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Abstract

Background

The hippocampus has been reported to be structurally and functionally altered as a sequel

of very preterm birth (<33 weeks gestation), possibly due its vulnerability to hypoxic–ische-

mic damage in the neonatal period. We examined hippocampal volumes and subregional

morphology in very preterm born individuals in mid- and late adolescence and their associa-

tion with psychiatric outcome.

Methods

Structural brain magnetic resonance images were acquired at two time points (baseline and

follow-up) from 65 ex-preterm adolescents (mean age = 15.5 and 19.6 years) and 36 term-

born controls (mean age=15.0 and 19.0 years). Hippocampal volumes and subregional

morphometric differences were measured from manual tracings and with three-dimensional

shape analysis. Psychiatric outcome was assessed with the Rutter Parents’ Scale at base-
line, the General Health Questionnaire at follow-up and the Peters Delusional Inventory at

both time points.

Results

In contrast to previous studies we did not find significant difference in the cross-sectional or

longitudinal hippocampal volumes between individuals born preterm and controls, despite

preterm individual having significantly smaller whole brain volumes. Shape analysis at

baseline revealed subregional deformations in 28% of total bilateral hippocampal surface,

reflecting atrophy, in ex-preterm individuals compared to controls, and in 22% at follow-up.

In ex-preterm individuals, longitudinal changes in hippocampal shape accounted for 11% of

the total surface, while in controls they reached 20%. In the whole sample (both groups)
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larger right hippocampal volume and bilateral anterior surface deformations at baseline
were associated with delusional ideation scores at follow-up.

Conclusions

This study suggests a dynamic association between cross-sectional hippocampal volumes,

longitudinal changes and surface deformations and psychosis proneness.

Introduction
Very preterm birth (VPT;<33 weeks gestation) is associated with an increased risk of brain
damage and consequent neurological disorders, neuropsychological, and behavioural impair-
ments in childhood and later in life [1–5].

Long-lasting and widespread structural brain alterations have been described in VPT sam-
ples [2, 6, 7], suggesting that developmental changes in any brain region may result in a cascade
of alterations in many other regions [8]. One of the areas of the brain consistently reported to
be morphologically altered in VPT individuals is the hippocampus. This brain region is vulner-
able to environmental influences implicated in the sequelae of very preterm birth, including
hypoxic–ischemic damage [9], stress hormones [10], under-nutrition [11], and alteration of
micronutrient supply [12].

Hippocampal volume decrements in VPT individuals compared to controls have been
described in the first two decades of life, from infancy [13] to adolescence [11], as well as com-
promised hippocampal growth from infancy to school age [14]. At age 14 years we reported a
14% decrease in bilateral hippocampal volume in a VPT cohort, measured with a manual trac-
ing technique, after adjusting for total brain volume [15]. Other authors have shown that hip-
pocampal volumes of VPT infants are not disproportionally smaller compared to full-term
controls relative to overall brain size [16] and that VPT infants’ hippocampal asymmetry is
altered [17].

At a cognitive level, the hippocampus has been associated with processes involved in general
intelligence [18], learning and memory [19], detection of novelty [20], forming semantic asso-
ciations [21], and navigation [22]. At a behavioural level, structural alterations in hippocampus
have been implicated in the pathophysiology of several psychiatric disorders including psycho-
sis [23], post-traumatic stress disorder [24], bipolar affective disorder [25] and major depres-
sion [26]. Hippocampal volume abnormalities have been further described in individuals with
an ‘at risk mental state’ for psychosis [27] and first-degree healthy relatives of individuals with
schizophrenia [28], suggesting that hippocampal alterations may represent a critical intermedi-
ate disease phenotype.

Smaller hippocampal volumes in VPT born samples have been associated with low intelli-
gence quotient [6] and with deficits in specific aspects of memory [11, 13, 29]. To our knowl-
edge only one study to date has investigated the hippocampus in a VPT sample in relation to
behavioural outcome and reported that smaller volume at age 2 was associated with increased
hyperactivity and peer problems at age 5 [30]. We believe this is an area of priority given that
several studies have described an association between very preterm birth and behavioural and
psychiatric abnormalities in childhood and adolescence [31–35], and that many others have
documented that individuals born VPT are at increased risk of developing major psychiatric
disorders as adults [36–38].
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In terms of development, the cytoarchitecture of the hippocampus is formed by the 34th

week of gestation [39]. However, neuronal proliferation in the hippocampus, in particular mye-
lination, continues throughout adolescence and adulthood [39, 40]. Such changes may contrib-
ute to establishing the dynamic patterns of hippocampal maturation observed during the first
decades of life [41]. Structural longitudinal hippocampal changes in adolescence following
VPT birth have not yet been documented, although a few studies have described differential
developmental changes in other brain areas in VPT born individuals compared to controls,
with associated functional correlates [42–44]. Longitudinal changes in brain development are
crucial to investigate, as there is evidence that trajectories of development rather than cross-
sectional measures are stronger predictors of psychiatric and cognitive outcomes [45, 46].

Trajectories of development have described differential time-dependent courses for hippo-
campal subregions [41], which suggests that although the hippocampus is usually regarded a
single brain region, it is structurally and functionally heterogeneous. The hippocampus is often
divided along its anterior-posterior length into the head, body and tail and includes major sub-
fields; the Cornu Ammonis area 1, 2, 3 (CA1, CA2, CA3), dentate gyrus and subiculum. These
subfields have different afferent and efferent projections to other cortical areas [47] and may
also have distinct functions in mediating learning [48] and affective regulation [49]. Novel neu-
roimaging analysis methods have been recently developed, which permit the identification of
corresponding subregions across different brains [28, 50].

