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      Innate Immunity in Viral Encephalitis                     

     Carol     Shoshkes     Reiss    

          Host Recognition of Pathogen Associated Molecular Patterns 
(PAMPs)       and  Damage Associated Molecular Patterns 
(DAMPs)   

 Viruses trigger host responses by engaging several different families of receptors, 
both surface and within cells; these receptors recognize generic patterns, and not 
specifi c sequences (such as a peptide of viral surface protein or genome). One of the 
best-known families of these pattern recognition receptors is Toll Like Receptors 
(TLRs), present on the cell surface or endosomal membrane (Lester and Li  2014 ). 
Intracellular  RIG-I-Like Receptors (RLRs)   having common domains called  caspase 
recruitment domain (CARD)  , helicase, and NACHT are RIG-I (retinoic acid induc-
ible gene-I), MDA5 (melanoma differentiation associated gene 5), Caterpillar, 
NOD, NALP, NAIP, and CIIT (Fitzgerald et al.  2014b ). 

   TLR    bind a wide range of  PAMPs     , ranging from peptidoglycans of gram- positive 
and lipopolysaccharides of gram-negative bacteria (TLR 2 and TLR 4, respectively) 
to viral  genomes   dsRNA, ssRNA, and dsDNA (TLR3, 7, and 9, respectively). 
Signaling through TLR leads to production of IFN-β and proinfl ammatory cyto-
kines (Trotta et al.  2014 ; Gay et al.  2014 ; Kawai and Akira  2011 ). Few cells in the 
CNS constitutively express high levels of TLR (Suh et al.  2009 ). 

 In neurotropic viral infections, TLR are critical for IFN and cytokine production 
for Enterovirus-71, Human Immunodefi ciency Virus-Encephalitis (HIV-E), Herpes 
simplex virus-1 (HSV-1), Flaviviruses, Japanese encephalitis virus (JEV), Junin 
virus, LaCrosse virus, Lymphocytic choriomeningitis virus (LCMV), Rabies, 
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Semliki Forest virus (SFV), Sindbis, Theiler’s murine encephalomyelitis virus 
(TMEV), and West Nile virus (WNV) (Han et al.  2014 ; Fadnis et al.  2013 ; Nazmi 
et al.  2014 ; Cuevas and Ross  2014 ; Denizot et al.  2012 ; El-Hage et al.  2011 ; Furr 
and Marriott  2012 ; McKimmie et al.  2005 ; Neal  2014 ; Olson and Miller  2004 ; 
Sabouri et al.  2014 ; Szretter et al.  2009 ; Taylor et al.  2014 ; Thomas et al.  2014 ; 
Wollish et al.  2013 ; Zhou et al.  2008 ; Zolini et al.  2014 ). 

 TLR signaling may regulate the expression of  micro-RNAs   including MiR-146 
and MiR-155, leading to down-regulation of some infl ammatory genes (Aalaei- 
andabili and Rezaei  2013 ). MiR-155 may regulate JEV-induced infl ammation by 
controlling Src Homology 2-containing inositol phosphatase-1 (SHIP-1) 
(Thounaojam et al.  2014b ) and MiR-29b targets TNF-α-induced protein 3 
(Thounaojam et al.  2014a ). However, enhanced production of MiR-155 may lead to 
BBB dysregulation (Lopez-Ramirez et al.  2014 ). 

  RIG-   I    binds 5′ uncapped single stranded RNA, an essential intermediate in RNA 
virus  replication   (Goubau et al.  2014 ; Hornung et al.  2006 ).   MDA5   , in contrast, rec-
ognizes dsRNA (Wu et al.  2013 ), and is required for picornavirus responses (Kato 
et al.  2006 ). Like TLRs, RIG-I activation leads to activation of a protein variously 
known as Cardif/IPS-1/MAVS/VISA upstream of  IRF3      and NF-kB activation, which 
transduce the signals with nuclear translocation, leading to the production IFN-β and 
all the downstream IFN-stimulated genes (ISGs) (Schneider et al.  2014 ). RIG-I is 
negatively regulated by a deubiquitinase, USP21 (Fan et al.  2014 ). 

 While these pathways have been well documented in many cell types, they may 
not always “work” in the CNS. For instance, while  Vesicular stomatitis virus (VSV)   
replication is extremely sensitive to the antiviral effect of pretreatment of neurons 
with IFN-β, VSV infection of dendritic cells rapidly induces IFN, it fails to elicit 
IFN-β production in neurons (Trottier et al.  2005 ). The mechanism(s) by which 
IFNs alter cellular physiology to resist viral infection is distinct in neurons when 
compared to cell types that have been more frequently studied (D’Agostino et al. 
 2009a ,  b ; Chesler et al.  2003 ). VSV also evades cell-autonomous responses through 
one of many actions of the viral M protein, essentially preventing mRNA export 
from the nucleus (Faria et al.  2005 ). In mice, VSV infection elicits IFN-β produc-
tion by plasmacytoid dendritic cells in peripheral lymphoid compartments (Akira 
and Hemmi  2003 ), no detectable IFN-β is made in the CNS during the fi rst week of 
VSV encephalitis (Trottier et al.  2007 ). In contrast, both  Theiler’s encephalomyeli-
tis virus (TMEV)   and  LaCrosse virus   infections led neurons to produce Type I IFN 
(Delhaye et al.  2006 ). Both RIG-I and MDA5 are essential to detect and control 
WNV infection (Carty et al.  2014 ; Errett et al.  2013 ). 

 The  Receptor for Advanced Glycation End-products ( RAGE )  , an activating 
receptor, is  expressed   on many cells including vascular smooth muscle cells, endo-
thelial cells, monocytes, and microglia (Ramasamy et al.  2005 ). It was originally 
recognized as a contributor to the infl ammation seen in diabetes, and binds, as its 
name suggests, proteins that have been posttranslationally modifi ed with glucose. 
Engagement of RAGE by its ligands leads to signal transduction through NF-kB and 
synthesis of proinfl ammatory mediators, leading to  neuroinfl ammation      and oxidative 
stress (Tobon-Velasco et al.  2014 ). Other ligands for the receptor are S100 family 
proteins,   HMGB1    and insoluble complexes of Aβ peptide, which are released during 
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tissue damage in arthritis, atherosclerosis, aging, neurodegeneration, pulmonary dis-
eases, sepsis, and ischemia (Chuah et al.  2013 ; Kang et al.  2014 ). This has led to the 
classifi cation of RAGE as a  Damage Associated Molecular Pattern ( DAMP )   recep-
tor (Foell et al.  2007 ). Thus direct or indirect compromise of neurons and parenchy-
mal cells during viral encephalitis leads to the release of HMGB1 (Wang et al.  2006 ) 
or S100 that can activate microglia, perivascular macrophages, and pericytes, as well 
as the microvascular endothelial cells (Jaulmes et al.  2006 ; Rong et al.  2005 ). Release 
of S100 or HMGB1 during VSV encephalitis did not contribute to the production of 
IFN-β by splenic plasmacytoid dendritic cells, since infusion of soluble RAGE did 
not suppress the response (Reiss and Schmidt, unpublished data). Thus, the BBB 
may be disrupted; cells within the CNS will secrete cytokines, chemokines, and other 
infl ammatory mediators. This could be among the fi rst of the sequential waves of 
innate immunity in response to the viral  infection     .  

    Interferon-Induced Antiviral Responses 

 The initial report of a factor made by cells which inhibited viral replication was made 
~50 years ago (Isaacs and Lindenmann  1957 ). There are three Types of  IFN     . Type I is 
more diverse, produced by virtually all cells and includes IFN-α, IFN-β, and IFN-τ. 
Type II has only one member, IFN-γ; Type III comprises IL-28 and IL-29, a family of 
IFN-λ proteins (Reid and Charleston  2014 ; Guayasamin et al.  2014 ; Hermant and 
Michiels  2014 ). IFNs inhibit viral replication by pathways described below, may also 
lead to neurodegeneration and demyelination through the activation of microglial pro-
duction of neurotoxins (Owens et al.  2014 ; Block et al.  2007 ; Mana et al.  2006 ). 

 IFN may also be a benefi cial  cytokine   in LCMV and Lassa fever infections 
where viral pathogenesis may induce vascular leak (Baccala et al.  2014 ). In Langat 
virus and TBE infections, IFN is protective against fatal neurotropic disease (Weber 
et al.  2014a ). In measles infections, neurons express IFN needed for early control 
(Cavanaugh et al.  2015 ), but in intranasal VSV infection, astrocytes are the source 
(Detje et al.  2015 ). Therefore, the benefi cial and pathologic effects of IFNs may 
depend on the quantity and duration of expression. 

 Once IFNs have been induced and secreted, these cytokine bind ubiquitously 
expressed receptors and induce a signal transduction kinase cascade starting with 
Jaks and STATs, leading to nuclear translocation of phosphorylated STAT com-
plexes that result in gene induction in virtually all cells (Nallar and Kalvakolanu 
 2014 ; Ivashkiv and Donlin  2014 ; Owens et al.  2014 ). As with most other signal 
transduction cascades, there are regulatory phosphatases that dampen the IFN- 
mediated induction, these include   S uppressors  o f  c ytokine  s ignaling ( SOCS )   and 
  P rotein  i nhibitor of  a ctivated  S TAT1 ( PIAS )   proteins. Resveratrol may upregulate 
SOCS-1, and thus dampen infl ammation (Dragone et al.  2014 ). While the  Jak-STAT 
pathway   is predominant, secondary signal transduction  pathways   are also important 
for IFN’s activity (Ivashkiv and Donlin  2014 ). Although most of the consequences 
of IFN binding and signaling are transcriptional, not all of the inductive effects of 
IFNs require new mRNA production; I will discuss that below. 
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 IFN responses are essential host components of intrinsic and cell autonomous 
immunity to  viral infection  . Many viruses block IFN signaling or downstream mediators 
such as Tick borne fl aviviruses and IRF-1 signaling (Robertson et al.  2014 ). The exact 
pathways by which IFNs antagonize viral replication required are not yet fully eluci-
dated. New techniques such as silencing are providing insights into the downstream 
mediators (Diamond and Farzan  2013 ; Fensterl et al.  2012 ; Schoggins et al.  2014 ), as 
are explorations of specifi c genes used by some viruses to evade antiviral pathways 
(Taylor and Mossman  2013 ) such as HSV γ34.5 (Rosato and Leib  2014 ) or Rabies 
P-protein (Wiltzer et al.  2014 ). JEV modulates SOCS in infected macrophages, inhibit-
ing the production and release of proinfl ammatory cytokines (Kundu et al.  2013 ). 

 Many tumors have been shown to have disabled IFN responses; this has led to 
the development of several viruses for  oncolysis  , that is, infection to target tumors 
but spare normal tissue. 

