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Design of ultra‑thin underwater 
acoustic metasurface 
for broadband low‑frequency 
diffuse reflection by deep neural 
networks
Ruichen Li1, Yutong Jiang1, Rongrong Zhu1,2*, Yijun Zou1, Lian Shen1 & Bin Zheng1,3,4*

Underwater acoustic metasurfaces have broad application prospects for the stealth of underwater 
objects. However, problems such as a narrow operating frequency band, poor operating performance, 
and considerable thickness at low frequencies remain. In this study a reverse design method for ultra-
thin underwater acoustic metasurfaces for low-frequency broadband is proposed using a tandem fully 
connected deep neural network. The tandem neural network consists of a pre-trained forward neural 
network and a reverse neural network, based on which a set of elements with flat phase variation and 
an almost equal phase shift interval in the range of 700–1150 Hz is designed. A diffuse underwater 
acoustic metasurface with 60 elements was designed, showing that the energy loss of the metasurface 
in the echo direction was greater than 10 dB. Our work opens a novel pathway for realising low-
frequency wideband underwater acoustic devices, which will enable various applications in the future.

The stealth of low-frequency acoustics is challenging, particularly for underwater acoustics, because it has a 
longer wavelength than air sound. The internal friction in the linear systems of subwavelength thickness materi-
als is very small; thus, the performance of conventional acoustic absorbing materials is poor in absorbing low-
frequency underwater acoustic waves (specifically below 1 kHz). The rapid development of metasurface1,2 has 
open a novel pathway to control the electromagnetic waves in various applications, such as invisible cloak3–5, 
antenna6–8, beam control9–11 and so on. The similar concept is extended to the acoustic for the regulation of acous-
tic waves12,13, resulting in many novel acoustic devices such as acoustic vortices14,15, non-diffraction beams16,17, 
diffuse reflection18,19, and acoustic absorption20–24. However, majority of acoustic metasurfaces have focused on 
aeroacoustics, which is simpler because hard materials are applied in the meta-structure design. For underwater 
acoustics, the design and selection of material parameters are more complex because of the minor impedance 
mismatch between water and normal hard materials, such as metals. To date, there have been some propos-
als regarding underwater acoustic absorption25–27; for instance, using a design principle that maximised the 
thermoviscous loss, a matasurface for underwater sound absorption is proposed26. The experimental results 
indicate that multitudes of absorption peaks are generated in the range between 2 and 5 MHz. However, the 
existing work on low-frequency band performance is poor, and the design of the structure cannot achieve the 
broadband work effect.

The main reason for the difficulty in achieving broadband low-frequency underwater acoustic absorption 
is that it is very difficult to design and optimise the structural parameters of broadband response metasurfaces. 
Recently, the emergence of artificial intelligence has provided considerable convenience for the design and opti-
misation of metasurfaces. Utilising the advantage of self-learning of artificial intelligence, many achievements 
have been made in the field of reverse problem in metamaterials and metasurfaces28–34. For instance, combining 
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forward modelling and inverse design in a tandem architecture, a novel inverse design method of photonic 
devices is proposed28, which solved the non-uniqueness problem in training. Although significant progress has 
been made in the reverse design of metasurfaces in the field of electromagnetism, the design of low-frequency 
underwater acoustic metasurfaces remains elusive.

In this study, we propose a reverse design method for ultra-thin low-frequency reflective underwater-acoustic 
metasurfaces based on a tandem deep neural network (DNN). The DNN network consists of a pre-trained for-
ward network (PNN) and a reverse network (RNN) in series. A low-frequency broadband ultra-thin scattering 
underwater acoustic metasurface is proposed. An underwater broadband stealth effect was achieved by arranging 
the elements using pseudorandom method. In the frequency band between 700 and 1200 Hz, the energy loss 
of the metasurface in the echo direction was greater than 10 dB. This may be a novel way for achieving low-
frequency broadband underwater acoustic stealth.