The primary aim of this study was to examine hippocampal volume and shape, which
reflects subregional atrophy [50], in VPT individuals and controls in mid- and in late adoles-
cence, and longitudinal changes between the two time points. The secondary aim was to inves-
tigate the association between hippocampal volume and shape and behavioural outcome. We
hypothesised that at baseline (age 15 years), VPT individuals would have smaller hippocampal
volumes than controls, based on our previous findings [15]. We expected group differences to
be more pronounced in the anterior hippocampus, as selective memory deficits have been
described in VPT samples [11]. A variety of memory processes are partly controlled by fronto-
hippocampal networks [51], and the CA1 fields project directly to medial prefrontal cortices
[52]. We further hypothesised that by follow-up (age 19 years) there would be diminished
between-group differences in hippocampal volume and shape, on the basis of previous findings
in other regions of interest (i.e., the corpus callosum) [44]. In terms of structure-function asso-
ciations, we hypothesised that cross-sectional and longitudinal alterations of hippocampal vol-
ume and shape would be associated with a psychosis phenotype and specifically with mild
forms of the expression of psychosis (i.e., delusional ideation), which are prevalent in the gen-
eral population [53].

Materials and Methods

Participants
VPT participants were recruited from a cohort of individuals born before 33 weeks’ gestation
between 1982 and 1984 who were admitted to the neonatal unit of University College London
Hospital within 5 days of birth. From this population, 302 survived and were recruited as part
of a long-term follow-up study [54–56]. At age 15 years 111 individuals received magnetic res-
onance imaging (MRI) [57]. At age 19 years, these individuals were re-contacted. Seventy-four
(66%) were successfully scanned at both time-points. Preterm-born individuals who were not
assessed did not differ significantly from those who were assessed in gestational age, Apgar
scores at 1 and 5 minutes, gender, socio-economic status, or full-scale IQ at 15 years [43]. In
this longitudinal study, analysis was restricted to those individuals who were assessed at both
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time points and also had completed the behavioural assessments of interest (n = 65, 58.5% of
VPT individuals with baseline assessment).

A term-born comparison group of 71 individuals was recruited by advertisements in the
press for the baseline assessment. Inclusion criteria were full-term birth (38–42 weeks) and
birth weight>2500 grams. These same individuals were invited back for follow-up assessment.
Successful MRI scanning was carried out in 36 (51%) individuals at both time-points. Exclu-
sions criteria for both VPT individuals and controls were a history of neurological conditions
including meningitis, head injury and cerebral infections, or any contra-indications to MRI
scanning.

Participants were excluded from subsequent data analyses for the following reasons: one
control participant had been diagnosed with depressive disorder, one VPT participant had
cerebral palsy and two had severe hearing or visual impairment. The structural MRI scan for
one VPT participant at follow-up could not be analysed due to signal artefacts. Thus, 61 pre-
term adolescents and 35 controls, none of which had received a clinical psychiatric diagnosis,
were included in the data analysis. Data for an additional control participant was excluded
from shape analysis due to processing error.

The Institute of Psychiatry, King’s College London Ethical Committee (Research) approved
the study and the consent procedure used. Written informed consent was obtained from all
participants at follow-up and from an accompanying parent at baseline assessment.

Assessment of psychopathology
Baseline assessment. The Rutter Parents‘ Scale was used to assess emotional, attentional

and conduct problems [58]. This scale was initially devised for screening purposes and is
regarded as a valid instrument for studying psychopathology in unselected populations [59]. It
is made up of 31 items, which are descriptions of behaviors, each of which is rated by a parent.
The Rutter Parents’ Scale has been reported as having a sensitivity of 55% and a specificity of
94% [60].

The Peters Delusion Inventory (PDI) [61], a self-rating questionnaire, was used to measure
a wide range of delusions, by investigating the distress, preoccupation and conviction with
which a delusional belief is held. The PDI was created to assess lifetime delusional ideation and
psychosis proneness in the general population. The PDI has good sensitivity and specificity,
and its high negative predictive value support its usefulness as a psychosis proneness tool [62].
PDI scores were used as a continuous as well as a dichotomous variable, which classified ‘PDI
cases’ (score 8) and ‘PDI non-cases’ (score<8) [62].

Follow-up assessment. We used a 12-item version of the General Health Questionnaire
(GHQ-12) [63] to assess mental well-being in the domains of depression, anxiety, somatic
symptoms and social withdrawal. A threshold of>4 and a conventional scoring (0,0,1,1) were
used. If the GHQ is used as a dimensional model for psychological morbidity, GHQ score can
be regarded as a proxy measure for the position of an individual on the underlying dimension
without differentiating between 'cases' and 'non-cases'. The validity of this short version of the
GHQ has been found to be as satisfactory as that of longer versions [64].

The PDI was administered again at follow-up assessment.

MRI data acquisition
Magnetic resonance imaging was performed using a 1.5 Tesla system (General Electric Medical
Systems, Milwaukee, WI). Three-dimensional T1-weighted spoiled gradient-echo (SPGR)
sequences with 124 1.5 mm slices, in-plane resolution 1.5mm x 1.5mm, TR = 35 ms, effective
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TE = 5 ms, flip angle = 3 were acquired axially. The same image acquisition parameters were
used on the same MRI scanner for both baseline and follow-up assessments.

