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Wetland or hydric soils, in addition to excess water and limited air-filled porosity, 
are characterized by anaerobic or reducing conditions. Wetland plants have 
developed physiological and morphological adaptations for growing under these 
conditions. Various methods exist for measuring plant responses to reducing 
conditions in wetland and aquatic environments, including assessment of radial 
oxygen transport, cellular enzymatic transformations, changes in root structure, 
and nutrient uptake. However, a gap exists in quantifying the chemical properties 
and reducing nature of soil environment in which plant roots are grown. The 
variation in reducing conditions, oxygen demand, and other associated processes 
that occur in wetland soils makes it difficult to truly compare the plant responses 
reported in the literature. This review emphasizes soil-plant interactions in 
wetlands, drawing attention to the importance of quantifying the intensity and 
capacity of reduction and/or oxygen demand in wetland soils to allow proper 
evaluation of wetland plant responses to such conditions. 
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INTRODUCTION 
Hydric or wetland soils are saturated or flooded long enough during the growing season to 
develop anaerobic conditions that favor the growth and regeneration of hydrophytic 
vegetation[1]. Plant adaptation and growth are affected by two major attributes related to the 
excess water in hydric soils. One is the superabundance of water for necessary physiological 
functions of the plant; the other is oxygen-deficiency and reducing soil conditions that seriously 
interfere with normal root respiration and energy production and can also result in soil microbial 
processes that produce substances potentially toxic to the plant. 
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 Excess water in hydric soils affects the reactivity of inorganic redox systems that usually 
remain inactive in well-aerated soils. Due to the presence of excess water in hydric soils, the 
supply of oxygen into the soil is curtailed and facultative and obligate anaerobic microorganisms 
use oxidized compounds as electron acceptors for respiration, thus converting them to reduced 
forms. Soil reduction processes in wetlands govern plant growth and development. This review 
focuses on research needs associated with properly quantifying soil reduction processes for 
evaluating plant response in wetland environments. 

Oxidation-Reduction Potential (Redox Potential) of Wetland Soils 
 
The easiest-to-measure change occurring in a hydric soil as a result of increased wetness is the 
decrease in oxidation-reduction or redox potential[2]. Aerated soils have characteristic redox 
potentials in the range of +400 to +700 mV; flooded or waterlogged soils exhibit potentials as 
low as -250 to -300 mV. In wetland soils, several factors combine to make the oxidation-
reduction potential the best available measure of the oxidation or reduction status of the soil. 
First, the range of potential in anaerobic soils is much wider, approximately 700 mV as compared 
to a range of approximately 300 mV in well-drained soils (Fig. 1). Second, oxygen is usually 
absent from most waterlogged soils; therefore, methods used for the measurement of oxygen 
content and oxygen diffusion rate employed in well-drained soils cannot be used in waterlogged 
soils. 
 The various inorganic redox systems found in soil become unstable at critical redox potential 
(Fig. 1). Sequentially, oxygen is reduced first, followed by nitrate and oxidized manganese 
compounds, and then ferric iron compounds. Following the reduction of ferric iron, the next 
redox element to become unstable is sulfate, followed by the reduction of carbon dioxide to 
methane.  
 Soil redox potential represents an indication of the oxidation-reduction status of various 
redox couples. For example, a redox potential of 0 mV indicates that oxygen and nitrate are not 
likely to be present and that the bioreducible iron and manganese compounds are in a reduced 
state. At this same potential, however, sulfate is stable in the soil with no production of sulfide, 
which is toxic to plants. A redox potential of +400 mV indicates that oxygen may be present even 
though there may be excess water. 
 

