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Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We
report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis
revealed the karyotype 46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3)pat. Cytogenetic microarray analysis (CMA) identified a∼2.3Mb
duplication of 9q34.3 → qter, which was confirmed by Fluorescence in situ hybridisation (FISH). The duplication at 9q34.3 is the
smallest among the cases reported so far. The proband exhibits similar clinical features to those previously reported cases with
larger duplication events.

1. Clinical Report

The proband was born prematurely at 35 weeks gestation
with a birth weight of 2040 g. She required nasogastric tube
feeding during the first week of life. During infancy, she
was investigated for hypotonia and associated plagiocephaly;
a brain MRI scan showed no abnormalities. She also had
difficulties swallowing solids until the age of 2 years with
ongoing tendency to drooling and keeping her mouth open.
She walked at 2 years and 3 months of age. Her speech began
developing at around that time. At school, she demonstrated
age appropriate reading and writing skills, but required
additional help in maths. However, the degree of her learning
difficulty was minimal and psychometric assessment was
not deemed to be necessary. She was also noted to have
difficulties in gross motor and particularly fine motor skills
and required assistance from an occupational therapist. An
ophthalmic assessment at 16 years of age demonstrated
myopia, with visual acuity of 6/24 in the right eye and 6/12 in
the left eye. Fundoscopy revealed the presence of pigmentary
changes in both posterior poles.

She was reviewed at the genetics clinic at 16.5 years
of age. At that time, she was continuing to make good
academic progress although she was receiving some input
from the learning support unit attached to her school. Her
height was at the 50th centile, weight at the 25th centile,
and head circumference between the 25th and 50th centiles.
Facial dolichocephaly and asymmetry were noted. The eyes
were mildly deep set. She had a short philtrum and mild
microganthia (Figures 1(a) and 1(b)), with a high arched
palate. There was distal tapering of the fingers with radial
clinodactyly of the middle three fingers (Figure 1(c)). She
had long halluces, curly toes, and bilateral hallux valgus
(Figure 1(d)). A mild scoliosis was also noted.

2. Chromosome Analysis

Conventional G-banded chromosome analysis was per-
formed on peripheral blood samples taken from the proband
and her parents.
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Figure 1: Clinical features of the patient at the age of 16.5 years. Frontal view (a) shows the short philtrum. Lateral view (b) shows mild
micrognathia. (c) shows distal tapering of the fingers with radial clinodactyly of the middle three fingers, and (d) shows Long halluces, curly
toes, and bilateral hallux valgus.

Genome-wide copy number analysis was determined
from genomic DNA samples using the Affymetrix Cytoge-
netics Whole-Genome 2.7 M array, according to the manu-
facturer’s instructions. Regions of copy number change were
calculated using the Affymetrix Chromosome Analysis Suite
software (ChAS) v.1.0.1 and interpreted with the aid of the
UCSC genome browser (http://genome.ucsc.edu/; Human
Mar. 2006 (hg18) assembly).

Chromosomal analysis showed a female karyotype
46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3) for the proband
(Figure 2(a)). The father’s karyotype was 46,XY,ins(19;9)-
(q13.4;q34.3q34.3) (Figure 2(d)) and the mother’s karyotype
was normal (data not shown). The array revealed a terminal
duplication of approximately 2.3 Mb at 9q34.3, and the
proband’s molecular karyotype was arr 9q34.3(137,864,059-
140,171,337)x3 (Figure 3; UCSC Genome Browser-NCBI
Build 36, Mar. 2006 assembly).

FISH confirmed that a segment of region 9q34.3 was
inserted into the region 19q13.4 using the locus-specific
probe D9S325, with two signals on the chromosome 9
homologues present in the proband (Figures 2(b) and
2(c)). FISH using the probe specific for the 19q terminal
region confirmed that the subtelomeres of the derivative
chromosome 19 were intact. FISH findings from the father
demonstrated an apparently balanced translocation: part of
region 9q34.3 was inserted into 19q13.4, thus confirming

the parental origin of the derivative chromosome 19 (Fig-
ures 2(e) and 2(f)). The duplicated region encompasses
approximately 92 genes, which are likely to contribute to the
proband’s phenotypic features.

3. Discussion

Patients with 9q duplications have overlapping features,
which include variable degrees of developmental delays,
learning or intellectual deficits, facies characterised by dolic-
ocephaly, asymmetry, deep set eyes or small palpebral fis-
sures, high arched palate, micrognathia and digital anomalies
including arachnodactyly, camptodactyly and clinodactyly.
Furthermore, the finding of long halluces appears to be
a common and distinctive feature in patients with a pure
duplication, although many other reported cases carry copy
number changes other than 9q duplications [1–8].

In this study, we report a small ∼2.3 Mb duplica-
tion of 9q34.3 detected by CMA. Our patient displayed
dolicocephaly and facial asymmetry, mildly deep-set eyes,
short philtrum, mild microganthia, high arched palate, clin-
odactyly, mild scoliosis, mild myopia, and digital anomalies.
A comparison of phenotypic anomalies of our patient with
previously reported cases is summarised in Table 1.

Recently, Gijsbers et al. [8] reported a 16-year-old girl
with a triplication and duplications in the 9q34.3 region.
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Figure 2: Cytogenetics and FISH analysis of proband and father. ((a)–(c)) and (d-f) show the analysis of the proband and father, respectively.
Ideograms of chromosomes 9 and 19 show that part of region 9q34.3 is inserted into region 19q13.4 in the proband (a), and the father
is a carrier of a balanced insertional translocation (panel d). FISH analysis used probes for 9pter (305J7-T7), 9qter (D9S325), 19pter
(129F16/SP6), 19qter (D19S238E), 19q13 (GLTSCR1/GLTSCR2/CRX), while 17cen and 17q used control probes ((b)–(c) for the proband,
and panels (e)–(f) for the father). These panels confirm that the part of region 9q34.3 is inserted into region 19q13.4. The subtelomeres of
chromosome 19 were intact (the probes for 19pter (129F16/SP6) and 19qter (D19S238E) were used; image not shown).

