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Abstract

Alternative RNA splicing is an important means of genetic control and transcriptome

diversity. However, when alternative splicing events are studied independently,

coordinated splicing modulated by common factors is often not recognized. As a

result, the molecular mechanisms of how splicing regulators promote or repress

splice site recognition in a context‐dependent manner are not well understood. The

functional coupling between multiple gene regulatory layers suggests that splicing is

modulated by additional genetic or epigenetic components. Here, we developed a

bioinformatics approach to identify causal modulators of splicing activity based on

the variation of gene expression in large RNA sequencing datasets. We applied this

approach in a neurological context with hundreds of dorsolateral prefrontal cortex

samples. Our model is strengthened with the incorporation of genetic variants to

impute gene expression in a Mendelian randomization‐based approach. We

identified novel modulators of the splicing factor SRSF1, including UIMC1 and the

long noncoding RNA CBR3‐AS1, that function over dozens of SRSF1 intron retention

splicing targets. This strategy can be widely used to identify modulators of RNA‐

binding proteins involved in tissue‐specific alternative splicing.
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1 | INTRODUCTION

Alternative RNA splicing (AS) promotes transcriptome diversity and is

especially widespread in the brain, where it is necessary for the

differentiation of neurons and may have played a role in the

development of the vertebrate brain (Barbosa‐Morais et al., 2012;

Merkin et al., 2012; Yeo et al., 2004). In addition to selective inclusion

or exclusion of certain exons, intron retention (IR) events can also be

an important AS mechanism. Transcripts harboring unspliced introns

may serve as stable intermediates that can be stored temporarily until

the appropriate signal is received. In neurons, transcripts with select

retained introns accumulate in the nucleus and undergo splicing upon

cellular activation to rapidly mobilize a pool of mRNAs at the precise

time they are needed (Mauger et al., 2016). While AS in the brain is

associated with aging and neurodegeneration (Raj et al., 2018;

Tollervey et al., 2011), the mechanisms regulating AS pathways have

yet to be fully explored.

Alternative splicing is regulated by cis‐acting elements (e.g.,

5′‐donor sites, 3′‐acceptor sites, branch sites, and polypyrimidine

tracts) and trans‐acting splicing factors that exert combinatorial
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control of short, degenerate RNA motifs known as exonic or intronic

splicing enhancers or silencers (Black, 2003; Z. Wang & Burge, 2008;

Xiao et al., 2007). These elements together constitute the splicing

code and allow for tissue‐ and cell‐specific RNA splicing (Fu &

Ares, 2014). The two major classes of splicing factors are heteroge-

nous nuclear ribonucleoproteins (hnRNPs) and serine/arginine‐rich

(SR) proteins. In addition to the role of splicing factors, AS programs

may substantially change in the presence or absence of modulating

proteins that target RNA‐binding proteins (RBPs). Other regulatory

layers, including transcription and chromatin, may also modulate AS,

as do posttranscriptional and signaling pathways.

Current understanding of AS regulation remains limited. The

ENCODE consortium has profiled over 150 RBPs to generate RBP

splicing regulatory maps and has enabled researchers to query RBP

binding and activation/repression of splicing sites (Yee et al., 2019).

Much of our understanding of AS derives from proteins characterized

through cross‐linked immunoprecipitation (CLIP) studies (Ule et al.,

2005). For example, we used CLIP followed by next‐generation

sequencing (CLIP‐seq) to demonstrate that overexpression of

HNRNPA1 promotes recognition of noncanonical 3′‐splice sites by

splicing factor U2AF2 (Howard et al., 2018). Additional approaches

include attempts to systematically characterize functional splicing

networks (Papasaikas et al., 2015). However, while Papasaikas et al.

were able to knock down over 200 splicing factors, their evaluation

was limited in scope to 36 splicing events involved in cell proliferation

or apoptosis.

Overexpression or knocking down individual splicing regulators

followed by both CLIP‐seq to analyze RBP binding profiles and RNA‐

seq to measure splicing levels is time‐consuming and costly. Apart

from coexpression networks and motif discovery, there exists no

exhaustive transcriptome‐wide computational method to dissect

splicing networks. Thus, a scalable, general‐purpose computational

screen is needed to identify tissue‐ and cell type‐specific modulators

of splicing factors and their associated AS modifications. Similar

methods have been used to identify modulators of transcription

factors, but no one has identified modulators of splicing to date

(Babur et al., 2010; K. Wang et al., 2009).

To address the limited understanding of AS regulation, we

developed a bioinformatics approach to identify modulators of

splicing factors using the biological perturbation found in RNA‐seq

datasets. The varied gene expression levels in each sample serve as a

proxy for experimental modifications. The relationship of a splicing

factor with its target events can generally be understood in the way

that as the expression level of an RBP changes, corresponding

changes in splicing outcomes occur. This suggests that the introduc-

tion (or withdrawal) of a modulator affects the existing RBP‐splicing

relationship such that the role of the RBP can be enhanced,

attenuated, or reversed. Modulator is used here as a general term

that may represent another splicing factor, a signaling protein, a

noncoding RNA, or other genetic element. Simply, an RBP's under-

lying splicing function is modulated by an external factor.