Whole brain analysis
Whole brain volume (WBV) at both time-points was calculated using Statistical Parametric
Mapping software (SPM8, Wellcome Department of Imaging Neurosciences, University Col-
lege London, UK). Whole brain volumes at baseline and follow-up assessments were used as
covariates in subsequent analyses. In brief, SPGR images were masked to exclude non-brain tis-
sues, and each voxel subsequently classified as grey matter or white matter, or other classes of
tissue (e.g., CSF), by an automated segmentation algorithm. Total brain grey and white matter
volumes were derived from the images in native space. Whole brain volume was calculated as
the sum of total grey and white matter.

Manual hippocampal segmentation
Pre-processing was conducted in accordance with the protocol established by Narr and col-
leagues [65]. For all T1-weighted images involved removal of non-cortical tissue, linear align-
ment to standard space, and reslicing in anterior commissure–posterior commissure (AC-PC)
orientation. Bilateral hippocampi were traced manually using MultiTracer [66] with a well-
established protocol [65] by a single trained rater blinded to diagnostic group (MLF). Inter-
rater intraclass correlation coefficient (ICC) was calculated based on comparison with histori-
cal data from a panel of four separate raters who had previously been trained in use of the
specific protocol. Inter-rater ICC = 0.90; while intra-rater ICC = 0.99, based on blinded repeat
tracing of 6 hippocampal pairs. Boundaries of the hippocampus were delineated in the coronal
plane, with simultaneous reference to sagittal and axial views. A single contour was traced on
each contiguous slice, moving from anterior to posterior and inclusive of all hippocampal grey
matter including the subiculum and thus incorporating the internal structures of the hippo-
campus, such as the dentate gyrus. The protocol dictated the exclusion of hippocampal white
matter regions, such as the alveus and fimbria, so that the volumetric and shape measures
reflected grey matter only. Hippocampal volumes were calculated by the sum of the areas mea-
sured from the centre of the first slice to the centre of the last slice, with a 1 mm sampling
along the axis, with the square root of areas changing in a linear fashion from slice to slice.

Three-dimensional hippocampal shape analysis
We used a Direct Hippocampal Mapping procedure [67], implemented in the Laboratory of
Neuro Imaging (LONI) Pipeline software [68]. This automated procedure is based on the
methods of Thompson and colleagues [50] and may be summarised as follows. A variational
framework was used to define the direct mapping between two surfaces, in this case a standard
neuroanatomical atlas of the hippocampus [69] and each subject’s hippocampus. Within this
framework, Laplace-Beltrami eigen-features (i.e., linear operators that capture variance of the
structure’s surface) were calculated to represent the hippocampus and capture the common
geometry across surfaces. The atlas hippocampus was a triangulated mesh comprising 2000
vertices which was then mapped onto each subject’s hippocampal surface, giving spatial and
statistical correspondence based on a given eigen-feature. For full details of the Direct Hippo-
campal Mapping analysis see the work by Shi and colleagues [67], for a illustrative description
of the over-arching hippocampal shape mapping analysis, please refer to Figure two in Thomp-
son et al., 2004 [50] and for details of the segmentation protocol please see Narr et al., 2004
[65].
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Statistical analysis
Statistical analysis of demographic and volumetric data was conducted using SPSS (v19.0, SPSS
Inc., WI, USA). Cross-sectional and longitudinal analysis of demographic, cognitive and beha-
vioural data between groups utilised χ2 tests (for gender, PDI and GHQ ‘caseness’), t-tests (age,
GHQ-12, Rutter scale) and repeated measures ANOVAs (IQ and total PDI score). Correlation
analyses between the two time points were performed for cognitive and behavioural variables.
Volumetric analysis of hippocampal volume and WBV was carried out using a multivariate
analysis of covariance for cross-sectional analysis at baseline and follow-up, with left and right
hippocampal volume as the dependent variables, group as the experimental factor and sex as a
covariate. As hippocampal volume andWBV are correlated [70], both raw hippocampal vol-
ume scores and ‘normalised’ scores were analysed, whereby hippocampal volume is divided by
WBV (then multiplied by 1000, for convenience). As analyses using raw and ‘normalised’ val-
ues were similar, only those using normalized scores are reported here. Assessing the distribu-
tion of the data ascertained that PDI, Rutter scale and GHQ-12 scores were not normally
distributed (Shapiro-Wilk tests p< 0.01). In order to make the data more appropriate for
parametric statistical testing, these variables were log10 transformed, which reduced both skew-
ness and kurtosis of the data (Shapiro-Wilk test p> 0.05).

Change between baseline (T1) and follow-up (T2) was quantified by using longitudinal
change in WBV as an error term (WBVerror = WBVT1/WBVT2) [71]. This error term was used
as a correction factor for longitudinal hippocampal change, which was calculated as follows:

Longitudinal change ¼ ðððVolumeT2x WBVerrorÞ � VolumeT1Þ= VolumeT1Þ x 100

Paired-samples t-tests were used to test for within-group longitudinal changes in raw hippo-
campal volume and WBV. A repeated-measures ANCOVA was used to assess group effects on
longitudinal change over time, with volume at baseline and follow-up (normalised for WBVer-

ror) being the within subject factor and group being the between-subject factor. Sex was the
only covariate included in each ANCOVA despite the groups not being well-matched for age
at scan nor IQ, as this would have been statistically inappropriate [72] as both were correlated
with brain volumes. The False Discovery Rate (FDR) [73] correction was used to correct for
the multiple comparisons carried out, using q = 0.05. For the between-group volumetric analy-
sis correction was conducted to account for six regions (i.e. left and right hippocampus and
WBV) and time-point (i.e. baseline and follow-up). For within-group pairwise analysis the
three volumetric measures were corrected for within each group.