 Expression of IFNs may be regulated by cellular   micro-RNAs   , targeting the IFN 
mRNA for destruction. MiR-548 suppresses IFN-λ1 expression (Li et al.  2013b ) and 
MiR-466I targets IFN-α mRNA (Li et al.  2012 ), leading to increased viral replication. 

 Some  IFN-stimulated genes ( ISG )   are critical for co-stimulation, antigen pro-
cessing, and presentation, some for antiviral effects, others contribute to regula-
tion of angiogenesis, cellular apoptosis, or stasis (Xiao et al.  2006 ), and other 
physiological processes. Hundreds of IFN-regulated genes have been identifi ed 
using microarray analysis and functional  assays   (Schneider et al.  2014 ; Cho et al. 
 2013 ; Schoggins et al.  2014 ). Traditionally these were studied in isolation, and 
many antiviral pathways have been well characterized including Mx, PKR, 
RNAseL, OAS, and IDO. I will focus on a few of the more important antiviral 
pathways controlled by IFNs. 

    Inactivation of  GTP   

 The fi rst antiviral IFN-stimulated pathway studied in detail initially for  myxovirus 
(Infl uenza) infections,  Mx   , was discovered in 1978 by Lindenmann and colleagues; 
they observed that some mice were spontaneously resistant to infl uenza virus repli-
cation and later showed that Mx had GTPase activity (Lindenmann et al.  1978 ; 
Isaacs and Lindenmann  1957 ; Kochs et al.  1998 ). Other GTPases including Very 
Large Inducible GTPase-1 and TGTP/Mg21/IRG-47 are induced by IFNs (Klamp 
et al.  2003 ). Guanylate binding proteins are also ISGs. These include GBP-1, a 
Dynamin superfamily member with GTPase activity (MacMicking  2004 ). 

 MxA was induced in HIV and  Simian immunodefi ciency virus (SIV)   infection of 
the CNS (Singh et al.  2014 ; Zaritsky et al.  2012 ), and in Reovirus infections Mx was 
critical to limit viral replication (Dionne et al.  2011 ). WNV evades the antiviral 
activity of MxA (Hoenen et al.  2014 ). An isoform of MxA may lead to enhanced 
HSV-1 replication (Ku et al.  2011 ). There are polymorphisms in the promoter region 
of human MxA; these may lead to altered gene expression, and thus  sensitivity   to 
infections or to resistance to exogenous IFN (Tran Thi Duc et al.  2013 ).  
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    Inhibition of  Protein Synthesis   

 Probably the best known ISG is triggered when dsRNA, produced during viral 
infection, activates the kinase  PKR , phosphorylating and inactivating the transla-
tion  elongation   factor eIF2α, inhibiting the production of new proteins in infected 
cells. This pathway is important in many neurotropic viral infections including 
MHV-A59, Sindbis, WNV, VSV, TMEV, and HSV-1 (Kapil et al.  2014 ; Geiss et al. 
 2003 ; Baltzis et al.  2004 ; Cheng et al.  2005 ; Gorchakov et al.  2004 ; Palma et al. 
 2003 ; Ryman et al.  2005 ; Ventoso et al.  2006 ). 

 Cellular stress associated with the Unfolded Protein Response, when viral glyco-
protein synthesis dysregulates endoplasmic reticulum function, is a DAMP response 
(Smith  2014 ; Noack et al.  2014 ). UPR pathway inactivates eIF2α using two enzymes 
PERK and GCN2 (Berlanga et al.  2006 ). Flaviviruses such as JEV and Coronaviruses 
trigger this alarmin response (Noack et al.  2014 ). 

   Viperin   /cig5/vig is an ISG and also induced during infection by cytomegalovi-
rus (CMV), JC virus, or VSV, and suppresses synthesis of some viruses (Helbig and 
Beard  2014 ). Viperin restricts WNV pathogenesis (Szretter et al.  2011 ). Inhibition 
of viral protein synthesis is an effective host response to cripple viral infection.  

    Recognition, Degradation, and Sequestration of  Viral RNA 
and Viral DNA   

 Recognition of viral RNA in infected cells involves many different pathways. The 
substrate of 2′,5′-Oligoadenylate Synthase ( OAS )-Dependent  RNAseL  is viral 
dsRNA (Hornung et al.  2014 ). This pathway is important in the resistance to HSV-1, 
fl aviviruses, LCMV, and VSV infections of the CNS (Bhattacharyya  2014 ). RNAseL 
may contribute to the apoptosis of infected cells (Castelli et al.  1998 ). 

 Adenosine deaminase which acts on dsRNA ( ADAR1 ) is an IFN-γ-inducible 
 antiviral   enzyme which may be coupled with the PKR pathway (Taylor et al.  2005 ). 
ADAR1 restricts measles infection in the CNS (Ward et al.  2011 ). 

 IFN-induction of stress granules (also called   P bodies   ) may sequester ADAR1 
(John and Samuel  2014 ). Some viruses Mengovirus, TMEV, WNV, JEV, Measles, 
and Junin prevent the formation of P bodies; while other viral infections including 
poliovirus, SFV, MHV-A59, and VSV induce the formation of stress granules 
(Pattnaik and Dinh  2013 ; Onomoto et al.  2014 ). TBEV replication is inhibited by 
sequestration of vRNA in stress granules (Albornoz et al.  2014 ). 

 Another antiviral protein that recognizes and sequesters viral mRNAs is Zinc fi nger 
Antiviral protein (Glasker et al.  2014 ). Zinc has been shown to contribute not only to this 
antiviral protein, but to other proteases including matrix metalloproteinases (MMPs) 
and metallothionein necessary for diapedesis (Rink and Haase  2007 ), for infl ammatory 
cells crossing peripheral capillaries or for breaching the BBB, or for migration of CNS 
parenchymal cells in response to chemoattractants during viral infection. Zinc contrib-
utes to inhibition of polyprotein processing for many Picornaviruses (Krenn et al.  2005 ). 
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   St imulator of  I FN  g enes ( STING )   [also known as   m ediator of  I RF3  a ctivation 
( MITA)   ] is activated by  IF N-γ  i nducible protein 16 ( IFI16 ) binding to viral 
dsDNA and HN200; STING then activates TANK binding kinase-1 (TBK-1) phos-
phorylation of the transcription factor IRF3, resulting in expression of ISGs 
(Thompson et al.  2014 ). MITA/STING is an ER and mitochondrial membrane-
bound cytoplasmic sensor for pathogen-induced cyclic dinucleotides (cyclic GMP-
AMP); its C-terminal domain recruits TBK1 and IRF3 (Dubensky et al.  2013 ; Ran 
et al.  2014 ). The host enzyme cyclic GMP-AMP synthase,  cGAS  (also called 
 MB21D1  ), is the DNA and also dsRNA  sensor   (Hornung et al.  2014 ; Schoggins 
et al.  2014 ). NLRC3 is a negative regulator of STING activation (Zhang et al. 
 2014 ). Diffusion of cGAMP to neighboring cells may lead to paracrine cell- auton-
omous   innate immunity (Ablasser et al.  2013 ). 

 IFI16 senses and contributes to control of HIV-1 infection (Jakobsen et al. 
 2013 ). STING can also bind to reverse transcriptase intermediates of Human T cell 
leukemia virus (HTLV-1), and with IRF3 and SAMHD1, activate apoptosis (Sze 
et al.  2013 ). In many viral infections, there is an arms race between the host’s abil-
ity to shut down viral replication and the virus inactivating host antiviral pathways; 
that is observed with HSV-1 ICP0 and US3-PK and STING (Kalamvoki and 
Roizman  2014 ). Hepatitis C virus (HCV) NS4B blocks STING activation of 
TBK-1 (Ding et al.  2013 ). The Dengue virus (DENV) NS2B/3 protease cleaves 
STING (Aguirre et al.  2012 ; Green et al.  2014 ). 

   IF N- i nduced protein with  t etratricopeptide repeats ( IFIT )   family proteins con-
tribute to antiviral responses IFIT1 (ISG56), IFIT2 (ISG54), IFIT3 (ISG60), 
IFIT5 (ISG58) and are regulated by viral infection (Hyde et al.  2014 ; Zhang et al. 
 2013b ). IFIT1 binds the 5′ capped 2′- O  unmethylated RNA of JEV inhibiting its 
replication (Kimura et al.  2013 ), but VEE mutants evade IFIT1 (Hyde et al.  2014 ). 
IFIT2 protects mice from VSV neuropathogenesis (Fensterl et al.  2012 ) and VSV 
infection of the peripheral nervous system (Fensterl et al.  2014 ). Ifi t2 is essential 
for host control of neurotropic Mouse Hepatitis Virus A59 (MHV) (Butchi et al. 
 2014 ), EMCV, MHV, and WNV (Fensterl and Sen  2015 ), and HBV (Pei et al. 
 2014 ). IFITM is an IFN-induced membrane associated protein. IFIT3 potentiates 
antiviral signaling by connecting TBK1 and  MAVS   (Liu et al.  2011 ). They have 
broad-spectrum antiviral activity (Diamond and Farzan  2013 ). However, some 
neurotropic RNA viruses including  WNV   can evade host restriction by IFIT fam-
ily members (Daffi s et al.  2010 ).  

    Altered  Amino Acid Metabolism   

 The ISG  Indoleamine 2,3-Dioxygenase ( IDO )  , a catabolic enzyme for tryptophan, 
generates kynurenines. IDO may have regulatory effects on T cell activity (Sakurai 
et al.  2002 ) and may be neuroprotective or neurotoxic: IDO contributes to altera-
tions in serotonin metabolism, enhances astrocyte viability, but contributes to the 
formation of toxic quinolinic acid (Campbell et al.  2014 ). 
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 IDO has antiviral activity against vaccinia virus, HTLV-1, measles, and HSV-1 
(Adams et al.  2004 ; Maloney et al.  2000 ; Oberdorfer et al.  2003 ). However, it may 
be antagonistic to containment of HIV-1 (Miller and Bhardwaj  2013 ). IFN-induced 
alterations in amino acid metabolism can suppress infection, but clearly this is a 
two-edged sword.  

    Miscellaneous  Antiviral ISGs   

 Although the phosphatase(s) and kinase(s) altered by IFN-β treatment in neurons 
were not identifi ed, in IFN-β-treated neurons, the posttranslational modifi cation of 
two of the fi ve VSV proteins was profoundly altered; the M protein was  hyper - 
phosphorylated and the P protein, a subunit of the RNA-dependent RNA poly-
merase, was  hypo -phosphorylated. M protein lost affi nity for the RNP complex, 
impairing assembly, and the RNA-dependent RNA polymerase activity was altered. 
Together, these modifi cations led to inhibition of productive VSV replication in 
neurons (D’Agostino et al.  2009a ,  b ; D’Agostino and Reiss  2010 ). 