We applied our method to study modulators of the serine and

arginine rich splicing factor 1 (SRSF1) in the human brain. SRSF1 is a

prototypical SR protein that functions in constitutive and alternative

splicing. While not part of the core spliceosome, SRSF1 is essential

for splicing and also plays roles in nonsense‐mediated mRNA decay

(NMD), mRNA export, and translation (Aznarez et al., 2018; Li &

Manley, 2005). CLIP‐seq analysis in human cells revealed widespread

preferential binding of SRSF1 to exonic regions and a consensus

binding motif of GAAGAA (Sanford et al., 2009). SRSF1 generally

promotes exon definition and the use of proximal alternative 5′ splice

sites or 3′ splice sites in a concentration‐dependent manner, in part

through recognition of degenerate exonic splicing enhancer (ESE)

sequence elements on its pre‐mRNA targets.

The advent of large‐scale consortia RNA‐seq datasets have recently

allowed us to interrogate AS at a transcriptome‐wide level. The use of

multiple sequencing modalities in these consortia provides additional

dimensions of data to analyze. In our case, we apply a Mendelian

randomization (MR) approach that allows us to bypass confounding and

environmental effects in conventional association studies. Single

nucleotide polymorphisms derived from whole‐genome sequencing

data are used to impute gene expression, and results are verified with

RNA‐seq‐derived gene expression. Our method is scalable and with the

incorporation of genetic variants, prioritizes causal relationships. While

this study discusses the modulators of SRSF1 IR splicing targets in a

neurological context, we also provide a general framework to identify

modulators of other RBPs.

2 | MATERIALS AND METHODS

2.1 | RNA sequencing data

Brain dorsolateral prefrontal cortex (DLPFC) RNA sequencing data

from 890 samples in BAM format were downloaded from the

Religious Order Study and Memory and Aging Project (ROSMAP)

(Bennett et al., 2018). The nongapped aligner Bowtie was used to

align reads to the transcriptome reference assembly GRCh37

(Langmead et al., 2009). Gene expression counts were called using

featureCounts (Subread release 2.0.0) with GENCODE Release 19

(GRCh37.p13) reference annotation (Frankish et al., 2019; Liao

et al., 2014). Lowly expressed genes were removed using the default

filterByExpr function, and gene counts were normalized by library

size using TMM normalization through edgeR (R version 4.0.2,

Bioconductor version 3.11). Downstream analyses used genes

expressed in counts per million (CPM) mapped reads.

From the CommonMind Consortium (CMC), brain DLPFC RNA

sequencing data from 991 samples in BAM format were downloaded

(Hoffman et al., 2019). Sequence reads were aligned to reference

assembly GRCh38 using STAR 2.7.2a (Dobin et al., 2013). The

reference assembly version differed from ROSMAP because the raw

data from each study corresponded to different genome assemblies.

Gene expression counts were called using featureCounts (Subread

release 2.0.0) with GENCODE Release 33 (GRCh38.p13) reference

annotation (Frankish et al., 2019; Liao et al., 2014). Genes were

normalized in the same manner as above.
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2.2 | Whole‐genome sequencing data

Whole‐genome sequencing (WGS) data from 1200 DLPFC samples

were downloaded from ROSMAP. Of the available samples, 791 had

matching RNA‐seq data. Genomic variants were then used to impute

the individual‐level gene expression with PrediXcan (MetaXcan

v0.7.3, https://github.com/hakyimlab/MetaXcan) (Gamazon et al.,

2015). Transcription prediction weights were computed using an

elastic net prediction model built on matched genotyped and RNA‐

seq DLPFC samples from CMC (Huckins et al., 2019).

To accurately identify single nucleotide polymorphisms (SNPs)

from WGS data, genetic variants were mapped to corresponding RS

IDs from dbSNP 151 using a reference table from GTEx Analysis

Release V8 (https://gtexportal.org/home/datasets). PrediXcan mod-

els were built upon inverse‐rank normalized expression data, where a

negative value means that an individual is predicted to have lower

expression values than expected in the model population.

2.3 | Quantification of alternative splicing

Splicing events were called from GENCODE Release 19

(GRCh37.p13) reference annotation using a script modified from

the rMATS program (Shen et al., 2014). We then applied the splicing

annotation to the RNA‐seq data with the filters: ≥10 reads supporting

the event and ≥1 read supporting the exclusion isoform. The percent

spliced‐in (PSI) values were calculated for each event in every sample

as such:

PSI =
# inclusion reads

# inclusion reads + 2 × # exclusion reads
.

Only events with PSI values with an interquartile range (IQR) ≥

0.1 were included for downstream analysis. Splicing events from

CMC data were identified using a GENCODE Release 33

(GRCh38.p13) reference annotation. The number of splicing events

before filtering did not differ using this annotation.

2.4 | SRSF1 binding sites

Crosslinking and immunoprecipitation sequencing (CLIP‐seq) data

for the SRSF1 were downloaded from the Encyclopedia of DNA

Elements (ENCODE) Consortium data portal (https://www.

encodeproject.org/). CLIP‐seq data were from HepG2

(ENCSR989VIY, 1781 peaks) and K562 (ENCSR432XUP, 2155

peaks) cell lines. Peaks were pre‐processed using standard

ENCODE pipelines, including removal of blacklisted regions and

irreproducible discovery rate filtering with two isogenic repli-

cates. Peak coordinates were intersected with alternative splicing

annotations. Splice events were counted if peak coordinates were

within 300 base pairs upstream from the proximal exon and 300

base pairs downstream of the distal exon.

