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Abstract

Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common
molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions.
Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents,
mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly
neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with
glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance,
leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively
antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as
an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response,
which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-
dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic
compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of
creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with
reduced glutamate spillover, oxidative stress and subsequent excitotoxicity.
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Introduction

The protective potential of creatine (1-methyl-guanidino acetic

acid) has been extensively assessed in various models of

neurodegeneration, including in vivo models of oxidative stress

[1,2].

Aging, neurodegenerative diseases like Alzheimer’s disease,

Huntington’s disease and amyotrophic lateral sclerosis, and

potentially also neuropsychiatric disorders like schizophrenia share

some bioenergetic core features, specifically the contribution of

oxidative stress caused by a progressive dysfunction of the

respiratory chain along with mitochondrial DNA damage [3–5].

Thus, as a potential antioxidative agent and buffer of intracellular

energy stores, creatine - specifically in a preventive approach - may

also become an interesting new agent to increase life span and to

delay the progression of the disorders mentioned above.

In neuronal cells, aerobic glycolysis is the primary source for

ATP synthesis [6]. As stores of glucose, glycogen and O2 are

limited in the brain, the availability of the creatine kinase/

phosphocreatine (CK/PCr) system may operate as an important

alternative energy source in tissues or subcellular compartments

with high and fluctuating energy demands, e.g. in neurons [7].

Based on substrate level phosphorylation of adenine with CK/PCr

this system is capable of rapidly restoring ATP levels within certain

limits, determined by the tissue concentrations of creatine/CPK

itself and the enzymatic system required for phosphorylation and

phosphate group transfer. ATP is required to maintain the

function of energy-demanding Na+/K+-ATPase and Ca2+-

ATPase, thus preserving the membrane potential [8]. Considering

that high relative CK activity could be demonstrated in the brain

[9], it has been concluded that this enzyme serves as a key factor in

the CNS energy metabolism. In support of this notion, a direct

correlation between CK flux and brain activity has been provided

by in vivo 31P nuclear magnetic resonance transfer determinations

[10,11]. The brain-specific isoform of the CK (CK-BB) in concert

with a mitochondrial isoform (uMT-CK) and the required

substrates (creatine/PCr) regulate intracellular ATP levels [12].

Via formation of an CK ‘‘energy shuttle’’, CK activity has

moreover been discussed to be directly implicated in neurotrans-

mitter release, maintainance of membrane potentials and

restoration of ion gradients over the membrane after depolariza-

tion [12–14].

Primarily, creatine is synthesized in a two step mechanism via

AGAT (arginine: glycine amidinotransferase) in the kidney and

pancreas [15]. The resultant guanidinoacetate is then shuttled to

the liver, where it is subsequently methylated by GAMT

(guanidinoacetate methyltransferase to result in creatine which

ultimately is actively exported to tissues where it is energetically

required. Loss of GAMT activity results in a well-defined creatine

deficiency syndrome, which is characterized by developmental

delay, neurological dysfunction and mental retardation [16]. In

Huntington’s disease, a further neurodegenerative condition,
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brain-type creatine kinase expression is reduced, which might

contribute to damage in specifically energy-demanding tissues

such as the brain and the cochlea, where intact energy shuttling

processes are crucial [17]. The endogenous de novo creatine

synthetic activity in the brain is rather low. It is interesting to note,

that GAMT was identified to act as a novel target for p53, which

serves as a further mechanism for metabolic stress adaptation [18].

Under normal conditions dietary intake constitutes about 50% of

the total creatine content of the organism. Moreover, the blood-

brain barrier permits passage of systemically supplemented

creatine to the brain [19], which ultimately reaches the neuronal

cytoplasm via a specific sodium and chloride dependent

transmembrane transporter (CRT) working against a concentra-

tion gradient [20]. We thus speculate, that a specific diet should

serve as an efficient strategy to enhance brain tissue creatine

concentrations and establish an ‘‘energy buffer’’.

