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Abstract: The structural and mechanical properties of the microenvironmental context have a
profound impact on cancer cell motility, tumor invasion, and metastasis formation. In fact, cells react
to their mechanical environment modulating their adhesion, cytoskeleton organization, changes of
shape, and, consequently, the dynamics of their motility. In order to elucidate the role of extracellular
matrix stiffness as a driving force in cancer cell motility/invasion and the effects of ionizing radiations
on these processes, we evaluated adhesion and migration as biophysical properties of two different
mammary cell lines, over a range of pathophysiological stiffness (1-13 kPa) in a control condition and
after the exposure to two different X-ray doses (2 and 10 Gy, photon beams). We concluded that the
microenvironment mimicking the normal mechanics of healthy tissue has a radioprotective role on
both cell lines, preventing cell motility and invasion. Supraphysiological extracellular matrix stiffness
promoted tumor cell motility instead, but also had a normalizing effect on the response to radiation
of tumor cells, lowering their migratory capability. This work lays the foundation for exploiting the
extracellular matrix-mediated mechanism underlying the response of healthy and tumor cells to
radiation treatments and opens new frontiers in the diagnostic and therapeutic use of radiotherapy.

Keywords: breast cancer; mechanobiology; cell motility; extracellular matrix stiffness; radiotherapy