2.5 | Modulator identification

To identify modulators of RBP‐mediated splicing, we required inputs

representing each factor. We assessed the input variables in a

generalized linear model with the identity link function:

Y β β X β X β X X ε= + + + + ,t o r m r m1 2 3 (1)

where Xr is the gene expression of the RBP, Xm is the expression

level of a candidate modulator, and Yt is the PSI value of a target

splicing event. Nonzero outcomes of β3 represent interactions

between the gene expression levels of the modulator and the RBP

on the given splicing event. Accurate estimation of β3 requires large

datasets. To infer β3 in an unbiased, nonparametric manner, we

adapted the gene expression modulation (GEM) algorithm (Babur

et al., 2010). A nonparametric approach eliminates the assumption of

a probability distribution (e.g., normal distribution) among the

predictor variables. To parameterize the inputs, they are rank ordered

and divided into tertiles. The top and bottom tertile values are then

transformed into 1 and 0, respectively, while the middle 33% of

values are discarded:







x

x

x

x

′ =

1 if is in upper tertile

null if is in middle tertile

0 if is in lower tertile
(2)

After discretization, each model falls into one of the 27 possible bins

based on the ternary state of X′,r X′m, and Y′t . Only the eight bins where

no variables have a null value are considered. Observed frequencies of

values in each of the eight bins are then used to calculate the proportions

of Y′ = 1t for each combination of states of X′r and X′m. Estimation and

significance of the coefficients β ,o β ,1 β ,2 β3 were calculated as

published previously (Y. Wang et al., 2020). We evaluated significant

nonzero values of β3 (p< 0.05) to denote modulator effects on RBP‐

mediated splicing. False discovery rate (FDR) was calculated by the

Benjamini–Hochberg method (Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Overview of the model for identifying
modulators of splicing activity

RBP activity is estimated by the splicing levels of its target events,

which are measured as percent spliced‐in (PSI). In our model, we

hypothesize that the splicing activity of an RBP will change with

respect to the expression level of putative modulators. Intuitively, if

an RBP regulates the splicing outcome of a target event, we expect

the expression levels of the RBP and the PSI levels of the target

events would be correlated (positively or negatively) across multiple

samples. In addition, we expect that such a correlation may be

dependent on the expression level of a modulator. Figure 1a depicts

an example of how high expression of a modulator might affect the

correlation between RBP expression and PSI of the target gene:
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No correlation is observed when a modulator is expressed at a low

level, while a positive correlation is detected when modulator

expression is high. Many scenarios exist for how a modulator might

influence the relationship between RBP expression levels and PSI of

target genes, but the common element is that they are dependent

upon the expression level of the modulator.

Our strategy to evaluate candidate modulators integrates four

categories of inputs: a large‐scale RNA‐seq data set paired with

genotype data, an RBP of interest, corresponding RBP‐binding sites,

and alternative splicing annotations. The RNA‐seq data were used to

calculate the expression levels of the RBP and the PSI values of the

target events. The RBP‐binding sites were derived from CLIP‐seq

data in the public domain, and splicing annotations were downloaded

from GENCODE. The expression levels of the candidate modulators

were imputed from the genotypes of the flanking regions in 791

dorsolateral prefrontal cortex profiles from the ROSMAP study

(Bennett et al., 2018) using a prediction model built from 538

CommonMind Consortium samples with matched genotype and

RNA‐seq data (Huckins et al., 2019).

The candidate modulators were identified by applying the

generalized linear model shown in Equation (1). A potential

complication to an association‐based approach is that any analysis

based on gene expression levels of the candidate modulators does

not guarantee a causal relationship. For example, expression levels of

several top candidate modulators were strongly correlated amongst

themselves, indicating they were likely correlated in expression to a

true causal modulator (Figure S1). Similar quantitative relationships

will be observed for all genes whose expression levels are correlated

with a causal modulator. To address this issue, we adopted a MR

approach by substituting gene expression levels derived from RNA‐

seq data with imputed gene expression calculated from the genotype

within 1 MB upstream and downstream of the candidate modulator

gene locus (Figure 1b). While RNA‐seq data may provide more

accurate measurements of gene expression, it is subject to

confounders, cofactors, and feedback effects. The MR‐based

approach utilizes only the genetically regulated component of gene

expression for candidate modulators; that is in Equation (1), Xm is

now the imputed gene expression level of a candidate modulator.