Associations between cross-sectional and longitudinal normalised hippocampal measures
and clinical measures (birth weight and gestational length), behavioural/psychiatric outcomes
at baseline (Rutter Parents’ Scale and PDI scores) and at follow-up (GHQ-12 and PDI scores)
were explored using a multiple linear regression approach. Again FDR correction with q = 0.05
was carried out, this time correcting for the five clinical or behavioural outcome variables
tested.

The feature selected for three-dimensional hippocampal shape analysis was the tail-to-head
trend of the hippocampus, which is represented by a graph comprised of a node at the centroid
of each contour, thus giving a measure of the distance between the medial core and each sur-
face vertices of the structure. This measure is analogous to that used in our previous work [26],
but is entirely intrinsic and cannot be influenced by variations in translation or rotation
between structures [66]. This approach captures the degree to which the atlas hippocampus
was deformed in order to match each subject’s hippocampus, either as an expansion or con-
traction, at each surface vertex. Furthermore, statistical maps for hippocampal surface-related
measures were generated in stereotaxic space to account for differences in baseline brain size
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that may be associated with demographic variables such as sex or age [50]. To quantify group
differences (VPT adolescents and controls), two-tailed t-tests were conducted at each vertex, to
compare hippocampal deformations (i.e. expansions or contractions) cross-sectionally at base-
line and follow-up assessments, as well as longitudinally within each group. To correct for the
multiple comparisons across the 2000 atlas vertices, 50,000 permutations were run by rando-
mising group membership and comparing significance maps of real and randomised groups.
This process generated a corrected p-map that represents statistical differences in hippocampal
shape between groups. Three-dimensional hippocampal shape was further investigated in rela-
tion to group and PDI ‘caseness’, as our previous work demonstrated selective associations
between behavioural outcome and regional brain morphology (e.g. hyperactivity scores and
caudate volume) in VPT-born individuals but not in controls [74].

Results

Demographic, cognitive and behavioural data
Mean gestational age for the VPT group was 28.8 weeks (n = 61, SD = 2.2), for controls it was
40.0 weeks (n = 31, SD = 1.4); mean birth weight for the VPT group was 1248.3 grams (n = 61,
SD = 380.2), for controls it was 3250.3 grams (n = 33, SD = 388.5).

Demographic, cognitive and behavioural data for VPT adolescents and controls at baseline
and follow-up are shown in Table 1. There was no between-group difference in the length of
time between baseline and follow-up assessments (p = 0.40). At both baseline and follow-up
VPT adolescents were significantly older and had lower IQ score than controls. IQ scores at
baseline and follow-up were significantly correlated (r = 0.69, p< 0.001).

At baseline, behavioural/psychiatric scores did not differ significantly between the two
groups (e.g. Rutter total score, PDI total, PDI caseness). At follow-up assessment, results were
similar and no statistically significant between-group differences were detected (e.g. GHQ
total, GHQ caseness, PDI total, PDI caseness). Correlations between Rutter Total scores and
PDI scores at baseline and between GHQ-12 scores and PDI scores at follow-up were non-sig-
nificant. A significant correlation was observed between PDI total scores at baseline and follow-
up assessments (n = 43, r = 0.47, p< 0.001).

Cross-sectional neuroimaging data
Volumetric analysis. Baseline assessment: There was no significant difference in left

(p = 0.62) or right ‘normalised’ hippocampal volume (p = 0.55) between VPT individuals and
controls, after adjusting for sex. The preterm group had significantly smaller WBV compared
to controls (t = 4.11, p< 0.001).

Follow-up assessment: There was no significant difference in ‘normalised’ left (p = 0.26) or
right hippocampal volume (p = 0.29) between VPT individuals and controls. Again, the VPT
group had reduced WBV compared to controls (t = 4.46, p< 0.001). Descriptive statistics for
bilateral hippocampal volumes in VPT adolescents and controls are given in Table 1. P-values
are all reported after FDR adjustment for multiple comparisons.

Shape analysis. Baseline assessment: There were significant surface deformations in the
ex-preterm adolescents compared to controls, for both the left and right hippocampus. Several
clusters of surface contractions were found, on both posterior and anterior portions of the
structure (in the subiculum and CA1 subfield extending into the CA2-3 subfields), equating to
approximately 28% of the surface of left and right hippocampi (see Fig 1A and 1B and
Table 2). There were no areas where significant expansions in the VPT group compared to the
controls were evident.
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Follow-up assessment: There were still substantial numbers of significant surface contrac-
tions in the preterm group. However, there was a decrease in the number of surface points dif-
fering between groups and the deformations were now almost entirely concentrated in the tail
of the left and right hippocampi (equating to the subiculum and CA1 subfield), while hippo-
campal head and body were no longer significantly different (see Fig 1C and 1D and Table 2).