Intensity and Capacity of Reduction 
 
Reduction of the inorganic redox system in wetland soils can be described in terms of intensity 
and capacity[3]. Reduction intensity factor determines the relative ease of the reduction and is 
represented by the free energy of the reduction, or equivalent electromotive force of the reactions. 
Soil redox potential, or Eh, is used to quantify the intensity of reduction. Capacity of soil 
reduction describes the quantity of redox species undergoing reduction and is equivalent to the 
total amount of electrons accepted by the soil oxidants in microbial respiratory activity. Capacity 
is also related to the total amount of labile carbon (C) compounds or total energy sources that are 
utilized during microbial activity (reductant capacity) and is described in terms of its O2 
equivalent. The capacity factor of soil reduction reflects soil O2 demand, in addition to the soil’s 
phytotoxin capacity and production rate[4]. Soils with the same reduction intensity may differ 
with respect to their capacity. Increased reduction capacity at the same reduction intensity 
generally leads to significant changes in plant responses. In aquatic or wetland soil systems where 
there is biological activity and where several redox systems function, redox potential is used to 
denote intensity of reduction. 
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FIGURE 1. Critical redox potentials (at pH 7) for transformations of inorganic species. Data for A from Reddy and Patrick[5] and 
Turner and Patrick[6]; B from Patrick[7] and Buresh and Patrick[8]; C from Gotoh and Patrick[9]; D from Masscheleyn et al.[10,11]; 
E from Gotoh and Patrick[12]; F from Masscheleyn et al.[13]; G from Connell and Patrick[14], and H from Masscheleyn et al.[15]. 
 

Capacity of the various redox systems can vary from one soil to another. The amount of 
oxygen in the soil at the time of flooding of a well-drained soil is very low, consisting of the 
oxygen in the trapped air spaces plus that dissolved in the water occupying the pore spaces. The 
quantity of nitrate present at flooding typically is more variable than oxygen, but is usually only a 
few parts per million. Reducible manganese oxides are present in much higher concentrations in 
most soils than oxygen or nitrate, but the concentrations are variable, with some soils having less 
than 100 ppm reducible manganese and others having over 10 times as much. Most soils have 
much higher amounts of reducible iron compounds than of any other inorganic redox component. 
Sulfate is a variable component, with coastal salt marshes having a high concentration of sulfate 
and some nonsaline interior wetlands being very low in sulfate. The redox systems (Fig. 1) can be 
ranked on the basis of ease of reduction from the oxygen-water system to the carbon dioxide-
methane system. Oxygen readily accepts electrons from decomposing plant material, whereas the 
reduction of carbon dioxide to methane occurs only under very reduced anaerobic conditions.  
 
 
Interpretation of Plant Response to Wetland Soil Condition 
 
Studies dealing with responses of hydrophytic vegetation to reduced soil oxygen have utilized 
experiments in which plants were grown hydroponically and pressurized nitrogen was passed 
through the solution to remove oxygen. Roots in such systems were exposed to redox potential 
only slightly below values where oxygen disappears on the redox scale (i.e., +350 to +400 
mV)[3]. Anaerobic conditions are values between +400 and -300 mV. Redox potential of -300 
mV may occur in highly reduced soils. Since oxygen is absent at redox potential values at or 
below +350 mV, the absence of oxygen alone does not provide much information on the intensity 
of reduction. Even studies designed to evaluate responses of plants grown at the upper portion of 
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the anaerobic range of the redox scale may yield results that are not typically the same as those 
exhibited by plants grown in a more reducing natural environment.  
 To evaluate the response of hydrophytic vegetation to oxygen-deficient soils, methods are 
needed to properly quantify and document the substrate condition in which the plants are grown. 
The common laboratory conditions that plants are subjected to may be sufficient for evaluation of 
the physiological response of flood-sensitive plants to low oxygen. Most laboratory methods 
commonly used for removing oxygen from root zones reduce redox potential to levels at which 
flood-sensitive species should respond to oxygen deficiency. However, such levels are not 
effective for studies of flood-tolerant wetland species, many of which can withstand extreme 
reducing conditions covering a significant portion along the redox scale normally found in 
wetland and coastal soils. 

Plant Responses to Soil Waterlogging 
 
Plants use various strategies to cope with soil flooding, including morphological/anatomical 
responses such as adventitious roots, lenticel formation, development of an aerenchyma system 
allowing oxygen diffusion from aerial parts to the roots, changes in root metabolism aimed at 
producing the energy for survival, and acceleration in anaerobic fermentation[16]. Review of the 
literature concerning this relatively broad area can be found in articles by Hook and 
Crawford[17], Kozlowski[18,19,20,21], Drew[22,23,24], Armstrong and Armstrong[25,26], 
Perata and Alpi[27], Pezeshki[28], and Vartapetian and Jackson[29]. However, a few of the 
points pertinent to the present review will be discussed herein. 