F IGURE 1 Modulation of the RNA‐binding protein (RBP)‐splicing relationship. (a) Schematic illustrating how modulator expression levels
influence RNA splicing. RBP activity on splicing levels of its target genes, as measured by percent spliced‐in (PSI), depends on the expression
levels of a modulator (M). When an RBP binds a target splicing event, we expect to observe a relationship between the expression levels of the
RBP and the PSI levels of the target events across multiple samples (upper panel). In this scenario, the expression of a modulator is low, and the
correlation is stochastic. In the presence of high modulator expression (lower panel), the RBP‐splicing relationship is strengthened or activated.
(b) Schematic representation of the Mendelian randomization approach. Causal effects of modulators on the RBP‐splicing target relationship can
be identified while avoiding confounders. From matched genotype data, genetic variants within 1MB of the candidate modulator are used to
impute their gene expression. The approach uses only the genetically regulated component of gene expression to avoid environmental and
feedback effects on the transcriptome. It is used to determine causal modulators of the RBP‐splicing target association rather than modulators
that may be correlated in expression to one another. (c) Schematic of the expected results of a modulator on serine and arginine rich splicing
factor 1 (SRSF1) splicing activity. SRSF1 is known to promote splicing out of introns. In this study, a PSI value of 0 indicates that the intron has
been spliced out of all transcripts, and a PSI value of 1 denotes that the intron is retained in all transcripts. SRSF1 and PSI values are negatively
correlated in the absence of any external factors. A positive modulator (activator) would strengthen this negative correlation, and a negative
modulator (repressor) would reverse this correlation
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Moreover, the use of DNA‐level sequence information to impute

gene expression also bypasses any environmental influences so that

only causal modulators are inferred.

In the 791 ROSMAP WGS samples, PrediXcan was used to

impute the expression levels of 10,677 genes. The PrediXcan‐

imputed expression output ranged from −1.9 to 2.7. Both prediction

models and imputation output were measured as rank‐based inverse

normal transformed values. The mean Spearman correlation (ρ)

between the imputed and RNA‐seq‐derived expression levels for

4007 genes was 0.16 (p < 0.05). We also found that imputation using

ROSMAP genotype array data was comparable to using WGS with a

mean Spearman correlation of 0.19 (p < 0.05) for 7974 genes in 582

samples (data not shown). Our findings compare favorably to the

benchmark for cross‐validation (R2 > 0.10) in transcriptomic imputa-

tion methods (Gamazon et al., 2015). We used the imputed WGS

expression levels in this study since theWGS data was higher quality

and there were more samples with matched RNA‐seq data. Since our

model requires data to be highly variable among samples, we applied

a filter requiring the imputed expression standard deviation be

greater than 10%. Additionally, we ran the model concurrently using

RNA‐seq‐derived expression levels and applied the same filters.

Candidate modulators denoting 3014 genes remained in both sets

(Figure S2).

3.2 | Mapping of SRSF1‐targeted IR events

To test our hypothesis, we used our model in the genome‐wide

identification of modulators of the well‐studied SRSF1 splicing factor.

Because SRSF1 expression is negatively correlated to IR levels, and

shRNA knockdown of SRSF1 increased the number of retained

introns (Ullrich & Guigó, 2020), we presumed that SRSF1 promotes

mRNA isoforms with the intron spliced out. That is, SRSF1 gene

expression levels and PSI values of the targets should be negatively

correlated in the absence or low expression of any modulators. Using

this assumption, a positive SRSF1 modulator (i.e., activator) would be

expected to strengthen the negative correlation of SRSF1 with IR,

whereas a negative modulator (i.e., repressor) would reverse a

negative SRSF1‐IR association (Figure 1c). For any given modulator‐

SRSF1‐IR triplet, the interaction term β3 from Equation (1) indicates

the direction and effect of interaction of the modulator on SRSF1

function. Accordingly, positive or negative modulators can be

determined by considering the correlation between SRSF1 and IR

levels in aggregate.

To map the SRSF1‐targeted IR events, we first annotated SRSF1

binding regions by integrating enhanced CLIP (eCLIP) sequencing

data from ENCODE with annotated alternative splicing events

(GENCODE release 19, GRCh37.p13). In total, there were 38,133

skipped exon, 5558 IR, 7728 alternative 3′ splice site, 4927

alternative 5′ splice site, and 2363 mutually exclusive exon events.

By limiting our study to IR events, we identified 411 SRSF1‐binding

IR events, which represented 7% of annotated IR events and 0.7% of

total annotated splicing events. PSI levels were calculated for each of

the 411 SRSF1‐binding IR events in the 791 ROSMAP RNA‐seq

samples. A PSI value of 0 indicates that all transcripts were missing

the intron, and a PSI value of 1 denotes that all transcripts that

include the neighboring exons retained the intron. To ensure PSI

levels of splice events had enough variability at the population level,

we required that the interquartile range (IQR) of the PSI values

should be ≥ 10%. After applying this filter, 198 IR events remained

(Table S1).

3.3 | Modulators of SRSF1‐IR events

We generated causal gene‐based associations between candidate

modulators and SRSF1‐mediated intron splicing. Imputed modulator

expression, RBP expression, and target splicing PSI values were used

as inputs for Equation (1). Figure 2 provides an overview of how the

data were integrated. We interrogated 3014 candidate modulators

on the set of 198 SRSF1‐mediated IR events and identified 27,302

interactions between modulator expression and SRSF1 expression

(β3p < 0.05) (Table S2). Figure 3a shows a histogram of the number of

modulators for each of the affected IR targets.