Longitudinal neuroimaging data
Volumetric analysis. Within-group analysis in ex-preterm adolescents indicated that left

hippocampal volume increased 13.9% between baseline and follow-up and that right hippo-
campal volume increased 14.7%. Both increases were statistically significant after FDR correc-
tion (left, t = 4.42, p< 0.001; right, t = 4.14, p< 0.001). In controls left hippocampal volume
increased significantly by a magnitude of 12.5% (t = 2.86, p = 0.016), but the 8.2% increase in
right hippocampal volume was not significant (p = 0.19). Mean longitudinal hippocampal
increases were calculated using WBVerror to correct for measurement error over time [71].
Repeated measures ANCOVA indicated that there were no group effects on longitudinal
change for ‘normalised’ bilateral hippocampal volumes (all p>0.05). Furthermore, the effect of
time on normalised bilateral hippocampal volumes was not significant across groups (all

Table 1. Demographic, cognitive, behavioural data and raw hippocampal volumes in mm3 for preterm adolescents and controls at baseline and
follow-up.

Baseline (age 15 years) Follow-up (age 19 years) Test statistics

Preterm
(n = 61)

Control
(n = 35)

Preterm
(n = 61)

Control
(n = 35)

Age, years* 15.46 0.45 14.99 0.73 19.61 0.86 18.97 0.82 Baseline t = 4.94 Follow-up t = 5.55

Sex (male/female) 32/29 18/16 32/29 18/16 Baseline X2 = 0.03 Follow-up X2 = 0.01

Full-scale IQ 1,3 99.24 15.70 108.15 12.10 96.58 13.68 102.83 12.49 Group F = 4.23 Time F = 3.42 Group*Time
F = 0.29

Verbal IQ 1,2 97.86 14.93 105.94 10.12 93.97 15.82 99.86 12.50 Group F = 4.26 Time F = 5.63 Group*Time
F = 0.24.

Performance IQ 100.6 18.02 108.54 15.24 99.45 15.06 103.43 15.68 Group F = 1.38 Time F = 1.41 Group*Time
F = 0.62

Rutter Total Score 6.97 7.58 8.00 6.32 - - Baseline t = 0.65

PDI total § 5.16 4.65 5.34 3.80 7.41 7.35 7.18 6.37 Group F = 0.047 Time F = 2.08 Group*Time
F = 0.82

PDI caseness (8) % 27.9% 22.9% 34.4% 42.9% Baseline X2 = 0.26 Follow-up X2 = 0.67

GHQ total - - 1.17 2.20 1.23 2.29 Follow-up t = -0.12

GHQ caseness (>4)
%

- - 6.6% 5.7% Follow-up X2 = 0.03

Left hippocampus 2 2389.7 427.7 2409.5 435.5 2595.7 403.0 2582.5 396.6 Group F = 2.23 Time F = 10.54 Group*Time
F = 0.07

Right hippocampus 2 2199.7 364.8 2311.6 338.6 2415.9 449.5 2397.3 374.1 Group F = 2.81 Time F = 8.96 Group*Time
F = 0.26.

Values reported in mean (standard deviation) format. PDI = Peters Delusions Inventory.

* VPT participants were older than controls at both baseline and follow-up assessments (p < 0.001) from t-tests
1 Significant group effect (VPT individuals vs. controls) (p < 0.05) from repeated measures ANOVA
2 Significant effect of time (baseline vs. follow-up) (p < 0.05) from repeated measures ANOVA
3 Significant interaction between group (VPT individuals and controls) and time (baseline vs. follow-up) (p < 0.05) from repeated measures ANOVA.
§ At baseline (age 15 years) PDI data were missing for 18 VPT born participants; at follow-up (age 19 years), for 7 VPT born participants and one control.

doi:10.1371/journal.pone.0130094.t001
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Fig 1. Shape analysis showing cross-sectional and longitudinal surface deformations in preterm adolescents compared to controls. P-values
denote statistical significance of control > preterm across 2000 surface vertices, corrected for multiple tests (50,000 permutations). (A) Baseline comparison,
superior view, with left hippocampus on the right. (B) Baseline comparison, inferior view with the left hippocampus on the left. (C) Follow-up comparison,
superior view, with left hippocampus on the right. (D) Follow-up comparison, inferior view with the left hippocampus on the left. (E) Longitudinal surface
deformations preterm adolescents, superior view, with left hippocampus on the right. (F) Longitudinal surface deformations in preterm adolescents, inferior
view with the left hippocampus on the left. (G) Longitudinal surface deformations in the control group, superior view, with left hippocampus on the right. (H)
Longitudinal surface deformations in the control group, inferior view with the left hippocampus on the left. (I) Superior view of representative hippocampal
shapes with approximate subfields labelled. CA1 = blue, CA2-3 = green, subiculum = mauve. (J) Corresponding inferior view with subfields labelled.

doi:10.1371/journal.pone.0130094.g001

Table 2. Cross-sectional hippocampal shape analysis details

Contrast Number of vertices with p < 0.05 Percentage hippocampal difference Anatomical location

Baseline left 562 28.10% Subiculum, CA1, CA2, CA3

Baseline right 568 28.40% Subiculum, CA1, CA2, CA3

Follow-up left 423 21.15% Subiculum, CA1

Follow-up right 468 23.40% Subiculum, CA1

Based on 2000 vertices per hippocampus.

doi:10.1371/journal.pone.0130094.t002
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p>0.05). There were no longitudinal changes in WBV or in intracranial volume for either
group.

Shape analysis. When comparing longitudinal changes in hippocampal shape within each
group, there were minor expansions in both left and right hippocampus in the VPT group, pre-
dominantly in the tail of the structure and accounting for approximately 10% of the total sur-
face (see Fig 1E and 1F and Table 3). In controls however, considerably greater surface
expansions were found over time, particularly in the left hippocampus, where over 25% of the
surface had expanded. The expansions in the left were mainly in the hippocampal tail, whereas
the expansions in the right were found in the mid-section (see Fig 1G and 1H and Table 3).