Root Functions 
 
Much of the immediate flood-injury to roots is attributed to anaerobic conditions[22,23,30]. 
Among mechanisms developed to cope with such conditions are root morphological/anatomical 
responses that facilitate root oxygenation and have been attributed to flood-tolerance in many 
species[18,21,31,32,33,34]. Adventitious roots and lenticel formation are important 
characteristics in flood-tolerance of many species, including herbaceous and woody 
species[31,32,33,35,36,37]. Stem and root lenticels are among the means by which oxygen is 
supplied to the flooded roots[32,35,38]. Development of adventitious roots and stem lenticels has 
been reported for woody species when subjected to flooding[33]. Aerenchyma tissue 
development is important because it facilitates diffusion of oxygen to the roots, allowing some 
aerobic respiration[39,40,41] and helping to detoxify a reduced rhizosphere[39,42]. Aerenchyma 
formation in some species appears to result from development of hypoxic conditions in the roots 
followed by enhanced synthesis and accumulation of ethylene[43,44]. It allows passage of air via 
diffusion between above- and belowground portions of the plant. Although diffusion is a major 
pathway of root aeration in wetland plants, it is not the only one. Ventilation in rhizomes due to 
pressurized throughflow of gases also has been reported for some species, as has the venturi-
induced convection pathway[45,46,47,48,49]. 
 Clearly, normal growth and functioning of roots requires more oxygen than is needed simply 
for root respiration[28,30,50]. Under aerated conditions, oxygen diffuses into the roots from soil 
air spaces via the root epidermis. However, when roots are under flooded conditions, the required 
oxygen must reach the roots through internal paths from the aerial parts[51]. Most wetland plants 
develop an extensive aerenchyma system extending from substomatal cavities to the 
roots[52,53,54]. In many emergent species, too, oxygen enters the plant through stomatal pores as 
well as through lenticels[55]. In a typical wetland plant, the presence of aerenchyma tissue has 
been reported in various plant organs including stems, petioles, leaves, and rhizomes[56]. 
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The development of morphological and anatomical root adaptations in response to 
oxygen stress is time dependent; that is, it may take up to several weeks before these systems are 
fully developed and functional. Thus, during the initial period of stress, the required energy for 
survival is generated through anaerobic metabolism[30,57]. The general consensus is that plants 
tolerate anaerobic conditions by accelerated ethanol fermentation in the roots. It has been shown 
that many species rely on anaerobic metabolism as a means of surviving anaerobic root 
conditions[58,59]. The enzyme involved in catalyzing the reaction that produces ethanol, alcohol 
dehydrogenase (ADH), is found at a high concentration in roots of flood-tolerant plants under 
flooded conditions[30,40,58,60]. The role of ADH in flood-tolerance has been known for some 
time[29], although its specific functions are still being debated. These functions include 
maintaining intracellular pH and cellular energy requirements[55,61]. 
 Elevated tissue ethylene concentration has been found under flooded conditions[62,63]. The 
effect of increased ethylene concentrations on roots includes enhancing aerenchyma formation in 
certain species[43,64,65]. Ethylene can also inhibit root elongation[66,67] and, sometimes, inhibit 
the elongation of stems[68]. This promotion results from enhanced cell growth, increased cell 
numbers, and increased cell wall acidification[69,70]. The involvement of ethylene and abscisic 
acid in the flood-response of plants has been documented; however, the possible role of other 
growth regulators needs further investigations[63]. For example, the balance between auxins 
transported from the shoot and root-produced substances may be critical under anaerobic soil 
conditions, as was pointed out by Schumacher and Smucker[71]. It is generally believed that most 
known plant hormones can influence root growth to different degrees[72]. 

Most of the root-response studies mentioned above lack information on substrate redox 
conditions (intensity and capacity of reduction), oxygen demand, and presence and/or 
concentrations of reduced compounds (e.g., sulfide) that plant roots were likely exposed to during 
the studies. It is clear that such information would be useful to plant scientists for predicting 
competitive ability of wetland plant species and adaptation limits for growing in aquatic 
environments. 