To prioritize modulator‐SRSF1‐targets for further analysis, we

reasoned that biologically relevant modulators were likely to affect

multiple splicing targets. We presumed that candidate modulators

might influence 9 of the 198 (5%) IR events by random chance. After

applying Fisher's exact test to determine if a candidate modulator

affected more IR events than random, we prioritized 82 candidate

modulators that regulated at least 31 targets at FDR < 0.01

(Figure 3b).

The above analyses were done on modulators whose expression

values were imputed from genetic data. To ensure the relationship

derived from the imputed gene expression levels was maintained at

the RNA level. The same set of candidate modulators and splicing

targets were analyzed using the model with only RNA‐seq gene

expression. For each candidate modulator, we required 60% of

significant targets identified initially using imputed gene expression

be replicated at FDR < 0.05 and with the same directional effect as

determined by the sign of the interaction term. This analysis resulted

in 13 modulators of SRSF1 IR activity (Figure 3C, Table 1).

3.4 | Validation of modulators from CommonMind
Consortium data

To verify our SRSF1 modulator results, we tested our model using

CommonMind Consortium RNA‐seq data from 985 DLPFC samples.

After imputing gene expression with PrediXcan, we found a

Spearman correlation (ρ) of 0.16 (p < 0.05) for 7943 genes. Splicing

PSI, SRSF1 expression, and candidate modulator expression were

computed from the RNA‐seq data and inputted into Equation (1). We

identified 212 SRSF1‐mediated IR events with PSI values that fit the

constraint of IQR ≥ 0.10 (Table S3). Of these, 151 events were

originally tested in the ROSMAP data. Differences in the number of
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SRSF1‐mediated IR events between the two studies likely arose

because of data set differences in both SRSF1‐binding and alterna-

tive splicing.

We found that 8 of the 13 modulators from Table 1 were

recapitulated in the CommonMind Consortium data set, including

UIMC1, CBR3‐AS1, LRRC27, PRIMPOL, POLDIP2, ALG8, PMS2, and

TRANK1. In addition, these modulators regulated a higher proportion

of IR targets than were found in the ROSMAP analysis (Figure 4).

These findings demonstrate that our model can be replicated in

independent samples from the same tissue type.

3.5 | UIMC1 represses SRSF1 splicing activity

To confirm that the predicted modulators influenced SRSF1‐

mediated splicing, we chose to examine ubiquitin interaction motif

containing 1 (UIMC1), also known as BRCA1‐A Complex Subunit

RAP80. UIMC1 is a ubiquitin‐binding protein that plays a central role

in the BRCA1 complex to repair DNA lesions. SRSF1 is a known

proto‐oncogene that influences splicing of the BRCA1 tumor

suppressor gene, resulting in variants that lack important functional

domains (Karni et al., 2007; Raponi et al., 2014; Silipo et al., 2015). To

test whether the correlation between SRSF1 expression and IR PSI

was dependent on UIMC1 expression levels, we divided the ROSMAP

samples into high and low groups based on imputed UIMC1

expression levels (top and bottom tertiles). With UIMC1 selected as

a potential modulator of SRSF1 in our model, we found that 52 of

198 SRSF1‐targeted IR events were affected. We calculated the

Spearman correlation coefficients between SRSF1 expression and IR

PSI for each of these IR events in the high and low UIMC1 expression

groups. There was a stronger correlation in the high UIMC1 group for

48 events with a mean difference in the correlation coefficient of

0.25 (Figure 5a). Of these 52 events, 44 were confirmed when UIMC1

gene expression was based on RNA‐seq data. These results indicate

that when UIMC1 activity is high, increasing SRSF1 expression leads

to more retained introns, and implies a reduction in SRSF1 splicing

efficiency.

To further analyze the effect of UIMC1 expression on specific

SRSF1 targets, we examined the correlation between SRSF1

expression and IR PSI in ROSMAP samples with either high or low

UIMC1 imputed expression. We selected two targets, MRNIP

(C5orf45) intron 4 (chr5:179264275‐179267959, minus strand) and

DDX39A intron 6 (chr19:14520553‐14521146, minus strand), as

examples. Our analysis indicated that UIMC1 expression modulated

SRSF1‐mediated splicing of MRNIP (Figure 5b). In the UIMC1‐low

group, SRSF1 expression and MRNIP PSI showed little discernable

correlation (ρ = −0.032) . However, in the UIMC1‐high group, SRSF1

expression was positively correlated with MRNIP PSI (ρ = 0.337) ,

which is consistent with IR and repression of normal SRSF1 function.

A similar relationship was observed with DDX39A where we

observed that in the high UIMC1 expression group, SRSF1 expression

was positively correlated with DDX39A intron 6 inclusion (Figure 5c).

Taken together, we conclude that UIMC1 functions as a repressor of

SRSF1 splicing.

