA) were used
according to the manufacturer's instructions. The minimum
detectable dose was less than 80 pg/ml of MMP-2 and 10 pg/
ml of MMP-9, respectively.
Statistical analysis: Differences in genotype distribution and
consistency with Hardy–Weinberg equilibrium were tested by
chi-square test. Differences in allele frequencies of SNPs were
tested by two-tailed Fisher exact test. PHASE v. 2.0 [19]
software was used to resolve a sample of phase-unknown
multilocus genotypes and to estimate population haplotype
frequencies by the Bayesian-based algorithm. Comparison of
the estimated haplotype frequencies was performed as
omnibus testing of differences in haplotype frequency profiles
between the two groups (statistical significance assessed
empirically via permutation testing). In addition, haplotype-
specific effects were analyzed using inferred haplotype pairs
by computing chi-square statistics.

Normally distributed metric parameters (Kolmogorov–
Smirnov test) were presented as mean ± standard error of the
mean (SE), others as median (range). Mann–Whitney U-test,
Kruskal–Wallis ANOVA and Spearman rank correlation tests
were used where appropriate. Values of p<0.05 were
considered to be statistically significant. Bonferroni
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correction (pcorr) was applied in case of multiple comparisons
modifying the significant p-value threshold according to
number of comparisons. Statistical analyses were performed
using program package Statistica for Windows (StatSoft Inc.,
Tulsa, OK).

RESULTS
Genetic polymorphisms of metalloproteinase-2 and
metalloproteinase-9 genes and proliferative diabetic
retinopathy: Genotype frequencies of all SNPs (−168G/T,
−735C/T, −790T/G, −1306C/T, 
–1575G/A, −1562C/T, and R279Q) in the individual groups
are shown in Table 2. Genotype distribution of any of the
seven polymorphism studied did not differ from Hardy–
Weinberg equilibrium in any group (p>0.05). Similarly,
genotype frequencies of any polymorphisms did not differ
significantly between groups in pair-wise comparison
(p>0.05). Comparison of allele frequencies showed
statistically significant difference in allele frequencies of the
-1306C/T polymorphism between the PDR versus non-DM
groups (p=0.024), however, after the correction for multiple
comparison the difference did not remained significant
(pcorr>0.05). The calculated odds ratio (OR) for the CC and
CT genotypes was 1.41 (95% confidence interval (CI):
0.52±3.87).

Testing for association carried separately for males and
females revealed statistically significant gender-specific
association of the two MMP-2 polymorphisms (−168G/T and
−1306C/T), in particular, differences in genotype as well as
in allele frequencies between the PDR and non-DM groups
(Table 3). In female subjects, the significant differences in
genotype distribution (p=0.040) and allele frequency
(p=0.016) were found for −168G/T polymorphism. Female
subjects carrying the −168T allele had a 2.45 fold higher risk

of developing PDR (OR=2.45, 95% CI: 1.16–5.20) than those
not carrying this allele. On the other hand, the statistically
significant difference in genotype distribution (allele
frequency) of −1306C/T polymorphism was found in male
subjects between the same groups (p=0.039 and p=0.024). The
calculated OR for patients carrying the −1306C allele was
1.88 (95% CI: 1.05–3.40). However, after taking the number
of comparisons into account, we found none of the
significances remained statistically significant (pcorr>0.05).