Root Oxygenation 
 
Root oxygenation is an important adaptation that helps plants overcome intense anaero-
biosis[22,23,25,73,74] and has important ecological implications in wetlands. For example, in 
coastal wetlands the distribution of Spartina alterniflora into more regularly flooded marsh 
habitats than S. patens is due to the more efficient O2 transport to the roots of S. alterniflora[75]. 
In addition, the vigor and productivity of S. alterniflora was found to be positively correlated 
with substrate redox potentials because of the interaction with root aeration[76,77,78,79]. Two 
interrelated factors probably limit growth under highly reduced conditions: (1) the lower redox 
levels represent an O2 deficient system and (2) phytotoxins accumulate to a level where roots 
oxidizing power no longer can ameliorate their effects[78,80,81,82]. The roots must rely more 
heavily on anaerobic respiration[35,83] or transport sufficient oxygen to roots to maintain aerobic 
respiration, lessening its capacity to oxidize the rhizosphere[84,85]. Root ADH increase in S. 
alterniflora with decrease in sediment redox potential has been reported[86]. 
 Aerenchyma, which provides a major pathway for transporting oxygen to the roots, 
represents an energy-efficient adaptation that avoids the problems of root anaerobiosis[16]. It 
allows less resistance to O2 movement for respiring cells[39], and decreases the amount of 
respiring tissue while still providing structural support[42]. The variation in flood-tolerance has 
been associated with the resistance to air movement across the vascular cambium[87], survival of 
secondary roots, development of new secondary roots and adventitious roots, accelerated 
anaerobic respiration, and rhizosphere oxidation[21,29,36,56]. 
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FIGURE 2A. Radial O2 loss from rice as a function of soil redox potential or intensity of reduction. (Modified and redrawn from 
Kludze et al.[93].) 
 
 

 
 
FIGURE 2B. Radial oxygen loss from rice in response to change in soil reduction capacity. (Redox intensity was maintained at -200 
mV.) Capacity was increased by glucose additions, A = 0 g kg-1, B = 0.08 g kg-1, C = 0.16 g kg-1 glucose. (Modified and redrawn from 
Kludze and DeLaune[4].) The different letters represent significant differences at the 0.05 level using Tukey’s test. 
 

Rhizosphere Oxygen Demand 
 
Most wetland plants are well-adapted to periods of soil oxygen deficiency but may differ in their 
ability to endure intense soil-reducing conditions[88,89,90,91]. Such conditions create the 
potential for excessive loss of oxygen from the root to the soil, thus resulting in additional root 
stress[4,88,92]. DeLaune et al.[88] used titanium citrates as a reducing agent to demonstrate that 
oxygen-depleted nutrient solution commonly used to evaluate plant response to root oxygen 
stresses are a poor analogue of wetland soil and sediment. The oxygen-depleted nutrient solution 
does not create a high root oxygen demand. A study by Kludze et al.[93] was the first to 
document that a solution of high oxygen demand (using titanium citrate) also influenced oxygen 
transport and oxygen release by the root system of wetland plants. Other researchers have since 
made similar observations[93,94]. Radial loss of oxygen by rice roots was strongly influenced by 
intensity of reduction in anaerobic soil (Fig. 2A). Radial oxygen loss has also been shown to be 
governed by intensity of soil reduction (Fig. 2B). Radial oxygen loss from rice was shown to 
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increase by increasing capacity of reduction by glucose addition when redox intensity was 
maintained at -200 mV[4]. Such research has demonstrated the importance of creating an oxygen 
demand in the root rhizosphere for quantifying or evaluating plant physiological functions, 
including root oxygen exchange. However, it should be noted that the use of titanium citrate as a 
reducing agent for creating a reducing medium at best only mimics wet-soil conditions. Methods 
are needed for evaluating plant responses (including oxygen exchange in the root rhizosphere) to 
a quantifiable reducing soil condition since plants growing in soil are influenced by both intensity 
and capacity of reduction. 