 There are many other ISGs that have antiviral activity, although they are less well 
studied. One of these is ISG12; it contributes to resistance to Sindbis  encephalitis   
(Labrada et al.  2002 ). ISG12 is a nuclear envelope  protein   that binds nuclear recep-
tors like  p eroxisome  p roliferation  a ctivating  r eceptors (PPARs) (Uhrin et al.  2013 ). 
Cytokines and chemokines will be discussed below.  

    Ubiquitinases, Deubiquitinases, ISG15, Sumoylation 

 Posttranslational modifi cations of  proteins   are essential for their activities, their 
cellular localization, and also their half-life. One regulator of protein lifespan is the 
proteasome; proteins are targeted for degradation by addition of strings of ubiquitin 
( Ub ), polyubiquitin tails, by a series of proteins that recognize the target (E1) bridge 
that complex (E2) to the ubiquitin ligase (E3). There are also host cellular enzymes 
capable of stripping Ub from proteins, deubiquitinases (Herrmann et al.  2007 ). 

 There are both host-cell benefi cial applications of Ub-modifi cation and pro-viral 
life cycle modifi cations. Malfunction of this pathway leads to accumulation of 
 proteins that should have been degraded, and can result in neurodegenerative dis-
eases (Atkin and Paulson  2014 ). 

 An example of viral-enabling modifi cation is induction of autophagy, as viruses 
generate membranes for their cytoplasmic replication organelles (Suhy et al.  2000 ; 
Nchoutmboube et al.  2013 ). Autophagy can also be associated with presentation of 
viral glycoproteins to class I MHC molecules, facilitating recognition of the infected 
cell by CD8 cytolytic T cells (Tey and Khanna  2012 ). 

 Mono- ubiquitination   is often associated with either targeted proteins on the cell sur-
face directed to the cellular  endosomal sorting complexes required for transport 
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( ESCRT )   pathway or in viral assembly, with viral proteins usurping the ESCRT pathway 
to deliver viral  components   to the cell surface for assembly and budding; neurotropic 
viruses employing the vacuolar protein sorting pathway for assembly include VSV, 
Rabies, LCMV, Japanese encephalitis virus (JEV), HIV, HSV-1, and Epstein-Barr virus 
(EBV) (Votteler and Sundquist Wesley  2013 ; Chen and Lamb  2008 ). 

 TRIM79α, an ISG, facilitates the ubiquitin-dependent  degradation   of TBE’s viral 
polymerase but does not recognize the closely related WNV protein (Taylor et al. 
 2011 ). As with so many other essential host antiviral pathways, viruses have devised 
novel evasion tools. HSV-1 and RNA viruses including VSV induce  Siglec-G , that 
recruits SHP2 and the E3 Ub ligase c-Cbl to RIG-I, targeting RIG-I for proteolysis 
(Chen et al.  2013 ). This pathway, capable of preventing IFN induction by RIG-I, can 
in turn be antagonized by IFN, inactivating Siglec-G (Chen et al.  2013 ). 

 HSV-1 ICP0 induces depletion of CD83 in dendritic cells, diminishing their 
effectiveness to present viral proteins to T cells (Heilingloh et al.  2014 ). ICP0 also 
targets the  ND10  DNA repair complex proteins hDaxx, Sp100 and PML to degra-
dation via the Ub-ligases RNF8 and RNF168 (Lilley et al.  2011 ). Varicella zoster 
virus (VZV) ORF61 antagonizes IFN production by targeting  IRF3  for degrada-
tion (Zhu et al.  2011 ). 

 HIV-1 has two proteins that target cellular proteins for proteosomal removal: 
Vpu prevents  CD317/tetherin  from retaining nascent viral particles on the cell sur-
face (Schmidt et al.  2011 ), and Vif  targets    APOBEC3 , the cytidine deaminase 
(Zhang et al.  2012 ). 

 There are two other host cell proteins that are similar to Ub and can cross- 
regulate:  ISG15  and  SUMO .  ISG15   has been shown to play a central role in host- 
cell antiviral responses in VSV, LCMV, and HSV-1 infections (Campbell and 
Lenschow  2013 ; Lenschow  2010 ). 

 SUMO-modifi ed proteins are often found in PML nuclear bodies, where proteins 
may be sequestered (Lallemand-Breitenbach and de The  2010 ). IFN regulation of 
MiRs including the Lin28/Let-7 pathway may enhance SUMO expression and inhi-
bition of HIV-1 and HSV-1 infections (Sahin et al.  2014a ). IFN treatment and oxida-
tive stress may lead to changes in  Sumoylation   of target proteins in the PML bodies 
(Sahin et al.  2014a ,  b ). SUMO conjugation can also be evaded by encephalomyelo-
carditis virus, HSV-1, VZV, and EBV (Mattoscio et al.  2013 ). 

   Tetherin/BST-2/CD317    is an unusual cell surface glycoprotein with both gpi 
and transmembrane domains holding the protein around lipid rafts (Billcliff et al. 
 2013 ). It is expressed by many cell types including neurons, and is induced by both 
IFN-α/β and IFN-γ (Sarojini et al.  2011 ). Tetherin is an ISG contributing to antiviral 
activity for VSV in neurons (Sarojini et al.  2011 ). 

 This protein is able to dimerize and tether, hold virus particles on the surface, pre-
venting budding and release of viruses that exit the cell via lipid rafts (Gustin and 
Douglas  2013 ). This  antiviral pathway   is so important that many viruses have devel-
oped evasive pathways (Neil  2013 ; Sauter  2014 ). HIV Vpu antagonizes tetherin via 
Ub-modifi cation and degradation, and protecting cells from  antibody-dependent cell 
mediated cytotoxicity (ADCC)   (Arias et al.  2014 ). Glycoproteins of Filoviruses, HSV-
1, Sendai, and SIV also block this pathway (Nikovics et al.  2012 ; Bampi et al.  2013 ; 
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Zenner et al.  2013 ; Gnirss et al.  2014 ). SIV nef and HSV-2 Env mediate endocytosis of 
tetherin and intracellular sequestration (Serra-Moreno and Evans  2012 ). HHV-8 K5 
ubiquitinates tetherin (Mansouri et al.  2009 ). CD317/tetherin is an important host cell 
glycoprotein found at lipid rafts, whose  expression   is enhanced by IFNs, and can retain 
budding viruses.  

     Reactive Nitrogen and Oxygen Species   

 The production of superoxide (O 2 *), nitric oxide (NO), and peroxynitrite 
(ONOO − ) contribute to elimination of many intracellular pathogens. There are 
three isoforms of the enzyme responsible for generating NO, nitric oxide syn-
thase (NOS) (Bruckdorfer  2005 ). In the CNS, NOS-1 is constitutively found in 
neurons, NOS-2 induced microglia and infl ammatory macrophages, and NOS-3 
constitutively in astrocytes, ependymal and endothelial cells (Reiss and Komatsu 
 1998 ). NO is not only involved in long-term potentiation in the CNS, it also 
contributes to regulation of blood fl ow (Murad  2006 ). Astrocytes and endothe-
lial cells release NO, resulting in dilation of capillaries and increased local per-
fusion (Moore  2000 ). 

 NO has been associated with some infl ammatory neurological disorder 
(Siciliano et al.  2011 ; Banach et al.  2011 ; Bernstein et al.  2011 ). The mechanism 
of NO-mediated inhibition is covalent modifi cation of viral proteins at cysteine, 
serine, and tyrosine, resulting in inappropriate folding, assembly, and/or enzyme 
activity. NO-mediated inhibition and/or pathology in the CNS contributes to the 
host response for  Reovirus  , TMEV, HIV-1, SIV, Adenovirus, Junin, Bornavirus, 
Venezuelan equine encephalitis (VEE), MAIDS, CMV, Murray Valley encephali-
tis, MHV, Sindbis, VSV, rabies, JEV, and dengue (Andrews et al.  1999 ; Brodie 
et al.  1997 ; Cheeran et al.  2000 ; Dietzschold and Morimoto  1997 ; Gendelman 
et al.  1994 ; Gomez et al.  2003 ; Goody et al.  2005 ; Hooper et al.  2001 ; Koeberle 
et al.  2004 ; Komatsu et al.  1999a ; Liao et al.  2012 ; de Souza et al.  2013 ; Koustova 
et al.  2000 ; Lane et al.  1999 ; Lin et al.  1998 ; Mestre et al.  2005 ; Minagar et al. 
 2002 ; Molina- Holgado et al.  1999 ; Murphy  2000 ; Navarra et al.  2004 ; Schoneboom 
et al.  1999 ; Thongtan et al.  2010 ). 

 NOS-2 is not constitutively expressed but is rapidly induced when macro-
phages or microglia are exposed to infl ammatory cytokines. Microglia produce 
reactive oxygen species, as well, contributing to neurotoxicity block (Block 
et al.  2007 ). However, unlike most of the IFN-regulated effector molecules 
described above, NOS-1 mRNA is not induced in neurons by IFNγ and other 
infl ammatory  cytokines  , although treatment of neurons leads to accumulation of 
the enzyme and greater activity due to degradation of a protein inhibitor (Chesler 
et al.  2004a ,  b ; Chesler and Reiss  2002 ; Komatsu et al.  1996 ; Yang et al.  2007 , 
 2008 ). This is one instance where IFN-mediated of antiviral activity is at a post-
transcriptional level.   
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    Neuropeptides, Peptide Hormones, and  Neurotransmitters   

 Neurons release a variety of peptides and hormones in order to “talk” to other 
neurons. Many of these proteins have activities outside the synaptic signaling, and 
can regulate immune responses. Among these molecules are Substance P, 
Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP/PACAP), neurokinin1 
(NK1), and α-melanocyte stimulating hormone (α-MSH) (Dantzer  2004 ; Brogden 
et al.  2005 ; Metz-Boutigue et al.  2003 ; Prod’homme et al.  2006 ). NK1 and NPY are 
infl ammatory and may have Defensin-like activity [Defensins are discussed below]. 
Others like VIP/PACAP are negative modulators, which act principally on  dendritic   
cell induction of regulatory T cells (Delgado et al.  2006 ; Gonzalez-Rey et al.  2007 ). 
Thus, the impact of many neurotrophins, peptides, and neurotransmitters is by mod-
ulation of adaptive immune response, as has been seen with CMV (Li et al.  2013a ) 
and HIV-1 infection (Souza et al.  2014 ). 