Associations between neuroimaging, behavioural/psychiatric and
neonatal data

Volumetric analysis. Baseline assessment: Linear regression analyses were performed to
assess the association between bilateral hippocampal volumes (normalised for WBV) and out-
come measures in the whole sample (VPT participants and controls), as well as within group.
Bilateral normalised hippocampal volumes were not significantly associated with PDI and Rut-
ter scores.

Gestational age and birth weight were not significantly associated with cross-sectional bilat-
eral hippocampal volumes in the VPT group (all p> 0.05).

Follow-up assessment: Right and left normalised hippocampal volumes were not signifi-
cantly associated with PDI scores. However, baseline right hippocampal volume was signifi-
cantly positively associated with PDI total score at follow-up in the whole sample (see Table 4
and Fig 2) as well as within group (VPT: R2 = 0.11 = 0.18, p = 0.016; control: R2 = 0.12, = 0.17,
p = 0.04). Furthermore, those individuals who scored as a PDI ‘case’ at follow-up had larger
normalised right hippocampal volume at baseline than those scoring as ‘non-case’ (F = 15.0,
p< 0.001). Left hippocampal volume at baseline was not significantly associated with PDI
scores at follow-up. Bilateral normalised hippocampal volumes were not significantly associ-
ated with continuous or dichotomous GHQ scores (all p> 0.05).

Longitudinal hippocampal volume change: Volumetric bilateral hippocampal changes
between the two time-points were not significantly associated with PDI scores, Rutter scores,
GHQ scores, or birth weight and gestational length (all FDR adjusted p> 0.05). (see Table 4).

There were no significant associations between continuous or dichotomous GHQ scores
and cross-sectional and longitudinal bilateral hippocampal volumes and in the whole sample
and within group (all p>0.05).

Shape analysis
As right hippocampal volume at baseline was significantly associated with PDI total score, sur-
face deformations were also investigated in relation to PDI caseness, defined at follow-up. A

Table 3. Longitudinal hippocampal shape analysis details.

Contrast Number of vertices with p < 0.05 Percentage hippocampal difference Anatomical location

Preterm left 213 10.65% Subiculum, CA1

Preterm right 218 10.90% Subiculum, CA1

Controls left 517 25.85% CA1, CA2, CA3

Controls right 317 15.85% CA2, CA3

Based on 2000 vertices per hippocampus.

doi:10.1371/journal.pone.0130094.t003
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dichotomous rather than a correlational approach was chose in order to maximise statistical
power. After permutation correction, results for the right hippocampus were statistically signif-
icant (p = 0.005) in the whole sample (VPT individuals and controls), whereby PDI ‘cases’
showed surface deformations compared to PDI ‘non-cases’, especially in the subiculum and
CA1 subfield (Fig 3). Within group analyses did not show statistically significant results.

Discussion
Although total hippocampal volumes did not differ between VPT adolescents and controls at
both 15 and at 19 years of age, there were extensive differences in hippocampal shape between
the groups. At baseline, localized hippocampal subregional deformations were noted across
approximately 28% of the total hippocampal surface in the VPT group compared to controls,
especially in the posterior and anterior portions of the structure, in the subiculum and CA1
subfield extending into the CA2-3 subfields. At follow-up, deformations were almost entirely
concentrated bilaterally in the hippocampal tail, subiculum and CA1 subfield.

The shape of a brain structure has been hypothesized to be determined by the physical prop-
erties of neural tissue and by patterns of neural connectivity [75], which have been shown to be
altered following preterm birth [76]. These results differ from our previous findings in a similar
group of VPT adolescents at 14 years, which revealed a 14% lower bilateral hippocampal vol-
ume compared to controls [15]. The use of different subject samples, hippocampal measure-
ment techniques and definition of hippocampal boundaries may partly explain this
inconsistency.

Table 4. Results of linear regression analyses with behavioural scores as dependent variables and cross-sectional and longitudinal normalised
hippocampal volume (all participants).

Predictors (Behavioural
and clinical measures)

Outcome variables

Baseline hippocampal volume Follow-up hippocampal volume Longitudinal change in hippocampal
volume