Haplotype analysis was performed to compare the sum
effect of genetic variability of the four polymorphisms
(−1306C/T, −790T/G, −735C/T and −168G/T) in MMP-2.
The −1575G/A polymorphism was omitted due to the strong
linkage disequilibrium between −1306C/T and −1575G/A
polymorphisms. Haplotypes were constructed from genotype
data of all subjects computationally using PHASE software
with the assumption of mutual independence of haplotypes.
No statistically significant difference was found in haplotype
frequencies between the groups studied (omnibus p>0.05;
10,000 permutations). Analyses performed separately for men
and women revealed a statistically significant difference in
males (omnibus p=0.042; 10,000 permutations); while no
significant difference was observed in females (omnibus
p=0.738, 10 000 permutations). The pair-wise comparison of
groups in males showed significant differences in haplotype
frequencies between PDR versus non-PDR groups (p=0.031).
To analyze haplotype-specific effects on the trait (i.e.,
presence of PDR), we asigned pairs of haplotypes to
individuals. Subsequently, numbers of individuals with this
particular haplotype were counted. Table 4 shows the absolute
numbers of haplotypes in particular groups that were inferred
retrospectively with probability more than 90%. Carriers of
haplotypes with frequencies <1% in all three groups were
pooled together as “rare.” Separate one-degree of freedom

TABLE 1. PCR REACTION CONDITIONS

Gene SNP Primer sequence (sense/antisense) Ta (°C) Product (bp)
MMP-2

−168G/T 5′-CTGACCATTCCTTCCCGTTC-3′ 51 425
5′-CGCCTGAGGAAGTCTGGAT-3′

−735C/T 5′-ATAGGGTAAACCTCCCCACATT-3′ 59 300
5′-GGTAAAATGAGGCTGAGACCTG-3′

−790T/G 5′-GGGTCTTTGTGACCTCGATC-3′ 56 118
5′-GGTAAAATGAGGCTGAGACCTG-3′

−1306C/T 5′-CTTCCTAGGCTGGTCCTTACTGA-3′ 49 193
5′-CTGAGACCTGAAGAGCTAAAGAGCT-3′

−1575G/A 5′-ACTGACTCTGGAAAGTCAGAGCAG-3′ 60 269
5′-GGCACAGGGTGAGGGGATGG-3′

MMP-9
−1562C/T 5′-ATGCTCATGCCCGTAATCCT-3′ 65 329

5′-GGGGTAGTATCACTCTGTCACC-3′
R279Q 5′-CTCGCCCCAGGACTCTACAC-3′ 60 95

5′-GTGCAGGCGGAGTAGGATT-3′

The table summarizes the primer sequences, annealing temperatures, and PCR product lengths.
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TABLE 2. GENOTYPE DISTRIBUTIONS OF MMP-2 AND MMP-9 POLYMORPHISMS

MMP-2
−168G/T
GG (%) GT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 106 (83) 19 (15) 3 (2)

non-PDR (n=175) (2) 151 (86) 23 (13) 1 (1) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 157 (84) 29 (16) 0 (0)
MMP-2
−735C/T
CC (%) CT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 95 (74) 32 (25) 2 (1)

non-PDR (n=175) (2) 136 (78) 38 (22) 1 (0) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 142 (76) 40 (22) 4 (2)
MMP-2
−790T/G
TT (%) TG (%) GG (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 74 (57) 46 (36) 9 (7)

non-PDR (n=175) (2) 92 (54) 66 (38) 14 (8) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 90 (48) 85 (46) 11 (6)
MMP-2

−1306C/T
CC (%) CT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 79 (61) 44 (34) 6 (5)

non-PDR (n=175) (2) 94 (54) 66 (38) 15 (9) NS
NS

NS
NS

NS
(p=0.024)

non-DM (n=186) (3) 90 (48) 84 (45) 12 (7)
MMP-2

−1575G/A
GG (%) GA (%) AA (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 73 (57) 49 (38) 7 (5)

non-PDR (n=175) (2) 94 (54) 66 (38) 15 (9) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 90 (48) 84 (45) 12 (7)
MMP-9

−1562C/T
CC (%) CT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 94 (73) 32 (25) 3 (2)

non-PDR (n=175) (2) 126 (72) 47 (27) 2 (1) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 134 (72) 49 (26) 3 (2)
MMP-9
R279Q
RR (%) RQ (%) QQ (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=128) (1) 44 (34) 69 (54) 16 (12)

non-PDR (n=175) (2) 73 (42) 83 (47) 19 (11) NS
NS

NS
NS

NS
NS

non-DM (n=186) (3) 70 (38) 86 (46) 30 (16)