   Adenosine    signaling, through surface A1 and A2A adenosine receptors, has 
been shown to be neuroprotective (Perigolo-Vicente et al.  2014 ; Latini et al.  1996 ). 
The receptors also regulate pain (Sawynok and Liu  2003 ). In HIV infection, these 
receptors have been shown to play an anti- infl ammatory   role (Gilbert et al.  2007 ). 
However, A1 receptors may also contribute to neutrophil infi ltration, although this 
is antagonized by A2 receptors (Cronstein et al.  1992 ). Expression of A2B receptors 
is induced by HIF-1-α, a cytokine-inducible transcription factor (Kong et al.  2006 ). 
ATP, released by cells, can attract neutrophils to tissues via engagement of A3 and 
P2Y2 receptors. There is reciprocal modulation of cannabinoid receptor expression 
by adenosine (Carrier et al.  2006 ), thus signaling by one neurotransmitter can alter 
the response of neurons to other neurotransmitters. Cannabidiol was shown to be 
protective in infl ammation during TMEV infection via regulation of A2A receptors 
(Mecha et al.  2013 ). 

   Cannabinoids    are both endogenously synthesized (endocannabinoids) lipid neu-
rotransmitters and are also found in some plants (e.g., marijuana) or synthetic pharma-
ceuticals. Two serpentine 7-transmembrane receptors have been well described: CB 1  
expressed by neurons and CB 2  expressed by cells of the reticuloendothelial system 
including microglia (Ullrich et al.  2007 ). The functions of these receptors are distinct, 
although the same signaling pathways are used; the serpentine 7-transmembrane 
receptor is G-protein coupled. These receptors (a) negatively regulate Ca 2+   channels   
inhibiting Ca 2+  release, (b) activate Raf-1, MEK, and ERK, as well as (c) adenyl 
cyclase which ultimately activates protein kinase A. The CB 1  receptor is associated 
with hypothermia, immobility, euphoria, and hyperphagia, while the CB 2  receptor is a 
negative regulator of monocyte and microglial activation, hence immuno-dampening. 
Thus selective receptor agonists can target either immune responses or neurons. 
However, this distinction is potentially murky when you consider the regulation of 
cell-autonomous innate immune responses to viral infections in neurons. 

  Cannabinoids   have been shown to be neuroprotective in Huntington’s dis-
ease, Parkinson’s disease, and multiple sclerosis (Pryce and Baker  2012 ; Santos 
 2012 ; Sagredo et al.  2012 ; Di Iorio et al.  2013 ). Cannabinoids have a benefi cial 
impact on TMEV infections and may regulate CD200-CD200R interactions 
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(Loria et al.  2008 ; Mecha et al.  2013 ; Mestre et al.  2005 ,  2006 ,  2009 ). 
Cannabinoids may contribute to neurogenesis by antagonizing NO production 
(Kim et al.  2006b ). In ischemia (Belayev et al.  1995 ) or persistent Bornavirus 
infections (Solbrig et al.  2013 ; Hooper et al.  2001 ) where NOS-2 is overactive, 
 NO   is associated with pathology, cannabinoids are benefi cial. In contrast, in 
infections where host infl ammation and NO are essential to control CNS dis-
ease, cannabinoids promoted pathology (Reiss  2010 ; Herrera et al.  2008 ). I 
speculate that cannabinoids may protect the BBB integrity in those settings. 

 An indirect anti-infl ammatory effect of cannabinoids had been found with acti-
vation of the nuclear transcription factor   p eroxisome  p roliferation  a ctivating  r ecep-
tor ( PPAR )   family, described below. CB 2  receptor activation may lead to release of 
endogenous opioids, which inhibit infl ammatory pain (Ibrahim et al.  2006 ). 
Somewhat unexpectedly, the antinociceptive and anti-pyretic effects of acetamino-
phen (Tylenol™) may be due to binding CB 1  receptors. 

 Δ 9 -Tetrahydrocannabinol treatment decreases host resistance to HSV-2 infection 
(Cabral et al.  1987 ), probably by inhibiting host infl ammatory immune responses 
against the virally infected cells. In several models where infl ammation contributes to 
pathology, such as TMEV, the synthetic cannabinoid WIN 55,212-2 ameliorates clini-
cal disease (Croxford and Miller  2003 ); WIN 55 may also induce PGE 2  production 
(Mestre et al.  2006 ). However,  cannabinoids   may contribute to syncytia formation in 
HIV-E (Noe et al.  1998 ), leading to  pathology  . In VSV infection of neuronal cells, 
activating the CB 1  receptor leads to ~15-fold enhanced viral replication via inhibition 
of Ca 2+ -fl ux and thus impairing the activity of constitutive NOS-1 (Herrera et al. 
 2008 ). Therefore, there is no hard and fast rule about the impact of cannabinoid activ-
ity on viral infection [reviewed in (Reiss  2010 )]. Caution is urged when considering 
use of these drugs; the effect(s) may be on  reticuloendothelial   cells or on neurons.  

    Lipids in Innate Immunity in the CNS 

 The fi rst part of this section will be devoted to  eicosanoids ,  lipid mediators   derived 
from arachidonic acid, liberated from cell membranes by Phospholipase A 2 . These 
include prostaglandins (PG), leukotrienes (LT), lipoxins, epoxides, resolvins, 
marensins, and other bi-products. The second part of the section will include exog-
enous sources of these metabolites and lipid modifi cation of cellular proteins. 
 Cannabinoids  were just discussed.  PPAR agonists  and  Sex hormones  will be dis-
cussed below; HPAI axis and neuroendocrine regulation are included here. 

 The  sphingolipid Sphingosine-1-phosphate ( S1P )   regulates lymphocyte traffi c 
from lymph nodes to circulation; it may be bound to the lipid complex HDL in 
blood (Wilkerson and Argraves  2014 ). Lymphocytes may express two different 
receptors S1PR1 and S1PR2; S1PR5 is found on endothelial cells (van Doorn et al. 
 2012 ). This pathway has been therapeutically targeted with the drug Fingolimod, an 
S1P agonist also called FTY720, to sequester proinfl ammatory T cells away from 
sites, such as myelin sheaths in multiple sclerosis (Martin and Sospedra  2014 ; 
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Halmer et al.  2014 ). Females express a higher level of S1PR2 than males 
(Cruz- Orengo et al.  2014 ), and this may contribute to sex-bias in some autoimmune 
diseases and  responses   to infections. I propose that in proinfl ammatory viral infec-
tions of the CNS, where infi ltration of cells from circulation contributes to pathol-
ogy (example:  LCMV  , although data were not promising (Carr et al.  2013 )), use of 
the S1P agonist may be indicated. 

   Prostaglandins (PG)   : Cyclooxygenase (COX) 1 and 2 are the enzymes respon-
sible for the pathway from arachidonic acid leading to the formation of distinct PGs 
and thromboxane (Ueno et al.  2005 ). PGJ 2  will be discussed below as an agonist for 
the nuclear transcription factor PPAR. The family of receptors for PGs is among the 
7-transmembrane serpentine surface molecules. The end products have many bio-
logic effects ranging from platelet aggregation (TXA 2 ) to infl ammation and fever 
(PGE 2 ) (Ushikubi et al.  2000 ), but also a profound consequence is immunoregula-
tion, modulating dendritic cell maturation, differentiation, cytokine secretion, and 
antigen presentation (Harizi and Gualde  2006 ). The importance of these molecules 
in physiological processes and pathology has led to drug discovery efforts (Claria 
 2003 ). Nonsteroidal anti-infl ammatory drugs that block the production of PGs have 
been shown to be anti-infl ammatory in the CNS and somewhat protective for neuro-
degeneration and cognitive decline in neuroinfl ammatory diseases (Auriel et al. 
 2014 ) and schitzophrenia (Muller et al.  2013 ). 

 In the CNS, PGs compromise host responses to VSV, TMEV, JEE, Bornavirus, 
HSV-1, HIV, enterovirus 71, and EMCV infections (Mestre et al.  2006 ; Chen and 
Reiss  2002a ; Chen et al.  2000 ,  2002 ; Reynolds and Enquist  2006 ; Steer and Corbett 
 2003 ; Lima et al.  2006 ; Hooks et al.  2006 ; Rohrenbeck et al.  1999 ; Tung et al.  2010 ; 
Bertin et al.  2012b ). The mechanism of interference involves suppression of NO 
production by NOS isoforms (Chen et al.  2002 ). Therefore NSAIDs and  COXIBs   
are benefi cial not only to prevent fever, aches, and pains, but also to promote recov-
ery from viral  infection   (Chen and Reiss  2002a ; Steer and Corbett  2003 ). 

   Leukotrienes (LT)   : 5-Lipoxygenase (5-LO) is the enzyme responsible for  LT  
formation. In general, there is a dynamic ying-yang relationship between the bal-
ance of COX and 5-LO activity, since they both use the same initial substrate, ara-
chidonic acid. There are two groups of LT that contribute to pathophysiology based 
on the receptors used and whether the LT contain cysteine. The CysLT (LTA 4 , LTC 4 , 
LTD 4 ) are associated with fl uid production, fi brosis, and airway infl ammation in 
asthma and other pulmonary diseases, while LTB 4  is a potent chemoattractant of 
neutrophils (Ogawa and Calhoun  2006 ). High levels of LT are seen secondary to 
mast cell infi ltration or Th2-biased host responses patients infected with RSV, HIV, 
and CMV viruses (Fullmer et al.  2005 ; Flamand et al.  2004 ; Gosselin et al.  2005 ). 
More importantly, in the CNS, rather than contribute to pathology and BBB disrup-
tion, LT play a benefi cial role in recruiting neutrophils and promoting recovery from 
VSV encephalitis (Chen et al.  2001 ). LT inhibit early stage HIV infection of microg-
lia (Bertin et al.  2012a ), but contribute to recruitment of CD4+ cells by astrocytes 
(Bertin et al.  2014 ). Those individuals who take nonsteroidal anti-infl ammatory 
drugs will produce more LT, while those with asthma being treated with LOX inhib-
itors will have more PG; these common medications can have profound conse-
quences on acute or latent viral infections. 
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   Omega-3 fatty acids    consumed in diets rich in cold-water fi sh (or by capsules) 
are also anti-infl ammatory. They attenuate cytokine production and COX activity, 
downregulate adhesion molecules, and promote recovery from spinal cord injury 
(De Caterina et al.  2004 ; Morris et al.  2006 ; Serhan  2005b ; King et al.  2006 ; Su 
et al.  2014 ). Dietary ω-3 fatty  acids   may prevent or delay Amyotrophic Lateral 
Sclerosis (Fitzgerald et al.  2014a ). In infections, the data are mixed with benefi t in 
HIV, RSV, HBV, infl uenza, and HSV keratitis (Razzini and Baronzio  1993 ; Wu 
et al.  2012 ; Bryan et al.  2005 ; Tam Vincent et al.  2013 ; Rajasagi et al.  2013 ), but 
more rapid death in lymphoma associated with the Murine leukemia virus RadLV 
(Potworowski et al.  1992 ). Thus, when host infl ammation is essential for controlling 
viral infection, the immune dampening of ω-3 fatty acids contributes to disease. 