In a previous report, we demonstrated that creatine supple-

mentation in mice could increase healthy life span. Beyond a

moderately increased life span, the most favourable effects of

creatine related to neurobehavioral performance, most markedly

in memory tests [21]. In an attempt to gain a better understanding

of these neuroprotective properties on the cellular level, we

conducted a study on a hippocampal cell culture model.

Materials and Methods

Hippocampal embryonal cell culture
Pregnant Long Evans rats (Janvier Breeding Centre, Le Genest

Saint Isle, France) were decapitated under deep CO2 anaesthesia.

The embryos (embryonic day 17/18) were rapidly microdissected

on ice and the hippocampal tissue was dissociated by mechanical

homogenization in a Hank’s balanced salt solution (HBSS)

without Ca2+ and Mg2+ buffered with 10 mM HEPES at pH 7.4

and supplemented with 1 mM sodium pyruvate and 4% bovine

serum albumin. The tissue was digested with a HBSS solution

containing 2 mg/ml papain and 1000 kU/ml DNAse I. Debris

was removed by two steps of centrifugation at 800 g for 15 min

each. The resulting cell pellet was resuspended by gentle

trituration through a blue polysterene pipet tip. The live (dye-

exluding) purified cells were counted in a hematocytometer by

mixing 20 ml of the suspension with 20 ml of 0.4% trypan blue

solution, plated at a density of 0.86105 cells/48 well plate and

cultivated in a defined medium (Neurobasal with antioxidant-free

B27 supplement and 0.5 mM glutamine, 50 mg/ml gentamycin,

GIBCO BRL, Life Technologies Ltd, Paisley, UK) on L-

ornithine-coated tissue culture dishes (Nalge Nunc International,

Rochester, NY, USA) at 95% air, 5% CO2 in a humidified

incubator. Every 72 h and immediately preceding the experiment

one half of the medium volume was replaced by fresh medium.

Experiments were performed on 15–17 DIV (days in vitro). Cell

culture quality was routinely assessed by viability analyses,

morphological parameters and immunostaining for neuronal

and glial cell markers. Glial cells identified by GFAP immuno-

fluorescence represented ,1% of the total cell population, while

.99% of the cells expressed NeuN and b-3-tubulin (TUJ-1) as

neuronal markers.

Experiments were performed in accordance with the German

law on the use of animals and approved by the local bioethical

committee.

Intracellular Ca2+ measurements
Briefly, cells (16106/ml) in calcium buffer (140 mM NaCl,

5 mM KCl, 0.5 mM MgCl2, 20 mM HEPES, 1 mM CaCl2,

10 mM glucose) were loaded with the ‘‘leakage-resistant’’ dye

Fura PE3-AM (1.25 mM) at 37uC for 40 minutes probenecid to

reduce compartmentalization and dye leakage). Immediately

prior to measurement, after 30 minutes for intracellular deester-

ification cells were transferred to a Perkin-Elmer L50B spectro-

fluorimeter equipped with a temperature controlled cuvette

chamber and allowed to equilibrate to 37uC while gently stirring.

Experiments were started after obtaining stable fluorescence

ratios (R) under dual wavelength excitation (340/380 nm) with a

500 nm emission cut-off wavelength for at least 3 minutes.

Stimulatory agents or DMSO vehicle were injected directly in the

sample. Correction for autofluorescence was performed by

parallel processing of DMSO blank samples. For in situ

calibration of Fura PE 3 fluorescence after each experiment cells

were treated with with 10 mM ionomycin and Rmax was

measured. EGTA (5 mM, 30 mM Tris, pH 8.5) was subsequent-

ly added to obtain Rmin. [Ca2+]i was then calculated using the

Grynkiewicz equation [22].

LDH assay
Cell death was assessed by determination of the lactate

dehydrogenase (LDH) leakage from the damaged cells into the

medium supernatant after different time intervals following

treatment using a commercially available kit (CytoTox 96,

Promega, Madison, WI, USA).

Glutamate determination
L-Glutamate was measured by an enzymatic assay according to

the supplier’s instructions (Amplex RedTM Glutamate assay kit,

Molecular Probes, Eugene, Oregon, USA). Protein concentration

was determined by the Bradford assay (Biorad, Munich,

Germany).