3.6 | CBR3‐AS1 activates SRSF1 splicing activity

While all but one of the modulators in Table 1 are protein‐coding

genes, CBR3‐AS1 is a lncRNA for which very little is known other than

F IGURE 2 Integration of whole‐genome
sequencing (WGS), RNAseq, and CLIPseq data to
identify splicing modulators. Imputed gene
expression profiles of the dorsolateral prefrontal
cortex were derived using PrediXcan from
Religious Order Study and Memory and Aging
Project (ROSMAP) WGS data. Splicing profiles
were computed from matched RNA‐seq data
from the same ROSMAP samples. CLIP‐seq was
used to identify splicing events targeted by the
RNA‐binding protein of interest. For serine and
arginine rich splicing factor 1 (SRSF1), each
candidate modulator and intron retention splicing
target (dashed boxes) were tested according to
Equation (1) shown at the bottom. A similar
pipeline was used on 538 samples from the
CommonMind Consortium to validate our model
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that it might be an important regulator in certain cancers

(Jin et al., 2017; Song et al., 2018). One proposed lncRNA function

is that they serve as sponges that sequester RNA binding proteins

(Salmena et al., 2011). To test whether lncRNAs also have the potential

to modulate SRSF1 targets, we examined whether the correlation

between SRSF1 expression and IR PSI was dependent on CBR3‐AS1

expression levels. When CBR3‐AS1 was selected as the potential

modulator, our model predicted that 46 of 198 SRSF1‐targeted IR

events were modulated (Table 1). The Spearman correlations between

SRSF1 expression and IR PSI for 45 of these 46 IR events were

stronger in the low compared to the high CBR3‐AS1 expression groups

with a mean correlation difference of −0.23 (Figure 6a). Of the 46

events, 34 were confirmed when CBR3‐AS1 expression was based on

RNA‐seq data. These results indicate that when CBR3‐AS1 activity is

high, increasing SRSF1 expression leads to fewer retained introns, and

implies an increase in SRSF1 splicing activity.

We also analyzed the effect of CBR3‐AS1 on the correlation

between SRSF1 expression and IR in two targets, CHKB intron 1+2

(chr22:51020177‐51021283, minus strand) and RFNG intron 4+5

(chr17:80007552‐80008431, minus strand). We found that when

F IGURE 3 Modulator expression changes serine and arginine rich splicing factor 1 (SRSF1)‐intron retention correlation. (a) A histogram of
the number of modulators for each of the SRSF1 splicing events (β3p < 0.05) identified in the Religious Order Study and Memory and Aging
Project (ROSMAP) cohort samples (n = 198, bin size = 3). Vertical dashed line indicates the number of affected intron retention (IR) targets that
would be expected by chance for any modulator. A total of 82 modulators affected IR targets above this threshold. (b) Predicted SRSF1
modulators and the number of IR targets. Chart showing the 31 modulators remaining after filtering using Fisher's exact test and false discovery
rate (FDR) < 0.01 on 5% of the possible SRSF1 targets. (c) Boxplots of 13 modulators that were found to significantly alter the SRSF1‐percent
spliced‐in (PSI) correlation between low (purple) and high (yellow) activity states. Modulator activity is represented by their gene expression
levels as imputed from genetic variants. Modulator expression was verified by RNA‐seq data and SRSF1 modulators were selected when >60%
of its targets were confirmed. y‐axes show Spearman correlation coefficients for SRSF1‐splicing event comparisons. Each datapoint represents
an IR target that was modulated. While data in this graph are paired, visualization does not reflect pairing. Boxes show the median and first and
third quartiles; whiskers extend from the hinges to 1.5 × interquartile range (IQR)
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CBR3‐AS1 expression was low, SRSF1 and CHKB PSI were positively

correlated (ρ = 0. 237) , indicating that the CHKB intron 1+2 was

retained. In contrast, when CBR3‐AS1 expression was high, the

correlation was negative (ρ = ‐0. 087) , indicating that the intron was

spliced out (Figure 6b). A similar pattern was observed with the target

RFNG (Figure 6c). Together, these results suggest that CBR3‐AS1

functions as an activator of SRSF1 splicing activity.

4 | DISCUSSION

Regulation of alternative splicing is a complex process that is

particularly important in normal brain function. In this study, we

developed a novel bioinformatics approach to identify causal modula-

tors of splicing activity based on the variation of gene expression in

large RNA sequencing datasets. We identified 13 modulators of the

splicing factor SRSF1 that alter splicing of intron targets in the context

of the aging human brain using sequencing data from ROSMAP and the

CommonMind Consortium.

Our method was supported by the inclusion of matched

individual DNA‐level genotype data as part of a Mendelian

randomized (MR) approach to identify gene associations (modula-

tor expression) with phenotypes (RBP‐mediated IR). Since DNA

cannot be altered after the random assortment of genes at meiosis,

it acts as a permanent surrogate to identify causality. In addition,

using genetic variants to impute the gene expression of candidate

modulators allowed us to isolate only the genetically determined

component of gene expression while avoiding confounding,

TABLE 1 Modulators affecting the serine and arginine rich splicing factor 1 (SRSF1)‐intron retention target relationship