   Lipoxins  (LX)   are anti-infl ammatory products of arachidonic acid; 15-epi-LXA 4  
is produced in the presence of aspirin. They are produced at temporally and spatially 
distinct sites from the infl ammatory LT; LX signal through SOCS2 (Machado et al. 
 2006 ; Serhan  2005a ). LXA 4  and 15-epi-LXA 4  were associated with attenuation of 
neural stem cell proliferation and differentiation, in contrast to the activity of LTB 4 , 
which induced proliferation (Wada et al.  2006 ). The literature is sparse concerning 
the contribution of LXs in the resolution of infl ammation associated with viral 
infections (Shirey et al.  2014 ; Russell and Schwarze  2014 ); however, it is possible 
that LX are produced in the CNS during viral infections. 

  11,12-Epoxyeicosatrienoic acid (EET)   and  hydroxyleicosatetraenoic acid 
(HETE)   are the products of Cytochrome P450 Epoxygenase, and are also anti- 
infl ammatory, probably through activation of the PPAR nuclear transcription factor 
family (discussed below) (Node et al.  1999 ). However, HETEs can also be produced 
in oxidative damage; they were elevated in plasma of Dengue virus infected people 
(Seet et al.  2009 ). 15-HETE was anti-apoptotic in EBV-transformed B cells natoni 
(Belfi ore et al.  2007 ). 15- and 20-HETE regulate cerebral blood fl ow, enhancing 
perfusion (Gebremedhin et al.  2000 ). 

   Resolvins   : Additional anti-infl ammatory lipid  molecules   are Resolvins and 
Protectins, which are produced late in infl ammation and promote  resolution  , includ-
ing in HSV infection (Bannenberg et al.  2005 ; Russell and Schwarze  2014 ). The 
mechanism by which resolvins promote resolution of infl ammation is via induction 
of miRNA that downregulate proinfl ammatory mRNA (Recchiuti and Serhan  2012 ). 

     Protein Isoprenylation   

   Statins  (HMG CoA inhibitors)   were developed and licensed to block cholesterol 
biosynthesis; however, data indicate that statins diminish infl ammation. 
 Bisphosphonates  block bone resorption by acting on osteoblasts.   Farnesyl trans-
ferase    (motif CAAX, found in some proteins with an unpaired Cys)  inhibitors  
were hoped to inhibit cellular Ras family activity and thus be powerful cancer 
therapeutics. These three classes of drugs block distinct enzymes in the same lipid 
biosynthetic pathway and therefore contribute to regulation of cell autonomous 
and systemic innate immunity. 
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 These inhibitors of protein-lipid modifi cation can be anti-infl ammatory, in part, 
because protein isoprenylation contributes to production of monokines like IL-1 
(Mandey et al.  2006 ). TLR4 signaling is impaired by statins (Methe et al.  2005 ), as 
is LPS-induced AKT phosphorylation (Patel and Corbett  2004 ). Cytokine activation 
of microglia is negatively regulated by RhoA, which prevents NF-k B activation. 
RhoA negatively regulates COX-2 expression, leading to increased PGs levels when 
isoprenylation is inhibited (Degraeve et al.  2001 ). These drugs suppress both che-
mokine production and chemokine receptor expression (Veillard et al.  2006 ). 

 However, bisphosphonate treatment results in sustained activation of Rac, 
Cdc42, and Rho (Dunford et al.  2006 ), possibly because  isoprenylation   of phos-
phatases (PTPases) including the PRL family ( p hosphatase found in  r egenerating 
 l iver) regulates the activity of Rac (Fiordalisi et al.  2006 ). Rho/Rho-kinase activ-
ity modifi es actin cytoskeletal proteins and results in dynamic cellular shape 
changes as well as the activation of NOS-3, resulting in the production of NO and 
thus, endothelial cell relaxation; inhibition of protein isoprenylation inhibits this 
cytoskeletal plasticity and changes in blood-fl ow dynamics (Rikitake and Liao 
 2005 ). These drugs may diminish infl ammation by inhibiting diapadesis of infl am-
matory cells (Walters et al.  2002 ). Statin treatment is benefi cial therapy in multi-
ple sclerosis, not by inducing Th2 or Treg cells, but by inhibiting proliferation of 
infl ammatory T cell (Weber et al.  2014b ). 

 Protein isoprenylation is essential for formation of functional clusters of pro-
teins tethered to cellular membranes (Liao and Laufs  2005 ). Among the func-
tional  complexes   which require lipid modifi cation for effective enzymatic activity 
are the small  G TPase  a ctivating  p roteins (GAPs) including RhoGAP (Ligeti and 
Settleman  2006 ). Monocyte anti-bacterial activity associated with NADPH oxi-
dase, activated by Rac guanine nuclear exchange factor is negatively regulated by 
statins (Mizrahi et al.  2005 ). Ras must be farnesylated to interact with phos-
phoinoside-3-kinase (Rubio et al.  1999 ). 

 With respect to viral infections, there have been several reports that protein iso-
prenylation is essential to replication of HBV, HCV, HDV, RSV, infl uenza, and HIV 
(Acheampong et al.  2007 ; Einav and Glenn  2003 ; Mehrbod et al.  2014 ; Gower and 
Graham  2001 ; Huang et al.  2006 ; Kapadia and Chisari  2005 ). VSV replication in 
neurons is inhibited ~15-fold by one of the drugs (D’Agostino, unpublished). In 
HIV-E, statin treatment was unsuccessful in inhibiting the release of virus to CSF 
(Probasco et al.  2008 ), and there was a slight increase in the risk of developing her-
pes zoster (Antoniou et al.  2014 ). 

  Bisphosphonates   treatment was benefi cial in RSV infections, but contributed to 
human metapneumovirus pathogenesis (Kolli et al.  2014 ). They were benefi cial in 
HIV infection by blocking the retroviral integrase (Agapkina et al.  2014 ). 
Neuropathology associated with TMEV infection was controlled by  bisphospho-
nates   and by SHP-1, a protein tyrosine phosphatase (Christophi and Massa  2009 ). 

  Membrane fusion  , which is important to initiate many virus infections or to 
release enveloped virus progeny, is inhibited by isoprenylated SNAREs (Grote 
et al.  2000 ). Isoprenylated proteins are not incorporated into lipid rafts (Melkonian 
et al.  1999 ). An IFN-inducible antiviral protein,  h uman  G uanylate- b inding  p ro-
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tein-1 (hGBP-1), a GTPase, is isoprenylated, and Golgi-associated, thus its activity 
is impaired in the presence of pathway inhibitors (Modiano et al.  2005 ). Dengue 
virus assembly was inhibited by statins (Martinez-Gutierrez et al.  2011 ). Thus, 
statins, bisphosphonates, or isoprenyl transferase inhibitors may inhibit viral repli-
cation, but may also suppress the host IFN-dependent antiviral pathway(s) and 
infl ammation. Overall, inhibition of protein isoprenylation is benefi cial to hosts in 
a wide range of viral  infections  .  

     Vitamin D   

 Plasma levels of Vitamin D and its biological activity are regulated by many factors 
including diet, sun exposure, and polymorphisms that regulate its receptor and 
plasma binding protein. In addition to regulating cytokine expression, Vitamin D 
positively regulates human antimicrobial peptides including Defensins (Wang 
 2014 ). Low levels of Vitamin D have been associated with infl ammatory diseases 
including infl ammatory bowel disease, rheumatoid arthritis, systemic lupus erythe-
matosus, atherosclerosis, and asthma (Wobke et al.  2014 ). Low Vitamin D levels are 
also associated with increased susceptibility to infections including bacterial, para-
sitic and HCV, HIV, and  infl uenza   (Havers et al.  2014 ; Kitson et al.  2014 ; Bryson 
et al.  2014 ; Lang et al.  2013 ). 

 In the CNS, low Vitamin D levels are a risk factor for multiple sclerosis 
(Disanto et al.  2012 ), and normal levels were observed to be neuroprotective and 
benefi cial for maintaining cognition (Anastasiou et al.  2014 ). Experimental sun-
light or  ultraviolet light exposure inhibited spinal cord infl ammation and reduced 
demyelination (Wang et al.  2015 ). In ALS, Vitamin D supplementation may be 
therapeutic (Gianforcaro and Hamadeh  2014 ). Serum levels of Epstein-Barr virus 
were negatively correlated with levels of Vitamin D (Lucas et al.  2011 ); EBV 
infection is associated with susceptibility to MS in some individuals (Cocuzza 
et al.  2014 ). The mechanism of neuroprotection may be impairment of CD4 
extravasation across the BBB (Grishkan et al.  2013 ).  Vitamin D   levels have not 
been studied in other neurotropic viral infections, but we may speculate that nor-
mal concentrations may be protective.   

    Protein Players in Innate Immunity 

 Many different classes of proteins are critically involved in innate immunity in 
the CNS. This section will briefl y describe the roles of Defensins, Lactoferrin, 
Complement cascade components, Cytokines and Chemokines. IFNs were dis-
cussed earlier. 
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    Defensins 

  Defensins      are small, conserved antimicrobial peptides, produced by many cell types 
including epithelial and leukocytes, which are found in both very primitive species 
which lack adaptive immunity and mammals. While infl ammatory infi ltrating cells 
may also contribute, in the CNS parenchyma, defensins are synthesized by astrocytes, 
the choroid  plexus  , and the hypothalamus (Evans and Harmon  1995 ; Angeli et al. 
 1994 ; Williams et al.  2012 ,  2014b ). Peripherally synthesized defensin molecules can 
cross the BBB (Schluesener and Meyermann  1995 ). They have been shown to con-
tribute to elimination of both bacteria and to virus infections by many mechanisms 
(Wiens et al.  2014 ; Wilson et al.  2013 ). In viral infections of the  CNS  , these include 
HIV, VZV, HSV, Dengue, adenovirus, and JC (Klotman and Chang  2006 ; Crack et al. 
 2012 ; Rothan et al.  2012 ; Gwyer Findlay et al.  2013 ; Wang  2013 ; Zins et al.  2014 ). 
The release of defensins may be regulated by LTB 4  (Flamand et al.  2004 ). 

   Lactoferrin       is a small secreted, iron-complexed protein that has both anti- 
bacterial and antiviral activity. Lactoferrin is found in milk and plasma and 
secreted by neutrophils (Baynes and Bezwoda  1994 ). Recent studies suggest that 
it may contribute to inhibition of innate immune responses during CNS infections 
with picornaviruses, alphaviruses, papovaviruses, EBV, and HSV (Seganti et al. 
 2001 ; Waarts et al.  2005 ; McCann et al.  2003 ; Drobni et al.  2004 ; Valimaa et al. 
 2009 ; Zheng et al.  2012 ). 