There were no significant differences between the groups when comparing genotype distributions (p>0.05). The statistically
significant difference was found in allele frequencies of −1306C/T polymorphism between the proliferative diabetic retinopathy
(PDR versus non-diabetes mellitus (DM) groups (p=0.024; pcorr>0.05). Genotype distribution of any polymorphism did not differ
from Hardy-Weinberg equilibrium in any group (p>0.05). The p-values of allele frequencies (two-tail Fisher exact test) are
given in parentheses.
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tests were conducted for a series of 2×2 contingency tables
testing the frequency of each specific haplotype versus all
others between particular groups (PDR versus non-PDR and
PDR versus non-DM). Two specific haplotypes, - CGCG
(OR=7.57, i.e., risk haplotype) and TGCG (OR=0.56, i.e.,
protective haplotype), exhibited significant associations with
PDR in male patients (p=0.030 and p=0.041, respectively),
after the correction for multiple tests, however, the
significances did not remained significant (pcorr>0.05).
Plasma levels of metalloproteinase-2 and
metalloproteinase-9 versus genetic variation: MMP-9 plasma
levels were 12.3 ng/ml (8.0–16.7 ng/ml) in the PDR group,
11.3 ng/ml (7.9–13.1 ng/ml) in the non-PDR group and 10.3
ng/ml (2.0–13.7 ng/ml) in the non-DM group (p=0.001,
Kruskal–Wallis ANOVA). Using the Mann–Whitney U test,
we observed significant differences in the plasma levels of

MMP-9 between the PDR or non-PDR groups and the non-
DM group (p<0.001 and p=0.006, respectively), while we
observed no notable difference between the PDR and non-
PDR groups (p=0.079). No significant differences were found
between MMP-9 genetic variations (groups defined according
to the −1562C/T or R279Q polymorphism genotypes), and
plasma levels of the MMP-9 in the whole sample or within
each gender and study group separately (p>0.05).

MMP-2 plasma levels were 401.5 ng/ml (142.4–633.4
ng/ml) in the PDR group, 277.9 ng/ml (118.0–473.5 ng/ml) in
the non-PDR group, and 260.8 ng/ml (44.8–428.2 ng/ml) in
the non-DM group (p<0.001, Kruskal–Wallis ANOVA). The
Mann–Whitney U test revealed statistically notable
differences in MMP-2 between the PDR and non-PDR or non-
DM groups (p=0.001 and p<0.001, respectively). A
comparison of plasma levels of MMP-2 corresponding to

TABLE 3. COMPARISONS OF GENOTYPE DISTRIBUTIONS OF THE TWO MMP-2 POLYMORPHISMS IN MALE AND FEMALE SUBJECTS.

Males MMP-2
−168G/T

GG (%) GT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)
PDR (n=65) (1) 57 (88) 7 (11) 1 (1)

non-PDR (n=80) (2) 69 (86) 11 (14) 0 (0) NS
NS

NS
NS

NS
NS

non-DM (n=61) (3) 46 (75) 15 (25) 0 (0)
MMP-2

−1306C/T
CC (%) CT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=66) (1) 42 (64) 24 (36) 0 (0)

non-PDR (n=80) (2) 43 (54) 32 (40) 5 (6) NS
NS

NS
NS

p=0.039
(p=0.024)

non-DM (n=61) (3) 29 (47) 28 (46) 4 (7)

Females MMP-2
−168G/T

GG (%) GT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)
PDR (n=63) (1) 49 (78) 12 (19) 2 (3)

non-PDR (n=95) (2) 82 (86) 12 (13) 1 (1) NS
NS

NS
NS

p=0.040
(p=0.016)

non-DM (n=125) (3) 111 (89) 14 (11) 0 (0)
MMP-2

−1306C/T
CC (%) CT (%) TT (%) (1) vs. (2) (2) vs. (3) (1) vs. (3)