The authors noted that the clinical features of their proband
overlapped with those in one previous report [2], which
was a “pure” 9q34.3 duplication case. The same dysmorphic
features are shared with the proband reported here, but
feeding difficulties, scoliosis, and severe mental retardation
are absent. The more severe phenotype reported by Gijsbers
et al. [8] may be attributed to a larger ∼2.9Mb region of
duplicated and triplicated subregions (chr9q34:137,265,834-
140,207,437) that encompasses approximately 100 genes. In
our case, approximately 92 genes are duplicated in a∼2.3 Mb
region (chr9q34.3 : 137,864,059-140,171,337).

Of the genes contained within the duplicated region
detected in our patient, eleven are present in the Online
Mendelian Inheritance in Man (OMIM; http://www.ncbi
.nlm.nih.gov/omim) morbid map, and of these, all but
NOTCH1 are associated with autosomal recessive disease
and homozygosity for terminating mutations (Table 2). As
a consequence, these OMIM genes do not appear to play a
role in the clinical phenotype reported here which is likely to
be caused by gene overexpression, due to the increased copy
number of the 2.3 Mb region of chromosome 9, rather than
haploinsufficiency.

In the mouse, upregulation of NOTCH activity appears
to be associated with an increase in the number of interneu-
ronal contacts and the cessation of neurite growth [9]. In

addition, the NOTCH signalling pathway plays a pivotal role
in embryo development. It is likely, given the mathematical
modelling undertaken by Raya et al. [10], that increased
expression of NOTCH1 would have an impact on the level
of NOTCH1-associated subcomplexes, and hence alter devel-
opmental and physiological outcomes. That NOTCH1 over-
expression may be the principal underlying gene responsible
for the phenotype of our patient remains speculative at
this stage. It is also possible that the site of insertion on
chromosome 19 may affect the expression of chromosome
19 genes, which may play a role in the phenotype reported
here. Unfortunately, the array data does not provide any
clues regarding the specific site of insertion on chromosome
19.

In summary, the proband reported here is a new addition
to the rare collection of dup 9q34 cases. Our patient has
developed a mild form of the clinical features described
in other 9q34 cases, possibly due to the smaller affected
region. Patients with shorter dup 9q34 tend to have a
better prognosis and would benefit from special education
with input from their parents [2]. It is hoped that with
increased reporting of similar cases, dosage changes and
breakpoints in this region can be more clearly correlated to
phenotypic features to aid genetic counselling and medical
management.
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Figure 3: Location and extent of 9q34 duplications. UCSC Genome Browser (March 2006 (hg18) assembly) view of the chromosomal
region 9q34.13-q34.3 (chr9:134,776,210-140,171,337) is shown, together with Refseq, OMIM, and GAD genes. The bottom panel shows the
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Gijsbers et al. [8].
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Table 2: Duplicated region and OMIM genes.

OMIM Protein Gene Disorder Molecular genetics

600577 LIM/homeodomain protein LHX3 LHX3
Combined pituitary
hormone deficiency-3

Homozygosity for intragenic
deletion/nonsense mutation

613037 Inositol polyphosphate-5-phosphatase INPP5E Joubert syndrome 1
Homozygosity for mutations in the
INPP5E gene that lead to decreased
phosphatase activity

Mental retardation, truncal
obesity, retinal dystrophy,
and micropenis

Homozygous nonsense mutation detected
in the INPP5E gene

607212
Caspase recruitment domain-containing
protein 9

CARD9
Autosomal recessive form
of familial chronic
mucocutaneous candidiasis

Homozygous nonsense mutation in the
CARD9 gene

190198
Notch, Drosophila, homolog of, 1,
translocation associated Notch homolog;
NOTCH1

NOTCH1 Aortic valve disease
Heterozygosity for nonsense/frameshift
mutations

Leukemia, T-cell acute
lymphoblastic

603100
1-Acylglycerol-3-phosphate
O-acyltransferase 2

AGPAT2
Lipodystrophy, congenital
generalised, type 1; CGL1

Homozygous or compound heterozygous
mutations

613354 Taperin TPRN
Autosomal recessive
nonsyndromic deafness-79

Homozygous truncating mutations

604346 Mannosidase, alpha, class 1B member 1 MAN1B1
Mental retardation,
autosomal recessive 15

Homozygous mutations

138249
Glutamate receptor, ionotropic,
N-methyl D-aspartate 1

GRIN1
Mental retardation,
autosomal dominant 8

Missense mutation; in-frame duplication
of codon 560

609826
Solute carrier family 34
(sodium/phosphate cotransporter),
member 3

SLC34A3
Hypophosphatemic rickets
with hypercalciuria

Homozygous single-nucleotide deletion

608137
Nasal embryonic luteinizing
hormone-releasing hormone factor

NELF
Hypogonadotropic
hypogonadism

A thr480-to-ala mutation in the NELF gene

607001 Euchromatic histone methyltransferase 1 EHMT1 Kleefstra syndrome

Heterozygous nonsense/frameshift
mutation, in the EHMT1 gene; terminal
deletions, interstitial deletions, derivative
chromosomes, and complex
rearrangements

The entries in this table were taken from the OMIM database (http://www.ncbi.nlm.nih.gov/omim).
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