Results
Reverse design method.  One major problem of the DNN during training is the non-uniqueness problem 
in reverse design, which means that different structural parameters can produce the same acoustic reflection 
response. To solve this problem, we display a tandem DNN cascaded by an RNN and a PNN, as shown in 
Fig. 1(a). The input layer is the target reflection response which consists of a 1 × 46 one-dimensional linear ten-
sor, intermediate layer is the structural parameters which consists of a 1 × 4 one-dimensional linear tensor, and 
output layer is the predicted reflection response, which consists of a 1 × 92 one-dimensional linear tensor that is 
in serial output by the 46 real-part values and 46 imaginary-part values. During the training of the tandem DNN, 
we pretrained the PNN and fixed its network parameters, which were connected in series after the RNN, and 

Figure 1.   Reverse design method network structure and numerical simulation of a unit cell. (a) The schematic 
diagram of the reverse design method network structure, consisting of an RNN and a PNN. (b) The unit 
structure designed. It consists of ceramic resin with high toughness and high temperature resistance and air 
cavity. There are four structural variables in the air cavity, h1, h2, l1, l2. l1 represents the size of notch that satisfies 
l1 = L − 2l2; h1, h2, and l2 represent the size of air cavity. (c) The amplitude and phase of reflection response. The 
blue and red curves represent the amplitude and phase, respectively.
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only the RNN parameters were updated to reduce the loss function. Therefore, the designed structural param-
eters of the elements can be extracted from the intermediate layer.

The structure to be designed is shown in Fig. 1(b), and it is composed of a ceramic resin with high tough-
ness and high-temperature resistance. There is a notched air cavity inside. The width, L, and thickness, H1, of 
the element structure are 10 and 5 cm, respectively; h1, h2, l1, and l2, which are the size of the cavity, are design 
variables. A steel plate with H2 of 3 cm and L of 10 cm was placed at the bottom of the element to enhance the 
underwater compression resistance. The reflection responses of interest are set in the low frequency underwater 
acoustic segment from 700 to 1150 Hz (1.27 m to 2.08 m in underwater acoustic wavelength, the H1 of the ele-
ment is only 1/25 of the operating wavelength) for demonstration.

The corresponding reflection amplitude and phase of the element were simulated using the commercial 
finite-element package, COMSOL Multiphysics, as illustrated in Fig. 1(c). The blue and red curves represent the 
reflected amplitude and phase, respectively. The acoustic-solid coupling module was used for the simulation. The 
simulation boundary was periodic. The upper part of the element is the water area, whose acoustic velocity and 
density are 1460 m/s and 1000 kg/m3, respectively, and the pressure acoustic module is used for the simulation. 
The lower part of the element and the air cavity in the element are the air area, whose acoustic velocity and density 
are 343 m/s and 1.21 kg/m3, respectively, and the pressure acoustic module is also used for the simulation. The 
ceramic resin with high toughness and high-temperature resistance of the element is simulated by a solid mechan-
ics module, whose Young’s modulus, density, and Poisson’s ratio are 10.5 GPa, 1610 kg/m3, and 0.32, respectively. 
The metal of the element was also simulated by a solid mechanics module, whose Young’s modulus, density, and 
Poisson’s ratio are 216 GPa, 7800 kg/m3, and 0.3, respectively. The reflection amplitude remained relatively stable 
without considering the material loss. We focused on the inverse design of the reflection response and element 
structure. To avoid periodic oscillation of the phase, the real and imaginary parts are used to uniquely determine 
the phase in the range of −π–π. Therefore, we selected the real and imaginary parts of the reflected response as 
the training dataset for the PNN. This significantly improves the prediction accuracy and efficiency of the PNN.

Before training the tandem network, the forward neural network, i.e., PNN, must be trained in advance; 
because of the one-to-one correspondence between the input and output. The concrete structure of the proposed 
PNN is illustrated in Fig. 2(b). It addresses the regression problem between the internal structural parameters 
and the reflection responses of underwater acoustic metasurface elements. The PNN is a multitask fully con-
nected network that trains the real and imaginary parts separately. The input layer has four neurones, which 
represent four structural parameters (Fig. 2a). The hidden layer consisted of two shared layers and two task-
specific layers. The former has 150 and 500 neurones, and the latter has 500 and 200 neurones. The output layer 
has an independent dual-task layer, and each task has 46 neurones, which represent the real and imaginary 
part values of the reflection responses, as illustrated in Fig. 2(c). The continuous value of the PNN output in the 
frequency range between 700 and 1150 Hz was obtained using the interpolating method (Fig. 2d). Using the 
inverse trigonometric function, the phase of the reflection response of the PNN output can be calculated using 
the following equation (Fig. 2e):