Modulator Type Mode of action Targets Confirmed targets p‐value FDR

ATG10 Protein coding Activator 63 47 2.85E‐13 2.83E‐10

UIMC1 Protein coding Repressor 52 44 6.71E‐10 2.00E‐07

CBR3‐AS1 lncRNA Activator 46 34 3.34E‐08 6.65E‐06

GSTM4 Protein coding Activator 42 36 3.94E‐07 4.20E‐05

PPIL3 Protein coding Repressor 39 28 2.33E‐06 1.93E‐04

LRRC27 Protein coding Activator 37 34 7.30E‐06 4.74E‐04

IAH1 Protein coding Activator 36 24 1.28E‐05 7.96E‐04

PRIMPOL Protein coding Repressor 35 25 2.22E‐05 1.33E‐03

POLDIP2 Protein coding Activator 34 25 3.83E‐05 2.00E‐03

LYRM4 Protein coding Activator 34 33 3.83E‐05 2.00E‐03

ALG8 Protein coding Activator 32 27 1.11E‐04 4.34E‐03

PMS2 Protein coding Repressor 31 19 1.85E‐04 6.75E‐03

TRANK1 Protein coding Repressor 31 27 1.85E‐04 6.75E‐03

Note: Modulators were selected according to the number of SRSF1‐intron retention targets they impacted. The modulation was confirmed independently
using RNA‐seq gene expression values of the modulator. Only modulators with more than 60% confirmed targets and false discovery rate (FDR)‐corrected
(Benjamini‐Hochberg) p < 0.01 are considered. p‐values were calculated using Fisher's exact test for 5% significance among 198 SRSF1‐intron retention

targets.

F IGURE 4 Validation of serine and arginine rich splicing factor 1
(SRSF1) modulators using CommonMind Consortium brain data.
Modulators of SRSF1 intron splicing activity were confirmed using
CommonMind Consortium (CMC) RNA‐seq data from 985
dorsolateral prefrontal cortex samples. The 13 modulators prioritized
from the ROSMAP data (Table 1) were tested independently using
CMC expression and splicing data. The number of intron retention
(IR) targets for each modulator are plotted between the two datasets.
The size of each circle represents the Fisher's exact test p‐values that
was calculated based on the number of targets found in the CMC
models
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feedback, or environmental effects on transcript levels normally

present in RNA‐seq data. While the computed gene expression

levels did not show strong correlation with the true expression

values determined from the RNA‐seq data, they were comparable

to other predictive performances in brain tissue models derived

from GTEx data (Huckins et al., 2019) or from combined

transcriptomic and epigenetic reference data (Zhang et al., 2019),

and models trained on Crohn's disease and type 1 diabetes (Fryett

et al., 2018).

We applied multiple filtering steps to decrease the number of false‐

positive modulator interactions. Preliminary results prioritized possible

modulator interactions with an unadjusted significance level. We further

prioritized hits under the reasoning that a modulator should affect a

significant number of splicing targets. We also maintained that modula-

tors predicted by RNA‐seq data should have the same effect on SRSF1

activity. These steps decreased the likelihood that our results were a

product of random chance. Increasing the number of WGS samples could

improve our model by providing a more accurate estimate of gene

expression, but obtaining this data is costly and difficult when using

tissue‐specific human data such as brain. Integrating epigenetic data, such

as chromatin binding sites, may also improve gene expression estimates.

The novelty and strength of an MR‐based method lies in its

ability to identify causal relationships and bypass confounders.

However, a limitation of this approach is that using genetic variants

to proxy gene expression may only explain a small proportion of the

variance of the true expression as measured by RNA‐seq. There can

be several reasons for this discrepancy, but the most logical

explanation is that gene expression is modulated extensively at the

posttranscriptional level. Genetic variants comprise only the cis‐

acting elements contributing to gene expression, whereas several

trans‐acting factors at the transcriptional and posttranscriptional

levels also contribute to gene expression and are not accounted for in

our imputation model. To minimize this limitation, we also ran our

model using RNA‐seq‐derived gene expression and required at least

60% of targets from the imputed expression to be replicated using

the RNA‐seq data.

In this study, we focused on the splicing factor SRSF1 due to prior

evidence that its activity could be modulated. For example, SR proteins

are phosphorylated by kinases such as SRPK1 or CLK1 that are

themselves further regulated by molecular chaperones (Aubol et al.,

2013; Zhong et al., 2009). We identified several protein modulators and

one lncRNAmodulator of SRSF1. Interestingly, none of these modulators

F IGURE 5 Ubiquitin interaction motif containing 1 (UIMC1) represses serine and arginine rich splicing factor 1 (SRSF1)‐mediated intron
splicing. (a) Correlation between SRSF1 expression and intron retention PSI dependent on UIMC1 expression levels. UIMC1 gene expression in
the Religious Order Study and Memory and Aging Project (ROSMAP) samples was imputed from genetic variants and divided into low (bottom
tertile, x‐axis) and high (top tertile, y‐axis) groups. Each circle represents a splicing event. Spearman correlation coefficients between SRSF1
expression and splicing PSI for 52 SRSF1‐targeted splicing events are plotted. The 44 filled circles represent results corroborated using UIMC1
expression from RNA‐seq data. Spearman coefficient values in the upper left quadrant indicate that when UIMC1 activity is high, increasing
SRSF1 expression leads to more intron retention, which implies a reduction in SRSF1 splicing efficiency. (b,c) UIMC1 modulates the splicing of (b)
MRNIP (C5orf45) intron 4 (chr5:179264275‐179267959, minus strand) and (c) DDX39A intron 6 (chr19:14520553‐14521146, minus strand).
Each circle represents a sample. When UIMC1 expression was low (left panels), percent spliced‐in (PSI) levels were slightly anticorrelated to
SRSF1 expression. In contrast, when UIMC1 expression was high (right panels), PSI levels showed positive correlation with SRSF1 expression,
indicating that UIMC1 appears to repress SRSF1 splicing activity. SRSF1 expression is log2‐normalized counts per million. The slope of the
correlation coefficient is plotted (dashed line)
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have been reported to interact with SRSF1 or with the splicing