ATP/Phosphocreatine assay
ATP and phosphocreatine as markers of the cellular energy

charge were determined by luciferin-luciferase chemiluminescence

in cell lysates (CellTiter-Glo Luminescent Cell Viability Assay,

Promega, Madison, Wisconsin, USA). Protein concentrations,

determined by the Bradford assay were taken as a reference.

Cell-free chemiluminescent determination of superoxide
scavenging by creatine

Xanthine oxidase (0.025 U/ml) and xanthine (100 mM) were

incubated in PBS in order to yield a continuous superoxide

generator. After addition of lucigenin (bis-N-methylacridinium-

nitrate, 50 mM final concentration) and occurrence of stable

chemiluminescence (CL) signals creatine at rising concentra-

tions was added to the system and CL was recorded in a tube

luminometer. Background CL was simultaneously determined

and subtracted. The specificity of CL for stimulated O2
2

release was verified by adding superoxide dismutase (SOD), the

cell-permeable SOD mimic MnTBAP (manganese[III]tetra-

kis[4-benzoic acid]porphyrin), or the low molecular weight

O2
2 scavenger tiron (4,5-dihydroxy-1,3-benzene-disulfonic

acid).

Statistical analysis
If not otherwise specified, data were analyzed with the SPSS

software version 14.0 (SPSS Inc., Chicago, IL, USA). For

statistical analysis either Student’s t-test or one-way ANOVA

followed by Kruskal-Wallis post hoc test was used were appropriate.

Data are expressed as means +/2 SD in normally distributed

data. P values of ,0.05 were considered as statistically significant

using a two-tailed estimation.

Creatine Protects against Excitoxicity

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e30554



Results

Creatine does not act as an antioxidant
The antioxidant properties of creatine as a superoxide

scavenger were tested in a cell-free environment employing

xanthine oxidase/xanthine as an enzymatic generator of super-

oxide anions. In this system, creatine added in concentrations up

to 5 mM did not reveal any antioxidant properties. In contrast, a

rise of chemiluminescence was seen after adding creatine,

indicating increased superoxide generation or enhanced life-time

of these species (105.2+/23.1% of control, p = 0.009).

Creatine incubation for extended periods does not
induce cytotoxicity

Physiological creatine levels in the CNS are settled in the range

from 10–30 mmol/g wet weight. In our experiments no overt signs

of neurotoxicity like cell detachment, alterations of cellular shape

or retraction of cellular processes could be observed at

concentrations ranging up to 10 mM, even if extending the

incubation period for up to 5 days.

Creatine mediates neuroprotection against excitotoxicity
LDH leakage as a marker of cytotoxicity was dose-dependently

increased under glutamate challenge, along with morphological

alterations including retraction of axonal/dendritic processes and

detachment from the cell culture dishes. Toxicity was substantially

mitigated in cell cultures co-incubated with creatine at 5 mM

concentration, even in the glutamate high-dose range. Under

baseline conditions (no glutamate challenge) cell viability in

hippocampal cultures was not significantly enhanced (Fig. 1).

Creatine enhances the cellular energy charge
Hippocampal cells having been incubated with creatine

contained substantially higher concentrations of ATP/Phospho-

creatine determined under baseline conditions than control cell

cultures. Thus the bioenergetic utilization of creatine was

extremely efficient. Unexpectedly, glutamate concentrations, if

not exceeding 5 mM, did not yield energy depletion but rather led

to enhanced intracellular ATP/phosphocreatine levels This

phenomenon was most pronounced in creatine-supplemented

cells (Fig. 2).

Creatine prevents glutamate spillover but fails to
mediate neuroprotection against experimentally induced
oxidative stress

Hydrogen peroxide (H2O2) was added to the cell culture

supernatant to induce oxidative stress. This condition led to a

depletion of intracellular energy levels after 18 h of incubation

(Fig. 3), along with enhanced LDH release into the supernatant

(Fig. 4). Creatine at a concentration of 5 mM applied 3 h before

H2O2 was added could maintain enhanced intracellular ATP/

phosphocreatine concentrations as long as H2O2 concentrations

remained well below 60 mM. Beyond this concentration energy

levels were not altered by creatine pretreatment (Fig. 3).