1. Introduction

Breast cancer is the most common malignancy and the first leading cause of cancer-related
death in European women [1]. In particular, women in perimenopausal and postmenopausal age
have a higher risk of getting breast cancer [2], and extensive attempts should be made in order to
contain breast cancer incidence and mortality. In this context, radiation therapy (RT) is used as
adjuvant therapy to prevent tumor recurrence after breast-conserving lumpectomy and mastectomy.
RT can induce dramatic consequence for the cells, by stimulating the production of radical and
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reactive oxygen species that damage the DNA of cancer cells, leading to the formation of lethal
chromosome aberrations (double-stranded breaks and/or lesions) and, consequently, killing them
or slowing their growth, as widely reported in the literature [3-6]. In any case, the mechanism of
the response of the cell cytoskeleton to RT in relationship to the mechanical microenvironment in
which cell resides has not yet been elucidated in a comprehensive way. Nowadays, it is widely
recognized that cell cytoskeleton and extracellular matrix (ECM) have key roles in the maintenance of
the correct functioning of many tissue processes that, if altered, have a determinant contribution in
cancer progression. In fact, it has been shown that tumor cells have a less organized and structured
cytoskeleton with lower cell mechanical and cyto-adhesive properties compared to their healthy
counterparts. Furthermore, the dynamic alteration of the actin cytoskeleton has strong implications on
motility, invasion, and metastatic potential of cancer cells [7]. On the other hand, changes in ECM
composition and architecture result in a stiffening process of the matrix that activates cell proliferation
and a consequent invasion mechanism [8-10]. Recently, several research groups have started to focus
their attention on the study of possible impacts of radiation on the cell cytoskeleton and its associated
functions. In particular, it has been extensively investigated the way ionizing radiations can influence
motility, a prerequisite for the formation of metastasis, and for the invasiveness itself of surviving
cancer cells both in vitro and in pre-clinical/clinical experimental studies. The observations made
in vitro experiments indicate that the effects of radiation on cell motility depend strongly on the specific
cell phenotype and the dose delivered to the cells. So far, it has been reported that irradiation has
very different impacts on the motility of four different glioblastoma cell lines, inducing a very strong
inhibition of in vitro invasion only on one of them (A-172 cell line) [11]. More recently, Hohmann
et al. observed that irradiation leads to changes in motility and to a less invasive phenotype of two
glioblastoma cell lines, both associated with an increase of cell mechanical properties and changes in
the cytoskeleton structure [12]. Our group reported similar results on healthy and tumor fibroblasts
irradiated with 250 keV and 6 MeV [13-15]. A sensitive increase in the mechanical properties of tumor
cells, responsible for the enhancement of cell-adhesion and the reduction of migration of tumor cells,
was observed. The effects were significant and dose-dependent for the tumor cell line, while healthy
fibroblasts resulted in being susceptible principally to high energy X-rays administered at doses higher
than 1 Gy. Imaizumi et al. also observed response to X-irradiation strongly dependent on the dose
administered to MDA-MB-231 breast cancer cells. If very low doses (0.5 Gy) enhanced cell migration
and invasion, higher doses (2 and 10 Gy) suppressed MDA-MB-231 migration in a dose-dependent
manner [16]. On the other hand, there are many studies reporting the opposite effect of ionizing
radiation on cell motility. In particular, several works demonstrated that X-rays promote migration
of neck and head carcinoma cells [17,18], breast cancer cells [19], central nervous system cells [19,20],
lung cancer cells [21] and that this enhancement is sometimes accompanied by an increase of cell
invasion [19,20], other times by a reduction [17]. Other in vivo experiments suggest that radiations
can have a myriad of effects upon the motility and invasion capability of tumor cells. Numerous
experimental and clinical studies have evidenced that in addition to a bystander effect that contributes
to killing tumor cells, a non-targeted inhibitory effect on distant tumor growth (abscopal effects) exists,
mediated by the response of the immune system [22]. However, other clinical trials support the
idea that radiations contribute to a higher risk of metastasis through mechanisms mediated by the
release of tumor cells into the circulation system or by effects into irradiated non-tumor cells [23].
The differences observed in these works highlight the complexity of the phenomenon of motility and/or
invasion after irradiation and suggest wider investigations. To better understand the mechanisms
underlying the effects of ionizing radiations on cell motility, here, we propose to consider the role of
microenvironment, considering that properties, functions, and healthiness of the tissue are regulated by
the close physical crosstalk existing between cells and ECM [24]. When these interactions are impaired,
the mechanical integrity of tissue constituents (cells and ECM) changes, triggering cancer formation and
progression [8]. Particularly for breast cancer, a large body of evidence has highlighted the existence
of a close relationship between ECM stiffening, cancer cell softening and cancer onset, progression
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and aggression. In fact, on the one hand, breast cancer cells resulted in being significantly more
deformable than the non-tumorigenic ones, and this change may facilitate easy migration and invasion
of malignant cells during metastasis [25-28]. On the other hand, it has been widely demonstrated that
the mechanics of the tumor microenvironment has a central role in the development of the disease.
Stowers et al. showed that a protrusive and eventually invasive phenotype of non-transformed
epithelial breast cells (MCF10A) can arise from the stiffening of the ECM matrix through the PI3K
and Racl mechanotransduction pathway. In fact, the authors demonstrated that inhibition of these
molecular pathways (Racl, PI3K, MAPK, FAK, and ROCK) was able to suppress the invasive character
of MCF10A cells [9]. Very recently, Panciera et al. observed that only a coordinated interplay between
oncogene-mediated transformation and changes in the rigidity of the microenvironment is able to
power up the process of tumorigenesis [9]. At the same time, the stiffening of ECM is also relevant to
the progression of breast cancers. The increased cross-linking of collagen in breast cancer promotes
focal adhesion formation, PI3K activity, as previously mentioned, and breast malignancy [24,29,30].
For this reason, the mechanical evaluation of breast tumor cells and ECM might provide new support
to diagnosis and promote new insights in the field of chemo- and radiotherapy and clinical practice.
In this work, we focus our attention on breast cancer, not only because it is one of the earliest models
used to understand cancer progression and metastasis, but also because it is treated with RT from stages
I (tumor dimension up to 2 cm and no lymph nodes involved) to III (tumor spread to lymph nodes
or tissue near the breast) to reduce the risk of recurrence after surgery. In particular, we evaluated
biophysical properties (strictly correlated to the cytoskeleton integrity, such as adhesion and migration)
of two different mammary cell lines. A normal epithelial cell line (MCF10A) and a highly aggressive
and invasive adenocarcinoma cell line (MDA-MB-231), on polyacrylamide (PAAm) substrates over a
range of pathophysiological stiffness (1-13 kPa) in control conditions and after the exposure to two
different doses of X-rays (photon beams), were investigated. Selected doses were 2 and 10 Gy, which
represent the daily dose in radiotherapy treatment and the single maximum dose for the treatment
of metastasis. Time points of 1 and 3 days (d) after irradiation were chosen based on our previous
observations according to which, at these particular time points, healthy and tumor cells exhibited
peculiar and different responses to irradiation [13-15]. Shedding light on the effects of X-rays on
functions strictly associated with the cytoskeleton architecture and to cell-ECM crosstalk in healthy
and tumor cells can open new frontiers in the diagnostic and therapeutic use of RT.