Using the commercial finite-element package, COMSOL Multiphysics, and MATLAB to co-simulate, 111, 
200 groups of data were collected, of which 80%, 10%, and 10% were used for the training, validation, and test 
datasets, respectively. The ranges of the four variables in the order of h1, h2, l1, and l2 are [1–5 mm], [1–10 mm], 
[10–90 mm], and [1–10 mm], respectively. The four variables were normalised before inputting into the PNN 
to eliminate the influence of different orders of magnitude on the network prediction. The normalised variables 
were encapsulated into a 1 × 4 one-dimensional linear tensor and fed into the PNN. The output is a 1 × 92 one-
dimensional linear tensor, which is in serial output by the 46 real-part values and 46 imaginary-part values. L2 
was used as the loss function for the PNN, known as the mean square error (MSE). For a multitask network, 
the loss functions for the gradient descent method to update the network parameters are represented by the 
following equations:

and

The stochastic gradient descent method was adopted for the PNN training. The learning rate was dynamically 
adjusted according to the decrease in loss during training. The initial learning rate was set as 0.5. Figure 3(a) and 
(b) show the curves of changes in the learning rate of the network and the loss function changes of the training 
datasets during training. After the training was completed, the MSE for the test dataset was 0.0075. Several pre-
diction examples randomly selected from the test dataset are shown in Fig. 3(c), and their structural parameters 
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are shown in the inset. These examples demonstrate an outstanding consistency between the output (blue curve) 
of the PNN and the numerical simulation results (red point curve).

With the successful training of the PNN, we connected it to the RNN to form a complete tandem network. 
The detailed architecture of the RNN is illustrated in Fig. 4(b). An RNN consists of a five-layer fully connected 
network, whose input and output layers have 46 and 4 neurones, respectively. The hidden layers have500, 500, 
200, and 50 neurones. The RNN input was the target reflection response (Fig. 4a). The output of the RNN is the 
designed structural parameter of the element after normalisation. The real element structural parameters can 
be obtained by inverse normalisation (Fig. 4c). To eliminate the multi-solution problem, the RNN connects the 
PNN with parameter freezing in series. Only the parameters of the RNN are updated to reduce its loss function, 
which is the difference between the target reflection response and the prediction response (Fig. 4d), which is 
expressed as follows:

An adaptive moment estimation optimiser was used for the RNN training. The training, validation, and 
test datasets selected by the RNN during training are the same as those of the PNN. The learning rate is also 
dynamically adjusted in the same manner as the PNN according to the decrease in loss during training. The 
original learning rate was set to 0.01. After training, the MSE of the test dataset loss was 0.01. Because the ran-
domly generated target reflection response may be physically unrealistic, the stabilised error values indicate 
that training has been completed. The training loss and learning rate are shown in Fig. 4(e) and (f), respectively. 
Several design samples from the proposed RNN for the reflected phase design targets are shown in Fig. 4(g). 
The designed structural parameters after inverse normalisation are given as insets. Excellent consistency exists 
between the target reflection response (blue curve), network prediction (brown dotted curve), and numerical 
simulation results (red curve).

(5)LossRNN =
1

N

N∑
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(Phasetarget − Phaseprediction)
2

Figure 2.   Pre-trained forward predictive design method. (a) Input of the PNN, which includes four structural 
parameters. (b) PNN, which is a multi-task DNN with two shared layers and three task-specific layers. The 
PNN can predict the real and imaginary parts values of reflection response independently. The blue, gray, and 
red circles represent the input layer, hidden layers and output layer of the PNN, respectively. (c) The real and 
imaginary part discrete values given by the PNN. (d) Continuous results obtained using the interpolating 
method. The blue curve and red point curve represent the continuous results and discrete values, respectively. 
(e) The corresponding reflected phase.
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Reverse design of elements.  Based on the perfective tandem network, we designed a group of elements 
with a π/4 phase-shift interval in a wide band. We selected a reflection response from the test dataset as the first 
target reflection response, which was highly consistent with the network prediction and numerical simulation 
results. The other target reflection responses were transformed from the first target reflection response. Based 
on the first target reflection response, keeping the curve slope unchanged, a group of target reflection responses 
with adjacent phase intervals of π/4 can be obtained by shifting π/4 successively.

We designed two different target reflection phases, as illustrated in Fig. 5(a) and (c). By inserting the two 
designed groups of target reflection responses into the tandem network, we obtained the normalised element 
structural parameters by extracting the intermediate layer. Realistic designed structural parameters of the two 
different target reflection responses after inverse normalisation are provided in the Supplementary Materials. 
The predictive outputs of the tandem network are shown in Fig. 5(b) and (d). Comparing the target reflection 
responses and the prediction outputs, some of them agree well, while others do not a good match. Because the 
generated target reflection responses may be physically unrealistic, the tandem network can only predict the 
reflection response closest to the target reflection response based on physical reality.