machinery. We did, however, verify 8 of 13 SRSF1 modulators in an

independent data set of the same sample type. While it was surprising

that SR kinases were not identified as modulators, it is possible that they

may not be limiting or dosage‐sensitive across the range of expression

levels observed in the two datasets we used in this study. Additional

experimental data are needed to predict the magnitude of effect each

modulator has on alternative splicing outcomes. It would also be

informative to further characterize the predicted modulators with CLIP‐

seq peaks when these data become available.

In this study, we used bulk RNA‐seq data from the dorsolateral

prefrontal cortex of the human brain. Because splicing regulation

often differs between cell types, our findings might be improved if

the input data were cell‐type specific. A strength of our model is that

it was designed as a transcriptome‐wide search of candidate

modulators, and candidate modulators were not limited to protein‐

coding genes. Noncoding RNAs have been increasingly implicated in

aging and Alzheimer's disease (Abdelmohsen & Gorospe, 2015;

Faghihi et al., 2008). We identified the lncRNA CBR3‐AS1 as a causal

SRFS1 modulator, providing additional evidence of lncRNA involve-

ment in posttranscriptional regulation.

We were particularly interested in IR due to its underappreciated

significance and unexplored molecular consequences. While IR is

often associated with nonsense‐mediated decay and subsequent

downregulation of gene expression, it also plays roles in the

coordinated regulation of neuronal mRNA steady‐state levels and

targeted splicing responses upon neuronal activation (Mauger

et al., 2016; Yap et al., 2012). IR‐containing transcripts can be stored

in the nucleus awaiting signals to be exported and translated. Some

IR transcripts can even serve as sponges binding to other RNAs in the

nucleus (Schmitz et al., 2017).

Since some IR targets are themselves splicing factor genes, it is

tempting to speculate feedback loops in which changes in IR would

lead to changes in other splicing factors. One SRSF1 target in our

results is the retention of SRSF7 intron 3, which has been shown to

act as an architectural RNA (arcRNA) that assembles nuclear bodies

(Königs et al., 2020). These SRSF7 bodies sequester intron‐retained

and fully spliced SRSF7 isoforms, resulting in the reduction of

functional SRSF7 protein in the nucleus. While it has been shown

that SRSF7 overexpression autoregulates this negative feedback

mechanism, our results suggest that SRSF1 modulation may also

participate in this process.

F IGURE 6 CBR3‐AS1 activates serine and arginine rich splicing factor 1 (SRSF1)‐mediated intron splicing. (a) Correlation between SRSF1
expression and intron retention percent spliced‐in (PSI) is dependent on CBR3‐AS1 expression levels. CBR3‐AS1 expression in the Religious
Order Study and Memory and Aging Project (ROSMAP) samples was imputed from genetic variants and divided into low (bottom tertile, x‐axis)
and high (top tertile, y‐axis) groups. Each circle represents a splicing event. Spearman correlation coefficients between SRSF1 expression and
splicing PSI for 46 SRSF1‐targeted splicing events are plotted. The 36 filled circles represent results corroborated using CBR3‐AS1 expression
from RNA‐seq data. The Spearman coefficient values in the bottom right quadrant indicate that when CBR3‐AS1 activity is low, there is a higher
correlation between SRSF1 expression and target intron retention; the corollary is that high CBR3‐AS1 expression is associated with higher
SRSF1 splicing efficiency. (b,c) CBR3‐AS1 modulates the splicing of (b) CHKB intron 1+2 (chr22:51020177–51021283, minus strand) and
(c) RFNG intron 4+5 (chr17:80007552–80008431, minus strand). Each circle represents a sample. When CBR3‐AS1 expression was low (left
panels), PSI levels were positively correlated with SRSF1 expression, indicating intron retention. When CBR3‐AS1 expression was high (right
panels), PSI levels showed a weakly negative correlation with SRSF1 expression, indicating that CBR3‐AS1 promotes SRSF1 splicing activity of
the targeted intron. SRSF1 expression is log2‐normalized counts per million. The slope of the correlation coefficient is plotted (dashed line)
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Finally, our method is generally applicable to other datasets,

other RBPs, and other splicing types. Like our approach with

ROSMAP, it can be used with other tissue‐specific databases for

modulators of hundreds of RBPs to facilitate genomic diagnostics

with RNA‐seq. Type 1 diabetes is an evolving field of interest where

splicing alterations can unveil novel immunogenic epitopes

(Wu et al., 2021). In addition, IR is a frequent event in many cancer

types, and our recent studies have shown that IR‐induced neoanti-

gens may be a useful biomarker for predicting survival in multiple

myeloma and pancreatic cancer patients (Dong et al., 2021, 2022).

With its versatility, our approach can provide new biologically

meaningful insights that would facilitate genomic investigations of

diseases where RNA splicing plays an important role.
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