2. Results and Discussion

2.1. Role of Substrate Stiffness on Cell Morphological Features Before and after the Exposure to RT

To test the relevance of the mechanical properties of ECM on both healthy and tumor breast cell
behavior and the response to the irradiation, we decided to modulate the mechanical properties of the
cell culture substrate using PAAm hydrogels. Their mechanical properties were controlled by adding
two different ratios of acrylamide and bis-acrylamide, and the rheological characterization verified
that the elastic moduli of the two formulations were equal to 1.3 and 13 kPa, mimicking the values of
stiffnesses of healthy breast tissue and malignant biopsies, respectively [29].

It is now widely known that a strong relationship exists between the mechanical properties of the
ECM and morphological features, such as cell spreading and nuclear shaping [31-34]. This relationship
is strictly related to the myosin-tension generated inside the actin stress fibers necessary for their
assembly and their associated focal adhesions, the structures deputed to the sensing of mechanical cues
(also identified as mechanosensors). On the one hand, the actin cytoskeleton fosters the cell spreading
in a proportional way to the tensional state generated inside it. The cytoskeleton, thanks to the LINC
complex (Linker of Nucleoskeleton and Cytoskeleton), can transmit the mechanical forces to the
nucleus, changing its shape, distorting the nuclear envelope, and evoking biochemical responses [32].
To evaluate the ability of MCF10A and MDA-MB-231 cells to sense and respond to the reactive forces
originating by different mechanical properties of the substrate, we quantified their spreading, intended
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as the whole-cell area, and the nuclear area on collagen-functionalized PAAm substrates with different
stiffness (1.3 and 13 kPa). Cells were plated on the substrates in sparse culture condition in order to avoid
or limit the formation of adherens junctions that could impact on the adhesion and, more generally,
on the mechanotransduction process [34]. We found that changes in substrate stiffness imposed different
degrees of spreading and nuclear area in case of healthy cells, whereas, for metastatic cells, the same
morphological features were not affected by the microenvironment stiffness at all (Figure 1a,fk,p,
Figure 2, and Figure S1; Table 1), suggesting compromised mechanosensing machinery. Furthermore,
the spreading area of MDA-MB-231 on soft substrate resulted in being higher than that of MCF10A
on the same substrate, in agreement with the increased formation and maturation of focal adhesions
associated to enhanced intracellular contractility in KRAS-mutated cells cultured on 1 kPa substrate
compared to MCF10A cells, as observed by Panciera et al. [10]. Panciera et al. also demonstrated that
KRAS-mutated cells, like MDA-MB-231 cells, are characterized by a significant nuclear accumulation
of YAP and TAZ, two well-established sensors of mechanotransduction, already when cultured on
1 kPa substrates. On the contrary, MCF10A cells exhibited a YAP/TAZ nuclear/cytoplasmic ratio lower
than 1, indicating that YAP and TAZ are principally located inside the cytoplasmic compartment [10].
Consistently, we found higher values of the nuclear area of MDA-MB-231 on a soft substrate compared
to MC10A cells.

MCF10A MDA-MB-231
2Gy 10Gy 2Gy  10Gy

Figure 1. Representative images of two different mammary cell lines, MCF10A and MDA-MB-231,
are shown. The spreading of MCF10A and MDA-MB-231 are compared before (a,f k,p) and after RT
(radiation therapy) (b—e,g—j,1-0,q-t). The cells were stained for F-actin (green) and nuclear DNA (blue).
Scale bar, 100 pm.