Studies aimed at quantifying responses of wetland plants to flooded soil conditions should 
distinguish between plant responses to the absence of oxygen and the responses to intensity 
and/or capacity of soil reduction. Kludze and DeLaune[4] conducted an experiment under 
laboratory conditions, demonstrating that increasing the capacity of soil reduction at any intensity 
level subjected wetland plants to increased stress. Oryza sativa (rice) and S. patens were grown 
under controlled Eh levels of 100, 0, -100, and -200 mV to examine the effect of Eh on plant CO2 
fixation. Treatments were established by application of different levels of extra energy source 
while maintaining Eh at -200 mV. Redox capacity effects on plant growth, CO2 fixation, root 
porosity (POR), and radial oxygen loss (ROL) were also evaluated. In both species, CO2 fixation 
did not respond to soil Eh until Eh reached values around -100 mV or lower (Fig. 3A). Although 
POR was unaffected, plant growth and CO2 fixation were significantly decreased, with increased 
soil O2 demand, suggesting a complex relationship between soil redox capacity and plant 
physiological functions (Fig. 3B). Plant O2 transport to the root environment (ROL) also was 
governed by soil redox capacity. Results indicated that wetland plants may respond differently in 
magnitude to soil redox intensity and redox capacity. Evaluating responses, especially ROL, of 
flood-tolerant plants, therefore, requires proper quantification of the soil redox condition or 
substrate O2 demand in which the plants are grown. Such interactions are important in controlling 
species diversity and distribution in wetlands; an understanding of these relationships is also 
important to wetland maintenance and restoration. 
 
Nutrient Uptake 
 
Nutrient uptake by wetland or rooted aquatic vegetation is also influenced by soil reduction or 
redox conditions or intensity of reduction. A laboratory study of 15N uptake by cherrybark oak 
(Quercus falcata var. pagodaefolia Ell.) and overcup oak (Q. lyrata Walt.) in soil suspensions 
under controlled redox conditions indicated that soil redox conditions governed both plant 
photosynthetic rates and N uptake[95]. Nitrogen uptake indicated that although available nitrogen 
was present in the soil solution, there was little uptake of either fertilizer N or native soil N under 
moderately reducing conditions (+340 and +175 mV). These results demonstrated that soil 
reduction intensity affected growth of both species through reduced uptake of nitrogen. Flooding 
of forests for extended periods of time during the growing season can disrupt the physiological 
functioning and nutrient uptake.  
 DeLaune et al.[96] documented that redox conditions or oxygen demand in rooting medium 
influenced phosphorus (P) uptake by Typa domingensis. Phosphorus uptake decreased with 
decrease in redox potential or reduction intensity in the rooting medium. Greatest uptake was 
measured under the oxidized treatment (+565 mV). Phosphorus uptake was less under two 
reducing treatments, and considerably less at -200 mV, in which a high oxygen demand was 
created using titanium (Ti3+) citrate. Results suggest that nutrient uptake by wetland plants is 
governed by soil reduction intensity and capacity. This suggests that measured physiological 
responses in wetland plants may not be entirely or directly associated with flooding effects on 
plant function, but may also be associated with secondary effects such as changes in nutrient 
uptake. 
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FIGURE 3A. Carbon dioxide fixation in saltmeadow cordgrass and rice, as a function of soil redox intensity (Eh) along the anaerobic 
portion of the redox scale. (Modified and redrawn from Kludze and DeLaune[4].) 

 

 

 

FIGURE 3B. Decreases in CO2 fixation in saltmeadow cordgrass and rice, as a result of increasing soil redox capacity by adding extra 
energy source, while maintaining the soil redox intensity at -200 mV. (Modified and redrawn from Kludze and DeLaune[4].) 

Leaf Functions 
 
Flooding and the accompanying root hypoxia may lead to leaf area reduction[97,98,99] and 
foliage injury, and may threaten survival and growth of plants[18,19,20,21]. Among the early 
responses of plants to soil oxygen depletion are plant gas-exchange responses. Most species 
display rapid stomatal closure and reduction of net photosynthesis in response to soil 
flooding[28,100,101,102]. This is a common response among species found in various flood-
tolerance categories, ranging from “least tolerant” to “most tolerant.” However, net 
photosynthesis in wetland (most tolerant) species begins to recover rapidly following the initial 
reduction, whereas little or no recovery is found in least tolerant species[103]. This response is 
attributed to the existing tolerance mechanisms, such as rapid aerenchyma development, lenticel 
formation, metabolic adaptation, and other attributes found in tolerant species. In addition, there 
is a wide range of inter- and intra-species difference in photosynthetic responses of plants to 
flooding. The mechanisms involved are poorly understood. The explanation involving stomatal 
(diffusional) limitations and metabolic effects may account for the differences. The metabolic 
processes affected may include reduction in activity of photosynthetic enzymes. The activity of 
these enzymes is highly sensitive to changes in environmental conditions[103,104,105,106]. 
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FIGURE 4. Root growth response to soil redox conditions in S. patens. Data were collected on plants grown in controlled soil redox 
conditions in rhizotrons. (Redrawn from Pezeshki and DeLaune[108].) 
 