PDR (n=63) (1) 37 (59) 20 (32) 6 (9)

non-PDR (n=95) (2) 51 (54) 34 (36) 10 (10) NS
NS

NS
NS

NS
NS

non-DM (n=125) (3) 61 (49) 56 (45) 8 (6)

The table shows the statistical significance of differences in allele frequencies (the p-values of two-tail Fisher exact test are
given in parentheses) and genotype distribution (χ2 test) between the studied groups for the two sexes separately. In female
subjects, the significant difference was found in allele frequency of the −168G/T polymorphism between the proliferative
diabetic retinopathy (PDR) and non-diabetes mellitus (DM) groups (p=0.016, odds ratio (OR)=2.45, 95% CI: 1.16-5.20). In
male subjects the −1306C/T polymorphism exhibited statistically significant difference in allele frequency between the same
groups (p=0.024, OR=1.88 (95% CI: 1.05-3.40). However, after the correction for multiple comparisons differences were no
longer significant (pcorr>0.05).
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particular genotypes of MMP-2 SNPs showed a statistically
significant difference for the −1306C/T variant (p=0.011,
Kruskal–Wallis ANOVA). The plasma levels were
significantly higher in the CC and CT genotypes, compared
to TT in diabetic patients (p=0.009, Mann–Whitney U test).
No gender-specific differences were ascertained for the
−1306C/T variant and MMP-2; this was mostly due to
incomparably low numbers of TT genotypes after splitting the
whole group into two genders.

The comparison of plasma levels of MMP-2 among the
haplotype groups–i.e., risk (CGCG) versus the protective
(TGCG) versus all others–revealed the highest MMP-2
plasma levels were in the risk haplotype group (p=0.043,
Kruskal–Wallis ANOVA). The median (range) of MMP-2
was 388.1 ng/ml (186.4–633.4 ng/ml) in the PDR-risk
haplotype, 269.2 ng/ml (185.3 – 473.5 ng/ml) in the protective
haplotype, and 259.5 ng/ml (44.8–425.8 ng/ml) in others,
respectively. As with the previous situation, gender-specific
differences were not ascertained due to low numbers of risk
haplotypes after dividing the study population into women
and men.

Furthermore, because advanced age and DM duration are
risk factors for PDR, we analyzed the correlation between the
plasma levels of MMP-2 and MMP-9 and the aforementioned
parameters. A statistically significant Spearman rank
correlation was found between plasma level of MMP-2 and
DM duration (Rs=0.376; p=0.005) while no other correlation
was ascertained.

DISCUSSION
So far, no association study of genetic variability in MMP-2
and MMP-9 and PDR has been published. Retinal
angiogenesis is a hallmark of PDR, involving the production
of angiogenic factors as well as synthesis of ECM proteins.
Both MMP-2 and MMP-9 are interesting candidate genes for
PDR because of their role in connective tissue remodeling and

in regulation of extracellular matrix during angiogenesis
[20].

Analysis of individual polymorphisms showed that their
frequencies in Czech Caucasian subjects are similar to those
described previously [15,21], however, none of individual
polymorphism was associated with PDR in this study. Allele
frequencies of the −168G/T and −1306C/T polymorphisms
differed marginally in female and male study participants
between the PDR and control groups; however, the
interpretation of suggestive gender-specific differences is not
straightforward. One possible explanation might be a different
modulatory effect of sex hormones on cytokine-regulated
gene expression of MMP-2 or regulation of MMP-2 plasma
levels [22,23]. While single-locus association studies have
prevailed in the past, haplotype-based association studies
offer more robust approach to the analysis of complex traits
since these studies consider the whole genetic variability
within the particular locus as a unit. Previously we showed
that TGF-β1 haplotypes might play a role in PDR
susceptibility [24]. Furthermore, specific haplotypes based on
SNPs in the promoter region of the MMP-2 gene were
associated with coronary artery disease [15]. The present
study identified two specific haplotypes, CGCG (risk) and
TGCG (protective), which were marginally associated with
PDR in male patients. This is in agreement with the results of
single-locus association since the C allele of the −1306C/T
variant significantly associated with PDR in male subjects
defines the two haplotypes.