Having characterized the mechanosensing activity of the two cell lines in the control condition,
we evaluated the effects of irradiation on cell adhesion at 1 and 3 d after treatment at the two different
doses of 2 and 10 Gy. At 1 d after irradiation, MCF10A cells resulted in being less spread compared to
cells in the control condition. This effect was relevant for all conditions, even though more significant
for cells cultured on a stiff substrate and irradiated with the lower dose (2 Gy; Figure la—c,f-h,
Figure 2a, Figures S1 and S2; Table 1). Furthermore, the decrease of cell spreading resulted in being
not dose-dependent on the soft substrate, whereas it exhibited an inverse dependence on the dose
administered in case of cells cultured on the stiff substrate (Table 1). At the same time point, we found
that the nuclear areas of irradiated healthy cells cultured on soft substrate increased slightly, but in a
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significant way and not dose-dependent (Figure la—c, Figure 2c, and Figure S1; Table 1). This was
an unexpected result if associated with that of the spreading area. It could be explained supposing
a protective mechanism, operated by microtubules and intermediate filaments on the nucleus and
activated in a physiological environment. In contrast, on the stiff substrate, the nuclear area decreased
in agreement with the spreading area, but without dependence on the dose administered (Table 1).
At longer times, the effect on the spreading area was maintained only for the lower dose on both
substrates, while the initial values were completely restored by the cells irradiated with the higher dose
(10 Gy; Figure 1a—c, Figure 2a, and Figure S1; Table 1). The behavior of cells is more complicated if the
data on the nuclear area are analyzed. In fact, the higher values were maintained by cells cultured on
soft substrates and irradiated with lower dose indicating a more persistent effect of such dosage on
cell adhesion, while the nuclear area of cells cultured on stiff substrates returned to its initial value
(Figure 1fj, Figure 2c, and Figure S1; Table 1).
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Figure 2. Box plots (mean, median, interquartile range, and outliers) of spreading areas (a,b) and nuclei
areas (c,d). Spreading areas and nuclei area values were obtained from the analysis of Figure 1 and
Figure S1). Dashed lines (a—d) indicate the mean values of spreading areas and nuclei areas in control
conditions. 1 > 60 for cell spreading data, 7 > 110 for nuclear data.
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Table 1. Statistical analysis for data of spreading and nuclei area.

2 Gy 10 Gy
1 day 3 days 1 day 3 days
13 kPa 1.3 kPa 13 kPa 1.3 kPa 13 kPa 1.3 kPa 13 kPa 1.3 kPa 13 kPa

1.3 kP *** NS * A *** NS R A NS.NS ** NS *** NS NS.NS R HHHE
Control ’ a *** NS *** NS ** A *** NS A NS.## NS.##H  NS.#HH A
A o R *** NS R A A *** NS NS ###

Control

13kPa > # R ** NS NS.#HH A ** A A NS.##H
1.3 kP NS ### *NS X NS ##H# R * H# R HHH
1 day ’ a NS.# NS.##H# *** NS NS.# NS .### ** HH S
2Gy 13 kPa NS #i# *** NS NS.NS *** NS R R SHHE
NS .##H# *** NS NS.NS NS.NS NS .##H# R
b L A A
1.3 kPa HHHE NS #iH# FHH NS HHHE

3 days A NS.#HH#  NS.HH * HH o
H *** NS NS.NS A

13kPa NS NS A A

o g * 44 w0k gttt

10G 1day 1.3 kPa NSNS NS##  * i
y *){—*-NS X—**‘###

13 kPa *NS >

*%*'###

3 days 1.3 kPa ——

Asterisks (*) refer to spreading area (blue) and nuclei area (red) of MCF10A cell, hash signs (#) to those of
MDA-MB-231 cells. ***, ### p < 0.001, **, ## p < 0.01, *, # p < 0.05; NS—not significant.