Plant Growth and Productivity 
 
Biomass accumulation rate decreases in response to low soil redox potential in many wetland 
species[4,28,89]. Significant alterations have also been reported in root-to-shoot ratios, as the 
effects of soil reduction are usually more dramatic on roots than shoots[85,107]. For example, 
root and shoot dry weights in S. patens decreased by 40 and 25% as soil redox potential dropped 
from +200 to -300 mV, respectively. It was also demonstrated that roots were more sensitive to 
redox intensity than shoots[4]. Pezeshki and DeLaune[108] reported significant reductions of root 
growth in S. patens at soil Eh of -100 mV (Fig. 4). In addition, Pezeshki et al.[109] noted smaller 
root systems in S. patens under reducing conditions and concluded that such reduction in sink size 
may, in part, be responsible for a negative feedback inhibition of photosynthesis, thus causing 
further reductions in productivity of this species.  

Root growth is an energy-dependent process requiring oxygen; therefore, upon flooding, 
root functioning is affected rapidly because molecular oxygen is required as an electron acceptor 
for oxidative phosphorylation[22,110]. Root elongation was also inhibited in some woody species 
when soil redox potential measurements confirmed the presence of reducing conditions[85,89]. 
Root penetration depth was also adversely affected under reducing soil conditions, leading to the 
development of a shallow root system different in architecture than in plants growing under 
aerated conditions[85]. The critical threshold redox potential that inhibited root elongation 
differed among wetland species ranging from +300 to -200 mV[85,111,112]. 
 Soil redox capacity also influences growth of wetland plants. Decreased soil redox capacity 
led to decreased root growth and biomass in rice[4]. Root and shoot growth were significantly 
inhibited in S. patens under increasing soil reduction capacity. Root and shoot dry weights 
decreased by 70 and 37% in high reduction capacity conditions compared to control plants, 
respectively[4]. 

Relation to Natural Distribution of Aquatic or Wetland Plant Species 
 

Wetland plant species are commonly found along environmental gradients[113,114]. The 
zonation of plant species is based, to a degree, on flooding regimes. Considerable research in 
recent years has been directed at determining the environmental factors delineating the 
boundaries or species zones. One of the most conspicuous factors along these gradients is water 
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depth. Flood-tolerance has been shown to be a dominant factor in determining the zonation of 
wetland plants[51]. However, very few studies have addressed the intensity and capacity of soil 
reduction in relation to the zonation of wetland species along flooded gradients. It is not clear 
whether wetland plants compete with each other based on their differences in physiological 
adaptation to intensity or capacity of reduction, especially in soils that are constantly 
waterlogged. 
 Frequency of occurrence and diversity of wetland plant species may also be dependent on 
the interrelationships among intensity and capacity of soil reduction and root aeration capacity 
rather than flooding regime alone. Armstrong et al.[115] reported field data on the relationship 
between soil redox potential and plant community distribution in saltmarshes. In sediments 
characterized by weak redox capacity, certain wetland plants are capable of raising considerably 
the redox potential of the bulk sediment[116,117,118]. Furthermore, accumulation of various soil 
phytotoxins, which are by-products of soil reduction, may lead to injury to certain species. Since 
wetland plants are classified by frequency of occurrence in wetlands, their distribution is likely 
strongly influenced by both intensity and capacity of soil reduction, and ability of wetland plant 
species to maintain an oxygenated root environment and to take up nutrients. This is supported by 
the observation that wetland vegetation can differ over a range in taxonomic soil series that 
exhibit similar flooding regimes or water table fluctuations but differ in soil biological oxygen 
demand, as reflected in soil organic carbon content. It is clear that much remains to be learned 
about the underlying soil processes and the mechanisms of plant responses in wetlands. 
Specifically, elucidating the interrelationships between soil reduction intensity and capacity and 
soil phytotoxins in the rhizosphere and root internal processes and functioning deserve immediate 
attention. 
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