We simulated the reflection responses with the structural parameters predicted by the reflection responses 
of the two groups of target reflection responses. The numerical simulation results of the elements were obtained 
using the commercial finite element package, COMSOL Multiphysics. Comparing the prediction outputs and 
the numerical simulation results, the prediction outputs of the real and imaginary parts are slightly different 
from the numerical simulation results, and the reflected phases are highly consistent.

Design and simulation of diffuse underwater acoustic metasurface.  Based on the inverse design 
of the two groups of target elements, we utilise example two to realize a low-frequency and wideband diffuse 
underwater-acoustic metasurface. During the actual design, we made an entire diffuse underwater-acoustic 
metasurface plane a flat rectangle with a side length of 600 mm. A general view of the plane is displayed in 
Fig. 6(a), with the x direction comprising 60 elements and the y direction having infinite length. The arrange-
ment of the metasurface was generated using the pseudorandom method in the x-direction.

Figure 6(b) illustrates the diffuse acoustic far-field contrast of with or without diffuse underwater-acoustic 
metasurface after normalization at different frequencies. By contrast, the main lobe of acoustic far-field energy 
without metasurface is concentrated in the echo direction, and the secondary lobe energy is very low, with 
almost no energy scattering in other directions. Most of the energy of the acoustic far-field with metasurface 
is scattered in other directions, without almost little energy in its echo direction. Figure 6(c) demonstrates the 
simulation results in the frequency range between 700 and 1200 Hz. The results indicate that the echo energy 
loss of the proposed diffuse acoustic metasurface is greater than 10 dB in the frequency band ranging from 700 

Figure 3.   Loss and test samples of the PNN. (a) Dynamic learning rate. (b) The loss curve during PNN 
training. (c) Four examples of the PNN network prediction. The red point curves represent the reflected phase 
predicted by the PNN. The blue curves represent the reflected phase obtained from numerical simulations. The 
structural parameters of each unit cells are given in the inset in the following order: h1 (mm), h2 (mm), l1 (mm), 
and l2 (mm). All four elements presented are randomly selected from the test data.
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to 1200 Hz, indicating that it scatters most of the energy in other directions in this frequency band, which can 
achieve the diffuse reflection effect in the low and wide frequency band.

Conclusion
In conclusion, we propose a novel tandem network approach to reverse the design of acoustic elements. Based on 
this method, we designed a set of underwater acoustic metasurface elements with flat phase changes and nearly 
equal phase-shift intervals in 700–1150 Hz. A diffuse underwater acoustic metasurface composed of 60 elements 
was designed using the designed metasurface elements. Simulation results indicate that the diffuse reflection 
effect of the broadband can be realised in this frequency band by arranging the elements using pseudorandom 
method, and the energy loss in the echo direction can exceed 10 dB. Our work opens a novel pathway for realis-
ing low-frequency wideband underwater acoustic devices, which will enable various applications in the future.

Figure 4.   Reverse design method. (a) A target reflection phase curve. (b) RNN, which consists of a five-
layer fully connected DNN. (c) Output of the RNN, which is a combination of the design parameters. (d) The 
designed reflection phase curve output by the PNN. (e) Dynamic learning rate. (f) The loss curve during the 
RNN training. (g) Several design samples from the proposed RNN on reflected phase design targets. Blue 
curves represent the target filter spectral responses. Brown dotted curves represent the PNN predicted reflection 
responses based on the designs given by the RNN. Red point curves represent the numerical simulation results 
of reflection responses based on the designed structural parameters. All designed parameters including h1 
(mm), h2 (mm), l1 (mm), and l2 (mm) are given as insets.
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Figure 5.   Reverse design of unit cells with π/4 phase shift interval. (a) A set of target reflection phases. (b) 
Comparison of the reflection phase for network prediction and simulation. The solid and dotted curves 
represent the prediction results by the tandem network and the simulation results by COMSOL, respectively (c, 
d). Another example of reverse design of underwater acoustic metasurface with the π/4 phase shift interval.

Figure 6.   Design of wide-band diffuse underwater acoustic metasurface. (a) Schematic diagram of wide-band 
diffuse underwater acoustic metasurface. (b) Simulation results of reflection acoustic far field at 780 Hz, 840 Hz, 
980 Hz and 1080 Hz, respectively. The solid and dotted curves represent the acoustic far field with or without 
metasurface, respectively. (c) Energy loss in the direction of the echo in the frequency band between 700 and 
1200 Hz.
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