The behavior of metastatic cells was significantly different. MDA-MB-231 cells resulted in being
more sensitive to both doses of irradiation, even though the effects of the RT changed profoundly over
time and with doses. In particular, at both time points, metastatic cells cultured on the physiological
environment reduced their spreading area when irradiated with the dose of 2 Gy in a similar way to
MCF10A cells (Figure 11-n,q-s, Figure 2b, Figures S1 and S3; Table 1). On the other hand, their adhesion
seemed not to be affected by the higher dose, indicating that, in this case, the microenvironment
mimicking a healthy tissue mechanics (1.3 kPa) has a sort of protective role on cell properties
(Figure 1m-o,r-t, Figure 2b, Figures S1 and S3; Table 1). Cells cultured on stiff substrates showed
the opposite behavior. These cells, in fact, increased their spreading area significantly at 1 d in a
dose-dependent manner. After 3 d, only cells irradiated with 2 Gy were able to regain their initial
features, while for those cells treated with 10 Gy, the spreading area increased to a value 1.9-fold higher
than in control condition (Figure 1d and Figure S1; Table 1). The effects of RT on nuclear areas of
metastatic cells are reported in Figure 1k—t, Figure 2d, and Figure S1, and Table 1. In particular, the
higher dose induced a significant increase of the nuclear area resulting 1.9-fold higher than in control
condition (Figure 2d; Table 1), indicating that tumor cells, differently from the healthy ones, were more
sensitive to 10 Gy than to 2 Gy dose. The results observed on stiff substrates are partially in agreement
with those obtained by our group on MCF10A and MCEF7 cells cultured on tissue culture plastics
(3 GPa), which responded at the irradiation by, respectively, reducing and increasing their spreading
area after irradiation [35]. The results point out the necessity not to neglect the role of mechanical
microenvironment in regulating the response of cells to irradiation. The role of substrate stiffness
and composition seems to take a regulatory effect on the response of metastatic cells to RT. In fact,
Cordes et al. found that substrate, intended as ECM molecules (fibronectin and Matrigel), can have a
radioprotective role on glioblastoma cells, which reflects in a significant upregulation of 3-integrins
by irradiation in its turn correlated with improved p-integrin-mediated adhesion to the substrate [8].
Our data, intersected with those previously obtained on petri-dish [35], indicate a range of stiffness,
above 1.3 kPa and below 3 GPa, in which metastatic cells can recover the effect provoked by RT. It is
well known, indeed, that ECM of tumoral tissues presents higher mechanical properties due to an
increased percentage of aligned collagen fibers [8]. Hence, it is interesting that cells behave differently
when cultured on substrates simulating stiffness higher than the physiological ECM of mammary
epithelial cells.
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Taken together, these results suggest how important is the role of the microenvironment and
the necessity to perform further investigations to unravel new mechanisms underlying the response
of healthy and tumor cells to RT treatments. In addition to this, observing the behavior of MCF10A
and MDA-MB-231 cells after irradiation, it is important to recognize that, even if RT altered the
biophysical properties of both cell lines, its impact was less relevant on healthy cells than on tumor cells.
This suggests that MCF10A had a stronger ability to preserve or to recover their properties in both
mechanical environments by adopting probable mechanisms of protection and repair. Furthermore,
after RT tumor cells seem to restore a sort of mechanosensing process having again the ability to
recognize the mechanical environment and to respond in a similar way to MCF10A cells.

2.2. Role of Substrate Stiffness on Cell Motility before and after the Exposure to RT

To evaluate MCF10A and MDA-MB-231 migratory behavior in response to substrate stiffness,
cell videos were recorded with an interval of 10 min using time-lapse microscopy, and two essential
parameters describing the efficiency of cell motility were computed: the mean migration velocity
over a 24-h period and directional persistence. Whereas the migration velocity is easy to calculate
and interpret, the persistence describes the time a cell employs to change its direction and has been
estimated by fitting the mean square displacements (MSDs) over time with the Fiirth’s formula
(see Section 3). As shown in Figure 3u, the velocity of MCF10A decreased significantly from ~0.8 on
the soft substrate to ~0.7 um/min on the stiff substrate (Table 2), consistently with previous reports
indicating that the migration velocity of healthy cells presents an inverse proportion to substrate
stiffness [31]. This result can be explained by considering that cell motility is a complex process requiring
repeated cycles of adhesion to and detachment from the ECM, strictly related to the focal adhesion
life cycle (assembly—maturation—disassembly). In this regard, it has been widely demonstrated that
when the stiffness increased, healthy cells form bigger stress fibers, contributing a more structured
cytoskeleton, and longer focal adhesions with greater assembly/disassembly rate that slows down the
cell migration velocity [36]. Moreover, the persistence time resulted in being equal to 0 (Figure 4a,b;
Table 3), indicating that the motility of MCF10A cells reflects the behavior of a random Brownian
motion on both substrates. On the contrary, the motility of MDA-MB-231 cells increased with the
increase of substrate stiffness passing from ~0.7 to ~1 pm/min (Figure 3v, Table 2), consistently with
other studies reporting the same effect on the migration of various cancer cells, including pancreatic
cancer cells, colorectal cancer cells, breast cancer cells, and so forth [37-41]. What emerged from our
experimental results was that MDA-MB-231 cells were more directionally stable on both substrate
stiffness compared to healthy cells and also their persistence time was positively correlated to the
substrates stiffness, resulting close to 1 and 2 h on soft and stiff substrates, respectively (Figure 4c,d;
Table 3). This finding indicated that the ECM stiffening promotes not only motility but also the ability
of tumor cells to invade distant sites by increasing the directional persistence, in agreement with
observations made in vitro and in vivo experiments. In particular, Levental et al. clearly showed that
in breast tumors, the crosslinking of collagen and ECM stiffness regulate the invasive behavior of
oncogene pre transformed epithelial cells (H-RAS-transformed MCF10A expressing high levels of
activated H-RAS in a similar way to MDA-MB-231 cells) [29]. In addition, the mean migration velocity
of MDA-MB-231 cells on the stiffer substrate is significantly higher than that of MCF10A cells, indicating
that in the absence of pre-oncogene activity, ECM stiffening does not drive mammary epithelial cell
metastasis [10,29]. These two observations, the direct relationship between cell migration velocity and
ECM stiffness and the higher velocity of tumor cells compared to that of healthy cells, can be explained
by considering that tumor cells have a less organized cytoskeleton with lower mechanical properties,
fewer and less-developed focal adhesion than their normal counterpart [42,43]. At the same time,
malignant cells exhibit a very high level of focal adhesion kinase (FAK) [44], a nonreceptor tyrosine
kinase activated by integrin clustering and involved in the process of disassembly of focal adhesion, and
the overexpression and activation of FAK are promoted by the stiffening of the ECM [45]. Consequently,
the upregulation of FAK on stiff ECM contributes to increasing the rate of assembly/disassembly of
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focal adhesions without allowing their maturation and the formation of a robust cytoskeleton but
promoting tumor cell invasion (directional persistence) and migration (migration velocity) instead [44].