Unexpectedly, creatine aggravated H2O2-induced toxicity at high

H2O2 concentrations and failed to reduce LDH release going

along with H2O2 exposure, even at low concentrations (Fig. 4). In

contrast, extracellular glutamate concentrations reflecting an

overflow (and secondary hyperexcitability) which occurs along

with oxidative stress were effectively reduced following creatine

incubation (Fig. 5). Thus, creatine seems to efficiently interfere

Figure 1. Protective effect of creatine in hippocampal cell cultures exposed to glutamate. Hippocampal cells (DIV 17) were incubated
with rising concentrations of glutamate in absence or in presence of 5 mM creatine. After 24 h the LDH release into the cell culture supernatant was
determined. Total protein of the lysed cell monolayer was used as a reference. Data are expressed as arbitrary units per mg protein +/2 standard
deviation. Each data point represents the mean of triplicates. Each experiment was independently performed in triplicate. Statistical analysis was
performed by unpaired Student’s T-test. *denotes statistical significance at a level of p,0.01.
doi:10.1371/journal.pone.0030554.g001
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with this vicious circle which maintains the excitotoxic cascade after

its initiation. Even under non-stressful baseline conditions

glutamate concentrations remained reduced in creatine-treated

hippocampal cell cultures. These effects were far less pronounced

in mixed cortical cell cultures (data not shown). As glial cells were

almost absent in our model the popular explanation for the H2O2

induced glutamate excess as an inhibition of redox-sensitive

glutamate transporters leading to secondary pathology [23] seems

to reflect only one partial aspect of the molecular mechanisms.

The discrepancy between stabilization against secondary gluta-

mate spillover and enhanced H2O2 toxicity in presence of creatine

remains to be investigated. We tend to speculate that H2O2

neurotoxicity is not always necessarily due to the secondary

glutamate excess, which was efficiently antagonized here.

Creatine attenuates the Ca2+ response following NMDA
receptor stimulation

Following 18 h preincubation with 5 mM creatine (which

yielded no significant toxicity) and careful washout, the rise of

intracellular Ca2+ ions in response to NMDA receptor stimulation

at supramaximal doses (1 mM) was almost completely abolished,

while in a non-receptor mediated control experiment the response

to addition of the SERCA (sarcoplasmic/endoplasmic reticulum

calcium ATPase) inhibitor thapsigargin (500 nM), which leads to a

depletion of intracellular Ca2+ stores was largely preserved (Fig. 6).

Discussion

Depletion of high-energy phosphates, such as ATP and

phosphocreatine (PCr) is an early event in the neurotoxicity of

glutamate [24–27]. Abnormal calcium uptake into mitochondria

has also been reported following exposure to glutamate [28–29].

Profound disruption of the cellular energy ultimately leads to a

decreased GTP concentration [30] along with altered activity of

GTP binding proteins, such as Rac and Ras, which yields a

proapoptotic state [31]. Juravleva et al. [32] hypothesized that the

maintainance of the cellular energy charge by creatine may shift

the apoptotic balance towards the Ras-mediated antiapoptotic

PI3K/AKT or survival signal pathways (PI3K/Rac/NAD(P)H-

oxidase/ROS/NF-kappaB), specifically the Ras/NFkappaB sys-

tem, where multiple pathways mediating survival converge via

stabilization of GTP levels. Indeed, creatine was shown to

maintain neuronal/glial survival following glutamate treatment,

which correlated with decreased levels of farnesylated Ras and the

NF-kappaB inhibitor IkappaB and increased levels of ROI [32].

Extending our in vivo data on creatine as a neuroprotective and

life-enhancing agent [21], we designed a series of in vitro

experiments in order to dissect the underlying pharmacology.