   Complement  cascade components   and their receptors are expressed both consti-
tutively and can be induced during immune responses in the CNS. Of course, in the 
classical cascade, specifi c antibody must fi rst be synthesized and engage its epit-
opes, inducing conformational changes in IgG which result in exposure of the cryp-
tic C1q binding site and the initiation of the cascade. The alternative and lectin 
pathways can also induce activation of complement. IgG can cross the BBB, and 
can, under circumstances of persisting immune responses, be synthesized in the 
CNS in tertiary lymph nodes (Phares et al.  2013 ). But that refl ects adaptive and not 
innate immune responses. 

 The small anaphylatoxins, C3a, C4a, and C5a, which are proteolytic products of 
the zymogens, are potently active as activators of vascular permeability and che-
moattractants for neutrophils. These molecules are produced in the  CNS   by astro-
cytes and microglia (Bruder et al.  2004 ). C5a is a potent recruiter of 
 polymorphonuclear leukocytes (PMNs)  . In VSV encephalitis C5a was not required 
for host responses (Chen and Reiss  2002b ), the redundance of chemokines and 
LTB 4  were suffi cient to promote recovery. 

 Complement receptors include both serpentine 7-transmembrane molecules 
(which bind C3a, C4a, and C5a) G-protein coupled transmembrane glycoproteins. 
Endothelial cells and neurons express some complement receptors, including CD46, 
a measles virus, and Human herpes virus-6 (HHV-6) receptor (Santoro et al.  2003 ; 
Schneider-Schaulies et al.  2001 ; Shusta et al.  2002 ).  Rabies virus infection   of the 
CNS induces the expression of complement genes (Zhao et al.  2011 ). Complement 
activation has also been shown to be critical for the development of the adaptive Ab 
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response for WNV (Mehlhop et al.  2005 ; Dietzschold et al.  1995 ). In the presence 
of antibody, exacerbated C3-dependent pathology was observed in MHV-A59, 
TMEV, and Coxsackie B3 infections (Burrer et al.  2007 ). 

 The complement lectin pathway contributes to protection from  West Nile virus 
infection   (Fuchs et al.  2011 ). Complement contributes to the neurovirulence of 
Sindbis, HIV, SIV, and Bornavirus infections (Bruder et al.  2004 ; Speth et al.  2004 ; 
Griffi n et al.  1997 ; Dietzschold et al.  1995 ; Johnston et al.  2001 ; Phares et al.  2013 ). 
In TMEV infection, complement activation contributes to seizures (Libbey et al. 
 2010 ). HSV, vaccinia, and the murine gamma herpes virus MHV-68, have devel-
oped evasive proteins that prevent complement activity and contribute to their dis-
ease pathogenesis (Kapadia et al.  2002 ). 

 A  vaccinia virus protein   has been isolated and has been proposed as a therapeutic 
when host complement activation is pathogenic in the CNS (Pillay et al.  2005 ). 
Recombinant HSV-1 defi cient in the complement-interacting  γ134.5  gene product has 
been proposed as an effective vector for viral oncolysis (Broberg and Hukkanen  2005 ). 
Similarly, herbal proteins are also able to block complement and have been suggested 
as potential neuroprotective therapeutics (Kulkarni et al.  2005 ). In experimental infec-
tion with enterovirus 71 (EV71), a fusion protein of complement receptor 2 (CR2) and 
the inhibitor Crry prevented complement activation, alleviating local  infl ammation  , 
and preventing severe disease associated with the picornavirus (Qiu et al.  2012 ). 

   Chemokines       :  IFNs induce expression of chemokines including IFN-inducible 
10KD protein (IP-10; CXCL-10; which also has anti-angiogenic activity), Mig/
Crg-2 (CXCL-9), and I-TAC (CXCL11). These proteins may also have  defensin- like 
activity, nonspecifi cally arming anti-microbial responses (Cole et al.  2001 ). These 
chemokines recruit neutrophils, natural killer (NK) cells, monocytes, and T cells to 
the brain (Williams et al.  2014b ). They have been shown to be important in the 
host’s response to LCMV, MHV, VSV, and TMEV infections (Rubio et al.  2006 ; 
Asensio et al.  1999 ; Ireland and Reiss  2006 ; Liu et al.  2000 ; Palma and Kim  2001 ). 
Fractalkine (C3XCL1) has been associated with recruitment of microglia, brain 
macrophages, and peripheral cells in HIV dementia (Cotter et al.  2002 ). Chemokine 
receptors CCR2 and CXCR3 are essential for recruitment of peripheral cells during 
SFV and WNV encephalitis (Michlmayr et al.  2014 ). 

 Many molecules have chemoattractant activity, but are not in the peptide families of 
chemokines. These include the cytokine IL-12, produced by antigen presenting cells, 
that can recruit NK cells (Michel et al.  2012 ), the bacterial tri-peptide f- MetLeuPhe, 
and the leukotriene LTB 4  for neutrophil recruitment (Lefebvre et al.  2011 ). 

   Cytokines       are comprised of  dozens   of different protein mediators, which are 
generally secreted by one cell and act on the secreting cell (autocrine), locally (para-
crine), or systemically (endocrine) to either activate and differentiate another cell 
type,  or  regulate the activity of another cell. Generally, the receptors are heterodi-
mers of surface glycoproteins, signaling through tyrosine kinase cascades. Although 
many investigators have tested the effects of individual molecules in experimental 
systems, in real life, cytokines are secreted as a part of a coordinated program with 
many different molecules (including receptor antagonists) released at the same 
time; it is the composite of these mediators’ signal transduction pathways that lead 
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to the outcome. The differentiation state of the downstream cell, the quantity, and 
duration of exposure determine the response. Cytokines can downregulate their 
receptors by internalization, leading to desensitization, or induce enhanced expres-
sion of their own (and other) receptor and second messengers, which can positively 
regulate subsequent responses. 

 In the brain these molecules can be produced by both  parenchymal cells and 
infi ltrating infl ammatory cells  . Two excellent reviews of cytokines and the CNS are 
a book edited by Ransohoff and Benviste and an article by Campbell (Ransohoff 
and Benveniste  2005 ; Campbell  2005 ). It is the balance between proinfl ammatory 
cytokines such as TNF-α, IL-17, or IL-23 and the anti-infl ammatory molecules such 
as IL-4, TGF-β, or IL-10 that ultimately determine the outcome. 

 Systemically produced cytokines can lead to CNS consequences ranging from the 
fever response to IL-1 (inducing the production of PGE 2 ) or TNF-α secretion, result-
ing in transient disruption of the BBB. Excessive peripheral release of cytokines has 
been associated with “sickness behavior” (Dantzer  2005 ; Watkins and Maier  2000 ). 

 In infections,  proinfl ammatory cytokines   can lead to benefi cial outcomes, such as 
IL-12, TNF-α, or IFN-γ induction of NO which leads to elimination of VSV  infec-
tions   (Komatsu et al.  1996 ,  1997 ,  1999a ; Ireland and Reiss  2004 ; Ireland et al.  1999 , 
 2005 ); however, IL-12/IL-23 and IL-18 are not necessarily critical even if synthe-
sized or administered (Hodges et al.  2001 ; Ireland et al.  2005 ). These are important 
in Sindbis, TMEV, and MHV infections (So et al.  2006 ; Binder and Griffi n  2003 ; 
Lane et al.  1996 ; Olson and Miller  2009 ; Rempel et al.  2004 ). Excessive expression 
of proinfl ammatory cytokines, in other circumstances, may contribute to pathology 
(neurovirulence or neurodegeneration) in Bornavirus, JEV, HTLV-1, HIV/SIV, 
MHV, TMEV, enterovirus 71, LCMV, canine distemper, rabies, and VEE. The proin-
fl ammatory cytokine IL-27 induced IL-10 production in MHV- A59 infection, lead-
ing to increased demyelination and reduced control of viral replication (de Aquino 
et al.  2014 ). Ironically, the anti-infl ammatory cytokine IL-4 may be associated with 
resistance to human WNV infection in a GWAS study (Qian et al.  2014 ). Cytokines 
are essential mediators in viral infections of the CNS. Some cytokines are neuropoi-
etic, promoting recovery (Bauer et al.  2007 ). The timing, quantity, and balance of 
these bioactive molecules determine the outcome: recovery or pathology.   

    Transcription Factors Regulating Infl ammation 

 Many transcription factor families regulate responses, and the roles of IFN-inducible 
STATs have been discussed above. In this section, three classes of transcriptional fac-
tors will be described: Hypoxia-inducible factor, Peroxisome proliferation activating 
receptor, and High mobility group-1 protein.  Hypoxia-inducible factor-1α (HIF-1α)   is 
a transcription factor whose expression is triggered by transient hypoxia (or ischemia/
stroke); it induces the expression of a number of genes including defensins, the ade-
nosine A 2 B receptor, Vascular Endothelial Growth Factor (VEGF), COX-2, NOS-2, 
and NOS-3 (Kong et al.  2006 ; Hellwig-Burgel et al.  2005 ; Peyssonaux and Johnson 
 2004 ). VEGF regulates not only BBB permeability, but also angiogenesis. HIF-1α 
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expression can be induced by IL-1, TNF-α, and possibly TLR agonists (Hellwig-
Burgel et al.  2005 ; Argaw et al.  2006 ). It is expressed during infl ammatory and demy-
elinating diseases (Aboul-Enein et al.  2003 ). In studies with viral vectors for oncolysis 
in the CNS, HIF-1α expression was enhanced (Shen et al.  2006 ; Post et al.  2004 ). 
Thus, HIF-1α  expression  , whether elicited by transient vascular compromise or cyto-
kine expression, enhances the innate antiviral (and anti- bacterial) gene expression and 
may lead to increased BBB perfusion of the local area. 

  Peroxisome Proliferating Activating    Receptors   , nuclear hormone transcrip-
tion factors, have three isoforms α, β, and γ, each with distinct activity and expres-
sion. PPAR-γ, the canonical nuclear hormone receptor involved in muscle glucose 
uptake and lipid homeostasis and cell differentiation, is translated as two splice 
variants, γ1 and γ2. PPAR-γ2, 30 amino acids longer than γ1, is expressed in high 
levels of adipose tissue. PPAR-γ ligands are polyunsaturated fatty acids, eico-
sanoids, FA oxidation products (13-HODE and 15-HETE), J-series prostaglandins 
(15-deoxy-D12,14-prostaglandin J 2 ), some nonsteroidal anti-infl ammatory drugs 
(NSAIDS), and insulin sensitizing thiazolidinediones (TZDs). PPAR-γ functions as 
an obligate heterodimer with Retinoic X receptor (RXR) to activate transcription by 
binding to 5′ promoters of target genes (Grygiel-Gorniak  2014 ; Fidaleo et al.  2014 ). 