MCF10A MDA-MB-231
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Figure 3. Plot at origin of trajectories of MCF10A and MDA-MB-231 before (af k,p) and after RT
(b—e,g—j,1-0,q-t). Trajectories of cells were obtained by manual tracking using ImageJ and Manual
Tracking plugin (http://rsweb.nih.gov/ij/). Box plots (mean, median, interquartile range and outliers) of
migration velocity of MCF10A (u) and MDA-MB-231 (w) in all analyzed conditions. Cell velocity was
calculated by the trajectories using the formula 1 (see Section 3). Dashed lines (u,w) indicate the mean
values of velocity in control conditions. #n > 58 for all conditions.
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Table 2. Statistical analysis for motility data.

2G 10G
Control y y
1 day 3 days 1 day 3 days
kllfa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa
Control 1.3KPa  ** U el ee i ee g NSNS RRREEE Reeg e
ontro 13 kPa s gy NS e e g NSNS RRRHEE OV
d 1 3 kPa Bl # EEEd ### EL LS ### Bt 3 #_#_# He NN # Bt ### Bt ###
2Gy Y 13kpPa war g ONSAH YU UNS PR RS
3days 13KPa e NI R T e
y 13 kPa RRE g SRR g R o NS
1da 1.3kPa T T
10 Gy Y 13kPa R0 g
3 days 1.3 kPa AR A

Asterisks (*) refer to cell velocity of MCF10A cells, hash signs (#) to those of MDA-MB-231 cells. ***, ### p < 0.001,
**, ##p < 0.01, # p < 0.05; NS—not significant.

MCF10A MDA-MB-231

3 ¢ 3
e 1.3 kPa o 1.3 kPa

MSD [pm?]
e

MSD [um?]
S

[y
o

0 0
10 240 470 700 10 240 470 700

Lag Time [min] OA Control Lag Time [min]
2 Gy
A 10 Gy

000

b 1d 3d
x103 13 kPa d 103
20 60
50
“’E 40
=30

A 20

210

0 0
10 240 470 700 10 240 470 700

Lag Time [min] Lag Time [min]

13 kPa

MSD [um?]
)

Figure 4. MSDs (mean square displacements) calculated from cell trajectories of MCF10A (a,b) and
MDA-MB-231 (c,d) by using Formula (2) (see Section 3).
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Table 3. Parameters describing the motility of cells.