For biochemical analysis, cell culture models carry the advantage

of a reduced biological complexity. This does especially apply to

the case of creatine metabolism. Here, on account of systemic

sources and a complex pharmacokinetics through various body

compartments it would be almost impossible to establish controlled

conditions of creatine supply in a specific concentration range in

vivo. Expression of BB-CK and uMt-CK has previously been

demonstrated to occur as early as embryonic day 14, along with

significant CK activity [33]. Thus the cell culture model we chose

seems suitable to assess the neuroprotective potential of creatine.

As GFAP and NeuN staining revealed that .99% of all cells in the

cultures were neurons, a significant contribution of potential glial

Figure 2. Effect of creatine on intracellular ATP/Phosphocreatine content in hippocampal cells exposed to glutamate. Hippocampal
cells (DIV 17) were challenged with glutamate at rising concentrations in absence or presence of 5 mM creatine. After 24 h of incubation the cells
were harvested and intracellular ATP/PCr concentration was determined by luciferin/luciferase chemiluminescence. Total protein content of the cell
lysate was employed as a reference. Data are expressed as intracellular ATP concentration equivalents corrected for total protein +/2 standard
deviation. Each data point represents the mean of triplicates. The experiment was independently performed in triplicate. Unpaired Student’s T-test
was used for statistics. *denotes statistical significance at a level of p,0.01.
doi:10.1371/journal.pone.0030554.g002
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Figure 3. Effect of creatine on intracellular ATP/Phosphocreatine content in hippocampal cells under oxidative stress. Hippocampal
cells (DIV 15) were challenged with hydrogen peroxide at rising concentrations in absence or presence of 5 mM creatine. After 24 h the cells were
harvested for determination of intracellular ATP/PCr concentration, which was determined by luciferin/luciferase chemiluminescence and for
measurement of total protein content, which served as a reference. Data are expressed as intracellular ATP concentration equivalents corrected for
total protein +/2 standard deviation. Each data point represents the mean of triplicates. The experiment was independently performed in triplicate.
Unpaired Student’s T-test was used for statistics. *denotes statistical significance at a level of p,0.01.
doi:10.1371/journal.pone.0030554.g003

Figure 4. Protective effect of creatine in hippocampal cell cultures challenged with oxidative stress. Hippocampal cells (DIV 15) were
incubated with hydrogen peroxide in rising concentrations in absence or in presence of 5 mM creatine. After 24 h the LDH release into the cell
culture supernatant was assessed. Total protein of the cell monolayer was used as a reference. Data are expressed as arbitrary units per mg protein
+/2 standard deviation. Each data point represents the mean of triplicates. Each experiment was independently performed in triplicate. Statistical
analysis was performed by unpaired Student’s T-test. *denotes statistical significance at a level of p,0.01.
doi:10.1371/journal.pone.0030554.g004
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cells to the biochemical effects in response to creatine is highly

improbable.

Generally speaking, our findings are in line with previous in vitro

studies on neuroblastoma, hippocampal and mixed cerebrocortical

cell cultures, which all have shown the potential of creatine to

prevent glutamate-induced neurotoxicity [7,32]. Still, the under-

lying mechanisms, specifically with reference to a potential

interference with ROI generation as a downstream event in the

excitotoxic pathway remained amazingly elusive.

Moreover, it remained to be clarified, how creatine may

interfere with the glutamate metabolism on a cellular level. It has

been hypothesized that these effects are mediated by supporting

mechanisms involved in the glutamate-glutamine cycle, an activity

with a demand of about 60–80% of the energy derived from

glucose metabolism [34]: Glial glutamate uptake from the synaptic

cleft is primarily performed by GLT-1 [35]. Glutamine synthetase

and glutaminase involved in glutamine transport in the presynap-

tic neuron [36] or oxidation to 2-oxo-glutarate, which enters the

citric acid cycle [36–38] are ATP-dependent, likewise. In our

rodent creatine supplementation study, gene expression analysis

revealed an almost twofold upregulation of the high affinity

glutamate transporter Slc1a3, which should also accelerate the

clearance of excessive extracellular glutamate [21]. It may also be

speculated, that nutrient-sensing pathways, such as mTOR

(Target of Rapamycin) and thereby cell proliferation and

senescence might be directly or indirectly regulated by creatine

[39].