 PPAR-γ agonists modulate infl ammatory responses in the CNS, resulting in the 
reduction of iNOS in cerebellar granule cells. PPAR-γ signaling has anti- infl ammatory 
function in EAE, PPAR-γ agonists alleviate symptoms with antagonists performing 
the opposite, indicating regulation of auto-reactive Th1 and Th17 cells (Kanakasabai 
et al.  2010 ). PPAR-γ also can regulate pathologic immune responses within the CNS 
in MS (Shukla et al.  2010 ). Alzheimer’s disease is a severe neurodegenerative dis-
ease characterized by the accumulation of amyloid plaques accompanied with acti-
vated microglia. TZD treatment in in vitro experiments with microglia and monocytes 
attenuated the secretion of proinfl ammatory cytokines. Medium from TZD-treated 
microglia was neuroprotective (Drew et al.  2006 ). 

 Infection by Adenovirus 36 induces PPAR expression, and increases insulin sen-
sitivity (Pasarica et al.  2006 ). In vitro treatment of cells with PPAR agonists inhib-
ited replication of RSV, HHV8, HCV, HIV, and VSV (Rakic et al.  2006 ; Bryan et al. 
 2005 ; Arnold and Konig  2006 ; Herrera et al.  2008 ), although the mechanism(s) by 
which this inhibition occurred have not been elucidated. However, HBV X-associated 
protein 2 complexes with PPAR and inactivates it (Sumanasekera et al.  2003 ), an 
evasive pathway. Thus treatment with PPAR agonists, such as TZDs, may be benefi -
cial for treatment of viral encephalitis both as potential antiviral compounds, and as 
anti-infl ammatory drugs in  infections   where pathology is associated with  infl amma-
tion  , such as Bornaviral disease and HIV infection (Kim et al.  2012 ). 

   High Mobility Group protein B1  (HMGB1)   is unique among transcription fac-
tors as it is found not only in the nucleus, but also in the cytoplasm associated with 
α-Synuclein fi laments (Lindersson et al.  2004 ) and is actively released as an alar-
min. Its expression may be upregulated by IFN (Seeler et al.  2001 ). HMGB1 may 
engage AMIGO receptors of neurons where it regulates neurite outgrowth, TLR 2 
and TLR 4, or the Receptor for Advanced Glycation Endproducts (RAGE) which 
results in a proinfl ammatory response by microglia, macrophages, and dendritic cell 
maturation (O’Connor et al.  2003 ). 
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 HMGB1 release has been shown to be neurotoxic in ischemia, Alzheimer’s 
disease (Kim et al.  2006a ) and in Bornavirus disease, HTLV-1, HIV-1, and WNV 
infections (Troseid et al.  2013 ; Kimura and Mori  2014 ; Zhao et al.  2006 ; Chu and 
Ng  2003 ). HMGB1 is a Janus molecule with both regulatory transcriptional activity 
and signaling of tissue damage; it may be important in eliciting innate immunity 
during viral encephalitis.  

     BBB   

 Within the CNS, there are anatomically distinct regions that have some constitutive 
vascular permeability (Circumventricular organ, choroid plexus, for example), but 
most areas are highly restricted in access to circulating cells and proteins. Astrocytes 
regulate the perfusion of the parenchyma by controlling vasodilation of the cerebro-
vascular capillaries through the activity of NOS-3 (Sporbert et al.  1999 ; Komatsu 
et al.  1999b ). The BBB is associated with the immune privilege of the brain and 
separates the CNS from peripheral circulation and immune surveillance that is char-
acteristic of the periphery. Entry of cells requires adhesion to the brain  microvascu-
lar   endothelium, release of MMPs to degrade tight junctions and the extracellular 
matrix, as well as migration along a gradient of chemoattracting molecules 
(Bechmann et al.  2007 ; Arima et al.  2013 ). The chemoattracting molecules for cir-
culating cells range from LTB 4  to complement products, chemokines, cytokines, 
FLT3L, and even ATP (all discussed in the relevant sections, above). 

 The BBB breakdown associated with infection results from excessive normal 
physiological process regulating blood fl ow within the CNS (Proescholdt et al. 
 1999 ; Abbott et al.  2006 ). Activation leads to NOS-3-expressing astrocytes to 
release NO, which induces guanadyl cyclase to produce cGMP, leading to endothe-
lial and smooth muscle cell relaxation. Other mediators such as the small comple-
ment cascade mediators C3a, C4a and C5a, VEGF and PGE 2  can also lead to the 
relaxation and increased permeability of the  BBB  . 

 A hallmark of many viral infections including VSV, Rabies, Flaviviruses, HIV, 
TMEV, and WNV (Daniels et al.  2014 ; Wang et al.  2013 ; Neal  2014 ; Johnson et al. 
 2014 ; Williams et al.  2014a ; Chen et al.  2002 ) is the breakdown of the BBB. However 
the global breakdown of the BBB seen in fatal LCMV (Kang and McGavern  2010 ) 
and in fatal VSV infections is extreme, and unusual. In most cases, the overall integ-
rity of the  BBB   is maintained, but in discrete regions, there is increased perfusion 
leading to entry of normally excluded proteins from circulation.  

    Apoptosis and  Autophagy      

 Cells under stress from viral infection, TNF-family cytokines, CTL recognition, as 
well as many other stimulate can undergo programmed cell death (apoptosis) (Danial 
and Korsmeyer  2004 ). I will not review the cellular pathways which lead to genome 
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fragmentation and membrane inversion, but will focus, instead, on associations 
between viral infection and apoptosis. Cells which commit suicide in this manner 
may spare the host from continued viral replication, a benefi t, especially since most 
cells can be replaced by stem cells in that organ; however, if the infected cell under-
going apoptosis were a  neuron  , signifi cant consequences might ensue (Perkins  2005 ). 

 Neurotropic viruses which elicit apoptosis include alphaviruses (Griffi n  2005 ), 
Flaviviruses (Clarke et al.  2014 ), Picornaviruses (Ruller et al.  2012 ), VSV (Gaddy 
and Lyles  2007 ), Rabies (Fu and Jackson  2005 ), coronaviruses (Desforges et al. 
 2014 ), LCMV (Sun et al.  2014 ), reovirus (Dionne et al.  2013 ), JC (Merabova et al. 
 2012 ), HIV-1 (Geffi n and McCarthy  2013 ), and HTLV-1 (Marriott and Semmes 
 2005 ). In fact, apoptosis is such an important cellular defensive response to viral 
infections that poxviruses have developed an evasive pathway, using  ser ine  p rotease 
 in hibitors (serpins) (Taylor and Barry  2006 ). But, scientists are clever and have 
selected apoptosis as a tool for viral oncolysis. 

 At other times, viral infections or cellular stress from starvation can lead to recy-
cling of large volumes of cytoplasmic contents by generation of vesicles which fuse 
with  lysosomes      ( autophagy , self-eating) (Deretic  2005 ). This pathway can become 
dysregulated, resulting in infl ammation and neurodegenerative diseases (Deretic 
et al.  2013 ; Noch and Khalili  2013 ; He and Klionsky  2006 ). 

 Some picornaviruses use this cellular response to develop additional membranes 
on which to replicate (Jackson et al.  2005 ). In the CNS infections caused by 
Coxsackie B3 (Tabor-Godwin et al.  2012 ), Sindbis (Sumpter and Levine  2011 ), 
HIV (Levine and Sodora  2006 ), LCMV (El-Azami-El-Idrissi et al.  2005 ), and HSV 
(Korom et al.  2013 ) autophagy-associated pathology has been reported. Thus, in 
general, autophagy is an innate host  cellular   response to suppress viral infection, 
however, some viruses, to their benefi t, can manipulate it.  

    Parenchymal and Infl ammatory Cells in Innate Immunity 
in the CNS 

     Infi ltration   of Peripheral Circulating Cells 

 Normally there are very few lymphocytes, neutrophils, and NK cells in brain paren-
chyma. Infi ltration of infl ammatory cells ranging from PMNs to NK cells to macro-
phages and fi nally lymphocytes takes place in response to a series of signals from 
both chemoattractant molecules and orchestrated binding to microvascular endothe-
lial cell surface molecules (Williams et al.  2001 ; Luster et al.  2005 ). For cells to 
cross the endothelial vessel wall, they must diapedese and then digest the basement 
membrane with MMPs. This review will not discuss the infi ltration of antigen- 
specifi c T cells or B cells, as it is limited to innate immune responses. 

   Neutrophils    are the fi rst cell to infi ltrate sites of viral infection. Chemoattractants 
for neutrophils include Adenosine, ATP, f-MetLeuPhe, C5a, LTB 4 , and chemokines 
(Gabriel et al.  2013 ). As described above, they produce defensins, cytokines, media-
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tors from aracodonic acid, and other bioactive compounds. In VSV encephalitis, 
LTB 4  and chemokines, but not C5a, are essential (Ireland and Reiss  2006 ; Chen and 
Reiss  2002b ; Chen et al.  2001 ). PMN infi ltration is also characteristic of Murray 
Valley encephalitis, MHV, HSV-1, TMEV, Western equine encephalitis, and adeno-
virus infections (Libbey et al.  2011 ; Weiss et al.  2007 ; Matthews et al.  2000 ; Reed 
et al.  2005 ; Wakimoto et al.  2003 ; Welsh et al.  2004 ; Weinberg et al.  2007 ; Zhou 
et al.  2003 ; Campbell et al.  2001 ; Bell et al.  1996 ). 

   NK cells    are generally the second cell type to diapedese in response to viral 
infections of the CNS in response to both chemokines and IL-12. NK cells nonspe-
cifi cally recognize patterns of receptor expression on cells and are  sensitive   to low 
levels of MHC molecules, and, when activated, release IFN-γ, perforin and gran-
zymes, like CD8 +  CTL. NK cells have been associated with the host response to 
JEV, WNV, Sindbis, MHV, Bornavirus, EBV, HSV-1, VSV, SIV, CMV, TMEV, and 
enterovirus 71 (Hatalski et al.  1998 ; Christian et al.  1996 ; Wensman et al.  2011 ; 
Fernandes et al.  2011 ; Wang et al.  2013 ; Mott et al.  2011 ; Brehin et al.  2008 ; Larena 
et al.  2013 ; Ogura et al.  2013 ). NK cells contribute not only lytic activity against 
virally infected cells, but also are a signifi cant source of IFN-γ secretion, both of 
which may regulate viral  replication  .  