2Gy 10 Gy
1d 3d 1d 3d
1.3kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa 13kPa
D [mm?/min] 4.0448 3.4916 6.9223 7.8180 1.8238 3.3666 5.4219 2.9704 1.8234 3.0483

Control

MCF10A P [min] 0.0090 0.0086 32.2139  113.1808  6.6790 31.9583  49.0114  0.05537  0.03201  43.5825
R? 0.9864 0.9937 0.9997 0.9987 0.9993 0.9973 0.9996 0.9939 0.9943 0.9979

D [mm?/min] 13.0096  21.4693  11.8329  22.1579 6.7391 7305239 7.594923 12.08702 4.338288 6.487246

MDA-MB-231 P [min] 59.7990 1149183 62.1477 112.1086 84.9445 122.0365 97.8991  71.3609  104.0150 100.9757

R? 0.9998 0.9995 0.9998 0.9995 0.9998  0.999801 0.998634 0.998922 0.999376  0.998346

Values of diffusion coefficient (D), directional persistence (P), and goodness-of-fit (R?) obtained by fitting the MSD
(mean square displacements) of cells” trajectories to Fiirth’s formula.

Cell motility analysis showed that irradiation had important effects also on the migratory behavior
of healthy and tumor cells. At 1 d after irradiation, MCF10A cells cultured on both physiological
and supraphysiological stiffnesses and irradiated with the lower dose responded by increasing their
migration velocity (Figure 3u, Table 2), as a consequence of their reduced adhesion (Figure 2a), while the
high dose did not seem to affect their motility, even though in this case the adhesion also presented
lower values (Figure 2a). As demonstrated by the increase of the persistence time and compared to the
control conditions, the motility mode changed sensitively for those conditions in which cell velocity
increased (cells irradiated with 2 Gy and 10 Gy and cultured on the stiff substrate; Figure 4a,b; Table 3).
At a longer time, cells cultured on soft substrate reduced their velocity in a very significant way,
showing a partial concordance with RT effects on the adhesion (Figure 3u, Table 2). In fact, whereas
cells irradiated with the higher dose increased their adhesion to the substrate, those irradiated with the
lower dose continued to exhibit a reduced adhesion (Figure 2a). At 3 d after irradiation, the persistence
of 2 Gy-irradiated cells was lower than those observed at 1 d but higher than those of control cells.
This indicates that irradiation can have a strong impact on cell adhesion and motility, both in terms of
velocity and directionality (Figure 4a,b; Table 3). According to the results on cell adhesion, the low dose
produced effects more durable than the high dose. This, in particular on the stiff substrate, produced a
reduction of the spreading area and an enhancement of migration velocity and directional persistence.

MDA-MB-231 cells responded to RT by changing their velocity and persistence time, but the
latter remaining in all cases higher than 1 h and retaining the natural propensity of these cells to move
directionally. MDA-MB-231 cells on soft substrate responded to RT by increasing their migration
velocity when irradiated with 2 Gy, but this effect was completely overturned at 3 d, inducing cells to
move slower (Figure 3w, Table 2) and more persistently as a consequence of the reduced adhesion
(Figure 4c,d; Table 3). The dose of 10 Gy on cells on the soft substrate produced a time-dependent
reduction of migration velocity and, also, in this case, an increase of directional persistence (Figure 3w,
Tables 2 and 3). On the other hand, MDA-MB-231 cells cultured on stiff substrate had a very similar
response to both irradiation; in fact, their velocity remained unchanged 1 d after irradiation, but the
persistence was unperturbed for the low dose and reduced for the high one. At 3 d after irradiation and
irrespective of the dose delivered, we measured a significantly reduced migration velocity as a possible
consequence of the increased adhesion (Figure 2b). To summarize, the above findings suggest thatat 3 d
after irradiation, tumor cells exhibited reduced migration, even if their persistence was not substantially
changed by dose delivered. This effect was particularly relevant for tumor cells on ECM mimicking
tumor microenvironment, which decreased their velocity from ~1 to 0.6 um/min, approaching the
velocity value of healthy cells on stiff ECM (~0.4 um/min). What appears very clear is the importance of
the microenvironment in mediating the cellular response to a physical insult such as photon irradiation.
To better elucidate the mechanisms underlying the effect of RT on cell functions in relationship to
the mechanics of ECM, it will be necessary to evaluate the effects of radiations on the expression of
molecules involved in both processes, first of all, integrins and FAK. In fact, it has been shown that both
integrins and FAK regulate biological processes necessary for the pathogenesis of cancer. Paszek et al.
suggested that tumor stiffness contributes to the aberrant behavior of epithelial tissue by modulating
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integrin signaling through FAK [45]. In addition, irradiation can affect the expression of integrins and
have serious repercussions on adhesion and invasion. As previously mentioned, Cordes et al. found
that ionizing radiation promoted integrin expression in a substrate-dependent way, improving cell
adhesion on fibronectin and Matrigel and impairing their invasion ability [11]. Oppositely, Rieken et al.
indicated that the overexpression of integrins induced by photons had a promigratory effect on the
same tumor cells [46]. On the other side, it will be fundamental also to explore the effects of irradiation
on the architecture and mechanical properties of ECM. Our findings, indeed, indicate the importance of
including its contribution and crosstalk with cell cytoskeleton architecture in the attempt to reconstruct
all the pieces when deciphering cell response to RT treatments.