Interestingly, although such glial–cell mediated mechanisms

were practically absent in our cell culture model, we could deliver

direct evidence for a massively improved supply of ATP-bound

energy in isolated hippocampal cells. Not unexpectedly, under

these conditions cells became more resistant to withstand an

excitotoxic challenge with glutamate.

The antioxidant properties of creatine remain another

controversial issue: It is generally maintained that glutamate

toxicity is essentially associated with the excessive generation of

reactive oxygen species as a downstream event, eventually

leading to macromolecule alterations and cytotoxicity. The

data on antioxidant properties of creatine is somewhat

controversial: Lawler et al. [40] were able to deliver evidence

for a direct antioxidant potential [40], a view other authors and

ourselves cannot share: Unexpectedly, performing spin-trap-

ping EPR spectroscopy, Juravleva et al. [32] demonstrated an

augmented EPR superoxide signal when creatine was added to

glutamate-treated cortical/glial cell cultures [32]. We were able

to reproduce these findings in a cell-free environment

employing xanthine oxidase/xanthine as an enzymatic super-

oxide generator. Here, creatine tested in a range up to 5 mM

did not reveal any antioxidant properties, but rather led to a

slightly enhanced chemiluminescence reflecting increased super-

oxide generation or enhanced life-time of these species. These

observations correspond well with our own in vitro data

suggesting an enhanced cytotoxicity of H2O2 in presence of

creatine.

Paradoxically and in contrast to our own data, the above

mentioned authors could observe better cell viability under these

conditions, drawing the conclusion that the enhanced generation

of oxygen radicals may constitute a decisive factor for the

activation of redox-dependent survival pathways. Interestingly, in

some of our cell preparations H2O2 at very low levels (low

micromolar range) seemed to support hippocampal cell viability

(data not shown).

To our knowledge, our report is the first to deliver evidence for

a direct interference of creatine with the NMDA-receptor

mediated neurotransmission. We were able to demonstrate that

creatine pre-treatment leads to a substantially reduced Ca2+

Figure 5. Impact of creatine on glutamate efflux into the supernatant in hippocampal cell cultures exposed to hydrogen peroxide.
Hippocampal cells (DIV 15) were incubated with rising concentrations of hydrogen peroxide in absence or in presence of 5 mM creatine. After 24 h
the glutamate release into the cell culture supernatant was enzymatically determined. Total protein of the lysed cell monolayer was used as a
reference. Data are expressed as glutamate concentration per mg protein +/2 standard deviation. Each data point represents the mean of triplicates.
Each experiment was independently performed in triplicate. Statistical analysis was performed by unpaired Student’s T-test. *denotes statistical
significance at a level of p,0.01.
doi:10.1371/journal.pone.0030554.g005
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response to NMDA. It should be noted that these observations

were made after a thorough creatine washout. Therefore,

permanent alterations of the NMDA receptor must have taken

place throughout the incubation period.

Altogether the anti-aging and neuroprotective effect of creatine

seems to result from multiple single effects, ranging from an

economization of the cellular energy metabolism up to not yet

completely understood antiexcitotoxic effects taking place on the

receptor level or subsequent Ca2+ mediated pathways, a

phenomenon which deserves further investigation. Although

widely postulated, we found no direct evidence for a direct

antioxidative action of creatine.

Figure 6. Impact of creatine pre-incubation on NMDA-triggered intracellular calcium rise in hippocampal cells. Hippocampal cell
cultures (DIV 18) were incubated with 5 mM of creatine for 18 h. Cells were harvested, dissociated and loaded with FURA PE-3/AM. Ca2+ ratiometry
was performed in 0.56106 cells/ml at 37uC. After stable baseline ratios were achieved NMDA was added and the response was recorded for
400 seconds. Thapsigargin was added for SERCA inhibition. The tracings are representative for 5 individual experiments by calculating curve means.
Data for intracellular Ca2+ are expressed in arbitrary units. The second tracing shows responses in creatine-pretreated cells, the first one has been
acquired from control cells.
doi:10.1371/journal.pone.0030554.g006
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