     Antigen Processing and Presentation   

 Pioneering work by the late Helen  Cserr   and her colleagues including Paul  Knopf   
explored lymphatic drainage of soluble antigens and their ability to evoke an 
acquired immune response (Knopf et al.  1995 ). This drainage is polarized from 
rostral to caudal, and is modest and does not include the hallmarks of peripheral 
tissue dendritic cells bearing antigens to the draining lymph nodes. 

 Antigen processing and presentation is at the interface between the innate and 
adaptive immune responses to pathogens. There is little constitutive expression of 
Class II MHC molecules in the undisturbed CNS; however, both   astrocytes     and  
  microglia    readily express these molecules in response to infl ammatory cytokines, 
especially IFN-γ (Gresser et al.  2000 ). Infection indirectly induces the  expression   of 
MHC II and enhances the expression of MHC I by parenchymal cells (Berman et al. 
 1998 ; Abraham and Manjunath  2006 ; Aguirre and Miller  2002 ; Alldinger et al. 
 1996 ; Caplazi and Ehrensperger  1998 ). 

   Perivascular macrophages    have been shown to be an important player in antigen 
presentation for the brain in infections and autoimmune disease (Williams and Hickey 
 2002 ).  Macrophages   and   microglia    may produce proinfl ammatory (M1) or anti-
infl ammatory (M2) cytokines and bioactive mediators; M2 microglia antagonize neu-
roinfl ammation (Cherry et al.  2014 ). Mi cells contain multimolecular complexes 
called infl ammasomes, intracellular sensors for pathogens and danger signals; these 
infl ammasomes generate substantial quantities of proinfl ammatory IL-1 and IL-18 
(Walsh et al.  2014 ). M1 microglia are characteristic of VSV, neurotropic infl uenza 
virus, and TMEV infections (Jurgens et al.  2012 ; Son et al.  2009 ; Steel et al.  2014 ). 
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   Mast  cells   are often overlooked except in studies of Type 1 hypesensitivities. 
Mast cells can participate with glia in neuroinfl ammation (Skaper et al.  2014 ). IL-33, 
produced by glia, would promote mast cells; in TMEV infections, IL-33 was pro-
duced (Hudson et al.  2008 ). In HIV-E with immune reconstitution  syndrome   after 
antiretroviral therapy, mast cells contribute to CNS pathology (Rushing et al.  2008 ). 

   Dendritic cells    are the principal antigen presenting cells in the periphery and are 
a complex group of cells whose phenotypes rival T cell subsets (Guilliams et al. 
 2014 ; Cohn and Delamarre  2014 ). They are extremely diffi cult to detect in undis-
turbed brain tissue. During immune responses in the CNS, it is possible to fi nd cells 
expressing dendritic cell markers (Matyszak and Perry  1997 ; Ambrosini et al. 
 2005 ). In addition to any chemokines, Flt3L has been shown to recruit dendritic 
cells to the CNS (Curtin et al.  2006 ). Parenchymal dendritic cells have numerous 
 phenotypes   (D’Agostino et al.  2012a ), and VSV infection induces CD103 +  CD11b +  
cells (D’Agostino et al.  2012b ). Dendritic cell responses are age dependent and may 
contribute to the susceptibility of immature hosts to some forms of viral encephalitis 
(Taylor et al.  2014 ). However, the microenvironment during which dendritic cells 
are exposed to virus can determine whether pro-infl ammatory or Treg responses are 
found (Durrant et al.  2013 ; Martinez et al.  2014 ).   

    HPAI Axis and Neural-Endocrine Regulation 

  The    hypothalamic-pituitary-adrenal-immune  (HPAI)  axis    controls not only fi ght-or- 
fl ight in response to stressors, but also critical control of immune responses to infec-
tions. There are short-term and chronic stress manifestations of this (Eskandari and 
Sternberg  2002 ; Shanks et al.  1998 ), with long-term compromise of immune 
responses to viral infections (Silverman et al.  2005 ). This may be manifest as altera-
tions in the humoral response to viral infection (Ijaz et al.  1990 ). Acute stress may 
also alter the integrity of the BBB (Esposito et al.  2001 ), thus potentially permitting 
entry to otherwise excluded viruses. 

     Sympathetic Nervous System   

  Chemical sympathectomy  , achieved by infusion of 6-hydroxydopamine, has pro-
found effects on the peripheral immune response, as there is sympathetic innerva-
tion of the spleen and lymph nodes (Callahan et al.  1998 ). Hosts are more susceptible 
to bacterial, VZV reactivation, and HSV-1  infections   (Cao et al.  2002 ; Massad et al. 
 2004 ; Leo et al.  1998 ; Templeton et al.  2008 ), but when hosts are already immune 
suppressed, whether by malnutrition or by lentivirus infections, they are not further 
compromised (Kelley et al.  2002 ; Gonzalez-Ariki and Husband  1999 ). We tested 
whether chemical sympathectomy altered the ability of peripheral plasmacytoid 
dendritic cells to produce IFN-β in response to VSV infection of the CNS, and 
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found no contribution of innervation of secondary lymphoid organs in this response 
(Trottier et al.  2007 ). However, production of proinfl ammatory cytokines and 
increased pathology were observed in infl uenza virus infection to be associated with 
the sympathetic response (Grebe et al.  2010 ). 

   Cholinergic pathways    have been shown to be anti-infl ammatory in bacterial 
model systems and ischemia-reperfusion injury (Tracey  2007 ), inhibiting cytokine 
production and tissue injury in models such as colitis (Sun et al.  2013 ). In a trans-
genic model, HIV-1 was associated with learning defi cits; activation of the cholin-
ergic pathway with nicotine did not ameliorate the loss vigorito (Vigorito et al. 
 2013 ). But, there are no published reports in the literature on the impact of this regu-
latory neurotransmitter pathway on neurotropic viral infections. 

   Leptin    was originally identifi ed as the gene product defi cient in obese mice and 
was found to regulate energy balance, but like so many other effector  molecules  , has 
many other activities. Proinfl ammatory cytokines, induced during infections, can 
upregulate production of leptin (Yu et al.  2014 ), and lead to anorexia (Langhans 
 2000 ). Central leptin and insulin resistance has been associated with Adenovirus 
(SMAM-1 and Ad36) infection, leading to obesity (Wierucka-Rybak and Bojanowska 
 2014 ). Recent evidence suggests that this adipocyte-produced protein is also immu-
noregulatory and is, in fact, a proinfl ammatory cytokine (Lord  2006 ). Leptin is 
pathogenic in EAE (Matarese et al.  2002 ) by virtue of its action on dendritic cells, 
resulting in the induction of Th1 responses (Mattioli et al.  2005 ) and its inhibition of 
thymic  apoptosis   (Mansour et al.  2006 ). In experimentally induced obese mice, more 
severe infl uenza pathology was associated with leptin (Zhang et al.  2013a ). Well-
nourished infants, with elevated leptin levels, were more susceptible to Dengue hem-
orrhagic fever, than were thinner children (Libraty et al.  2014 ). High leptin levels 
were observed in HCV-infected people with chronic fatigue symptoms (El-Gindy 
et al.  2012 ). In contrast, low levels of leptin are observed in HIV infections, and 
exaggerated in those patients with lipodystrophy veloso (Veloso et al.  2012 ). 
Therefore, leptin may be a potential target for therapeutic intervention in persistent 
infl ammatory infections of the CNS such as HIV-E and Bornaviral disease. 

   Sex hormones    regulate more pathways than just those in secondary sexual 
organs. 

   Estrogen    is neuroprotective in infection, Alzheimer’s disease, traumatic injury, 
and ischemia (Barreto et al.  2014 ; Cue et al.  2015 ). Estrogen has profound immuno- 
modulating effects ranging from induction of NOS-3, and thus increased vascular 
perfusion (Hayashi et al.  1997 ). Selective estrogen receptor modulators enhance 
neurogenesis and spine density (Khan et al.  2015 ). Movement disorders including 
Parkinson’s disease are more frequent in males (Lubomski et al.  2014 ). Estrogen 
positively regulates expression of IFN-γ (Fox et al.  1991 ); this is clearly linked with 
the increased frequency of females who have Th1-associated autoimmune diseases 
such as EAE/MS (Whitacre et al.  1999 ). 

 Additionally, sex hormones regulate PPARs, and can infl uence the severity of 
EAE (Dunn et al.  2007 ). Females may be more resistant to some viral  infections   due 
to enhanced Th1 responses, including VSV, TMEV, and HSV-1 (Markle and Fish 
 2014 ; Forger et al.  1991 ; Fuller et al.  2005 ; Peter and Sevall  2001 ). 
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   Androgens    may be immunosuppressive by inhibiting Th1 differentiation 
(Kissick et al.  2014 ). This may contribute to diminished effi cacy of  vaccination   and 
the production of anti-infl uenza antibody by males (Furman et al.  2014 ). Hepatitis 
B and HCV disease is more severe in males, and correlated with testosterone levels 
(Tian et al.  2012 ; White et al.  2012 ). 

 There is an effect of host sex in viral infections of the CNS. Female mice are more 
resistant than males to lethal VSV infections (Barna et al.  1996 ), and show improved 
clearance of MHV and Semliki Forest virus infection from oligodendrocytes 
(Fazakerley et al.  2006 ; Parra et al.  1999 ). However, female mice undergo more severe 
demyelination in TMEV infections (Fuller et al.  2005 ). HIV-E and HIV-dementia inci-
dence may be lower in females due to estrogen effects on immune responses (Wilson 
et al.  2006 ). Thus, where infl ammation is benefi cial to clearing virus and resolving 
infection, females are at an advantage. In contrast, where infl ammation contributes to 
viral disease pathology in the  CNS  , females are disproportionately affected.   

    Summary and Speculation 

 Innate immunity in the CNS is complex and includes protein effectors (IFNs, cyto-
kines, chemokines, defensins, complement, lactoferrin, and other molecules), lipid 
mediators (PGs, LTs, Cannabinoids, etc.), small diffusible molecules (NO, ONOO − ), 
and both parenchymal and infl ammatory cells. These responses are highly regulated 
and are triggered, in part, by receptors that bind common pathogen-associated or 
damage-associated molecules. Combined, these responses provide a critical barrier, 
controlling viral replication until adaptive immune responses are marshalled. 
Infl ammation is essential, but must be carefully controlled to prevent tissue damage 
and pathology. Virtually every pathway has regulation (e.g., kinases and phospha-
tases) that ultimately determines the magnitude and then the resolution of  responses  . 
We are still learning about the essential pathways and their controls, about how 
drugs may alter the dynamic equilibrium, and in which situations responses need to 
be ramped up or downregulated. Nonetheless, innate immune responses are criti-
cally essential in the central nervous system, to buy the host time for the adaptive 
immune response to mature and provide antigen-specifi c effector T cells and anti-
body to the viral infection. I predict we will make many future advances that will 
benefi t the health of the populations who are infected with neurotropic viruses.     
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