Left Right Left Right Left Right

Clinical

Birth weight β = 0.0; t = 1.09;
p = 1.00

β = 0.0; t = 1.62;
p = 0.44

β = 0.0; t = 1.13;
p = 0.67

β = 0.0; t = 1.21;
p = 0.89

β = -0.023; t =
-0.19; p = 1.00

β = -0.027; t = 0.13;
p = 1.00

Gestational
length

β = -0.023; t =
-1.32; p = 0.95

β = -0.023; t =
-1.62; p = 0.44

β = -0.02; t =
-1.23; p = 0.67

β = -0.022; t =
-1.23; p = 0.89

β = 8.23;
t = 0.36; p = 1.00

β = 4.54; t = 24.25;
p = 1.00

Baseline

PDI total β = -0.08; t =
-0.55; p = 0.95

β = 0.10; t = 0.83;
p = 0.451

β = 0.05;
t = 0.58; p = 0.57

β = 0.13;
t = 1.34; p = 0.44

β = 37.55;
t = 0.29; p = 0.77

β = 63.07; t = 0.46;
p = 0.65

Rutter scale
total

β = 0.043;
t = 0.53; p = 1.00

β = -0.034; t =
-0.52; p = 0.602

β = -0.047; t =
-0.62; p = 0.67

β = -0.077; t =
-0.95; p = 0.89

β = -93.90; t =
-0.89; p = 1.00

β = -26.42;
t = 110.86; p = 1.00

Follow-
up

PDI total β = 0.083;
t = 1.09; p = 1.00

β = 0.17; t = 2.81;
p = 0.032*

β = 0.13;
t = 1.90; p = 0.31

β = 0.085;
t = 1.14; p = 0.89

β = 90.28;
t = 0.92; p = 1.00

β = -111.96;
t = 103.18; p = 1.00

GHQ-12 β = -0.067; t =
-0.25; p = 1.00

β = 0.28; t = 1.31;
p = 0.44

β = 0.35;
t = 1.45; p = 0.61

β = 0.47;
t = 1.79; p = 0.39

β = 488.21;
t = 1.42; p = 1.00

β = 154.02;
t = 360.32; p = 1.00

Model
statistics

Intercept 2.02 2.25 2.05 1.97 -109.00 181.98

Standard error 0.28 0.23 0.25 0.27 359.30 377.30

R2 0.04 0.18 0.10 0.09 0.05 0.02

p-value 0.73 0.048 0.20 0.25 0.59 0.93

Behavioural variables (PDI, Rutter scale, GHQ-12) were all log10 transformed prior to statistical analysis. Results are derived from multiple linear

regression analysis and are reported in this form: β-coefficient; t-value; FDR adjusted p-value for each coefficient.

* Denotes statistically significant result after FDR correction [73] for multiple testing.

doi:10.1371/journal.pone.0130094.t004
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The current results showed that volumetric hippocampal increases between mid- to late
adolescence were comparable between the groups, in contrast to findings of altered hippocam-
pal growth trajectories in childhood [14] and differential changes in the volume of the cerebel-
lum [43] and in the mid-sagittal area of the corpus callosum [44] that we previously reported
in the same cohort between the same time points. Significant age-related changes in total hip-
pocampal volume in normative samples have not been found between 4 and 25 years of age
[41] and between 16 and 65 years [77], although a recent study showed a negative correlation
between bilateral hippocampal volume and age in healthy 12 to 24 year olds [78]. As far as we
are aware, this is the first study to investigate hippocampal volume changes in a relatively short
time span during adolescence, and in the absence of specific training interventions [79]. Studies
of different age groups are difficult to compare. Moreover, when comparing longitudinal
changes in hippocampal shape within each group, there were minor expansions in both left
and right hippocampus in the VPT group, predominantly in the tail of the structure and
accounting for approximately 10% of the total surface. Conversely in controls considerably
greater surface expansions were found over time, particularly in the left hippocampus, where
over 25% of the surface had expanded. The left hippocampal expansions were mainly in the tail

Fig 2. The relationship between baseline right hippocampal volume and PDI score at follow-up. The plotted values are based on the normalised right
hippocampal volume at baseline and the log10 transformed total PDI score at follow-up. This relationship was the sole significant association between
imaging and behavioural measures in the analysis, after FDR correction for multiple testing (p = 0.032). R2 (ratio of the sum of squares explained by the
regression model and the total sum of squares around the mean) of right hippocampus at age 15 years: VPT = 0.11, controls = 0.12. The horizontal grey line
represents the cut-off in terms of PDI ‘caseness’, defined at follow-up using PDI� 8, which after log10 conversion = 0.9031. Plotted points that lie on the grey
are defined as PDI cases.

doi:10.1371/journal.pone.0130094.g002
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region, whereas the expansions in the right were found in the hippocampal body, in the vicinity
of the CA1 subfield. Lateralised dynamic changes in hippocampal subdivisions have been
reported by others [41], but the reasons for these lateralised effects remain unclear. Significant
shape change difference between infancy to school-age between VPT children and controls
were not observed by Thompson and colleagues (although hippocampal growth was reduced
in VPT children) [14], suggesting that selective hippocampal subregions may be particularly
vulnerable to late maturational alterations following VPT, possibly as a consequence of earlier
alterations growth trajectories.

When investigating hippocampal volume in relation to psychiatric outcomes, we found that
right hippocampal volume at baseline was positively associated with delusional ideation scores
at follow-up. This was the case in all subjects, VPT individuals and controls, who also had com-
parable PDI mean scores and number of PDI ‘cases’. The hippocampus has been previously
implicated in affective, social and mnemonic processing [80–82]. Alterations of these processes
may contribute to the development of delusional ideation. For instance, a study found that
scores on the Peters’Delusional Inventory were associated with self-reported measures of
memory errors [83]. Furthermore, individuals with high levels of delusional ideation show a
tendency to ‘jump to conclusions’ when asked to make decisions under uncertainty [84]. This
cognitive bias has been put forward as a possible mechanism of delusion formation and main-
tenance [85] and has been associated with impaired working memory [86]. The hippocampus
plays a central role in a variety of tasks involving working memory [87], and in preterm born
children working memory deficits have been associated with neonatal hippocampal volume
[13].