Several previous studies quantified levels of MMP-2 and
MMP-9 proteins in PDR subjects [25-27]. Data were obtained
by various methods (zymography, immunoblot, and
immunohistochemistry), and the results showed increased
concentrations of MMP-2 and MMP-9 in patients with PDR
[28,29]. Using ELISA, we confirmed that PDR is associated
with the highest plasma levels of both MMP-2 and MMP-9
compared to non-DM as well as non-PDR groups. Effects of

TABLE 4. HAPLOTYPES DERIVED FROM MMP-2 POLYMORPHISMS IN MALE PATIENTS

Haplotype PDR (%) non-PDR (%) χ2

(p-value) OR (95% CI) non-DM (%) χ2

(p-value) OR (95% CI)

CTCG 73 (55) 83 (52) NS - 53 (43) NS -
TGCG 23 (17) 44 (28) 0.041 0.56 (0.32-0.98) 34 (28) 0.046 0.55 (0.30-0.99)
CTTG 21 (16) 21 (13) NS - 17 (14) NS -
CTCT 9 (7) 11 (7) NS - 15 (12) NS -
CGCG 6 (5) 1 (1) 0.030 7.57 (0.89-63.71)* 1 (1) NS -
Rare 0 (0) 0 (0) NS - 2 (2) NS -

PDR vs. non-PDR 0.031** PDR vs. non-
DM 0.068**

MMP-2 haplotypes inferred from the four single nucleotide polymorphisms (SNPs; ordered from the 5′ to 3′as follows: −1306C/
T, −790T/G, −735C/T, and −168G/T) in males. Haplotypes with frequencies less than 1% in both groups were pooled together
as “rare”. χ2 (p-value) was derived from single 2x2 contingency tables testing the frequency of each specific haplotype vs. all
others between particular groups (proliferative diabetic retinopathy [PDR] versus non-PDR and PDR versus non-diabetes
mellitus [DM]). The double asterisk represents omnibus p-value was assessed empirically by permutation testing (PHASE
output, 10 000 permutations). The asterisk means an odds ratio>1.5 was significantly associated with PDR.
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genetic variability on the level of gene expression of MMPs
were also described by Price and Zhang [14,17]. The transition
C→T of the −1306C/T polymorphism displayed a lower
promoter activity for the T allele [17]. Furthermore, the
−1575G allele increased transcription activity and had an
independent additive effect with the −1306C allele [30]. Our
results support an importance of the −1306C/T polymorphism
as a factor determining the intermediate phenotype, since the
risk CC/CT genotypes and risk haplotype containing the C
allele exhibited significantly highest plasma level of MMP-2
protein. Unfortunately, we could not pursue the possible effect
of male gender-specific association in the study of its effect
on MMP-2 levels since the numbers were too low in some
groups of genotypes or haplotypes to allow for an adequate
comparison. Nevertheless, the topic is intriguing enough to
warrant further study on a larger group.

In conclusion, we demonstrated plasma levels of MMP-2
are notably higher in patients with PDR, and they exhibit
significant −1306C/T genotype- and haplotype-specific
differences with higher levels in the CC/CT genotypes and
CGCG haplotype. Although we have not been able to prove
statistically significant association of those MMP-2 gene
variants with PDR, both suggestive risk genotypes and
haplotype are overrepresented in the PDR group which
explains the observed difference in the MMP-2 plasma levels
between patient groups. The gender-specific effects on
MMP-2 regulation require further study.
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