Greater hippocampal volume at age 15 years was associated with delusional ideation scores
at age 19. These results appear at first counterintuitive, as decreased hippocampal volume has
been described in individuals experiencing delusional thinking—in schizophrenia [88] and in
major depressive disorder [26]. However, enlarged hippocampal volumes have been described
in those individuals at high risk of developing schizophrenia [27], in adolescents with autism
[89] and in those with attention-deficit hyperactivity disorder [90]. Normative data have dem-
onstrated that the hippocampus follows a dynamic developmental trajectory, with regional hip-
pocampal increases and decreases during the first two decades of life [41]. We speculate that

Fig 3. Longitudinal shape analysis showing surface deformations in ‘PDI-cases’ compared to ‘PDI-non-cases’. P-values denote statistical
significance of follow-up > baseline across 2000 surface vertices, corrected for multiple tests (50,000 permutations). (A) Superior view, with right
hippocampus on the left. (B) Inferior view, with right hippocampus on the right.

doi:10.1371/journal.pone.0130094.g003
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our findings may be explained by alterations in these dynamic developmental changes, that
sub-clinical psychotic problems may be differentially associated with hippocampal volumes
depending on the stage of development, or that an enlarged hippocampus may be a precursor
of sub-clinical psychiatric problems such as delusional ideation. One caveat to highlight when
interpreting these results is that the amount of variance in hippocampal volume explained by
PDI score was low (5% for VPT individuals, 10% for controls), thus there are clearly other
behavioral and genetic factors that will influence hippocampal development during adoles-
cence, that we did not capture in our study. Moreover, the relationship between change in hip-
pocampal volume and total PDI score was not statistically significant after FDR correction.
This may be due to a relative stabilization of trajectories within individuals when looking across
the range of PDI scores. Alternatively, it may be that the behavioral and neuroimaging mea-
sures are both sufficiently noisy to mask any underlying relationship; such relationships are sel-
dom reported in the longitudinal neuroimaging literature. For this reason, it is anticipated that
larger samples and more precise measures, both for measuring delusional ideation and hippo-
campal structure, will be needed to establish if aberrant brain development during adolescence
is related to the presence of delusions.

Right hippocampal shape deformations at baseline, mainly localized in the anterior portion
of the region, were observed in individuals who scored as a PDI ‘case’ at follow-up compared to
those who scored as a ‘non case’ (VPT individuals and controls). No statistically significant
association between hippocampal shape at follow-up and PDI scores were found. Distinct areas
of the prefrontal cortex receive projections from neurons in the head of the hippocampus,
therefore it could be speculated that these results support the idea that psychiatric disorders
characterized by delusional beliefs such as schizophrenia involve alterations in fronto-temporal
circuitry [91]. Variations in hippocampal morphology and shape, preferentially affecting the
anterior of the structure, have been reported in neuropsychiatric disorders with neurodevelop-
mental components such as schizophrenia [92, 93] and structural abnormalities of subicular
dendrites have further been reported in individuals with schizophrenia and mood disorders
[94]. The lack of observed associations between hippocampal shape at follow-up and behavioral
scores collected at the same time-point may be explained by the fact that shape differences
were then mostly observed in the posterior hippocampal segment.

Limitations of this study include the limited sample size, and the fact that the neurodevelop-
mental profile of VPT individuals who were born in the 1980s may differ from that of younger
cohorts who may have received more advanced forms of neonatal care. Regarding the study
methodology, a potential problem to the interpretation of morphological analysis is its limited
anatomical accuracy. To date, surface shape-based such as the method we used, provides the
most valid way of investigating changes in vivo, but they do not achieve the precision obtained
by the study of neuropathological data, which allows assessment at a microscopic level and can
differentiate between the outer (e.g. CA1, subiculum) and inner (e.g. dentate gyrus) subfields.
Furthermore, only one rater conducted the hippocampal segmentation. Ideally multiple raters
would be available to increase the robustness of the segmentations and to allow testing of how
different raters may influence results. Nevertheless the rater in the current study achieved high
reliability with a historical dataset on which the protocol was defined as well as excellent intra-
rater reliability, meaning that additional raters are unlikely to have greatly influenced the cur-
rent findings. Another limitation of the study may be the representativeness of our control
sample, a large proportion of whom scored as a PDI ‘case’ at baseline (23%) and follow-up
assessments (43%). Psychotic experiences and beliefs have been reported in the general popula-
tion with prevalence up to 40% [95]. However, the positive predictive value of the PDI has
been estimated to be rather low (28%), which is a possible reflection of the low rate of the psy-
chiatric disorders with psychotic features in non-clinical samples [62]. The ex-preterm and
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control groups were not well matched for age at scan or IQ, which may potentially complicate
the interpretation of the results, as the neuroanatomical expression of psychiatric disorders in
young populations is dynamic [96]. Finally, we did not detect any sex-specific effects in our
study, despite the growing evidence that sexual dimorphism is important after preterm birth
[5], something which could be explore more explicitly in future research.

To conclude, although this study did not reveal significant differences in hippocampal vol-
ume between VPT individuals and controls in mid- and late adolescence, a substantial percent-
age of the total hippocampal surface showed subregional deformations in the VPT group,
suggestive of atrophy, predominantly in the posterior and anterior regions. Cross-sectional and
longitudinal hippocampal volumes were dynamically associated with delusional ideation
scores in young adulthood. These results further our understanding of the structural correlates
underlying long-term neurodevelopmental consequences of very preterm birth. They also
support the idea of a dynamic association between brain structure and function throughout
neurodevelopment.

Supporting Information
S1 File. Hippocampal volume data. This contains all the raw data used in the analysis. This
includes demographic, group status, brain volume, hippocampal volume and behavioural mea-
sures. Also included are a number of derived metrics included in the study, such as normalised
volumes, longitudinal measure error and change in volume or behavioural measure over time.
Not included are the values comprising the 3D hippocampal shape maps as these high dimen-
sional data require specific software for visualisation and analysis. The authors will make these
available on request, alongside the details of the necessary additional software packages.
(XLSX)
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