3. Materials and Methods

3.1. Preparation of Substrate and Mechanical Characterization

Polyacrylamide substrates were prepared as previously reported [47], with minor modifications.
Briefly, glass-bottom culture dishes (World Precision Instruments, FD35-100) were silanized with
3-aminopropyltriethoxysilane (Sigma-Aldrich, St. Louis, MO, USA) for 20 min and extensively washed
with water. Then, 40% acrylamide and 2% methylene-bis-acrylamide were mixed in phosphate-buffered
saline (PBS) solution at two different final concentrations: 4% acrylamide/0.15% methylene-bis-
acrylamide and 10% acrylamide/0.1% methylene-bis-acrylamide corresponding to 1.3 and 13 kPa
(Young’s modulus), respectively. Polymerization was initiated by adding 1/100 total volume of 10%
ammonium persulfate and 1/1000 total volume N,N,N’,N’-tetramethylethylenediamide (TEMED,
Sigma-Aldrich, T7024, St. Louis, MO, USA). Ten microliters of acrylamide/methylenebis-acrylamide
mixture were pipetted on the treated dishes and covered with a 10-mm coverslip. After 20 min, the
coverslip was removed and PBS was added to the dish. Before functionalization, the substrates were
soaked with a penicillin-streptomycin solution overnight and then exposed to UV light emitted by a
germicidal lamp for 1 h. After sterilizations, substrates were functionalized with collagen by using a
bifunctional photoreactive crosslinker (sulfosuccinimidyl 6-(4’-azido-2’-nitrophenylamino) hexanoate,
sulfo-SANPAH; Fischer Scientific, Loughborough, UK). The sulfo-SANPAH solution was diluted in
water at a final concentration of 0.2 mg/mL, placed on PAAm substrates, and exposed to 365 nm UV
for 10 min. After washing with PBS, the substrates were incubated with a solution of bovine type I
collagen at the final concentration of 50 pug/mL for 2 h at 37 °C. Finally, samples were washed with PBS.

After the process of photoactivation, the sulfo-SANPAH solution was removed, and 0.25 mL
solution of PBS and 2% bovine collagen was added to every dish before being incubated at 37 °C for
2h.

3.2. Cell Culture

The MDA-MB-231 cell line was cultured in Lonza Dulbecco’s modified Eagle medium (DMEM/F-12)
supplemented with 10% fetal bovine serum (FBS, Gibco, Eggenstein, Germany), 1% L-glutamine
(Sigma, St. Louis, MO, USA) and 1% penicillin—streptomycin (Sigma, St. Louis, MO, USA).

The MCF10A cell line was cultured in Lonza mammary epithelium-based medium (MEBM),
supplemented with the Mammary Epithelial Cell Growth Medium SingleQuots Kit (MEGM): bovine
pituitary extract (BPE), human epidermal growth factor (hEGF) (0.1%), insulin (0.1%), hydrocortisone
(0.1%), gentamicin—-amphotericin (GA-1000; 0.1%).

3.3. Cell Irradiation

MCF10A and MDA-MB-231 cell lines were exposed to X-rays (photon beams) delivered by the
LINAC Synergy Agility (ELEKTA), using a 6MeV energy beam, at the National Cancer Institute
“PASCALE” of Naples. Three-dimensional conformal radiation therapy (3D-CRT) treatment plans
were realized with Monaco v5.11.03 TPS (treatment planning station) by Elekta to deliver 2 and
10 Gy, with the following setup. Cells were settled in a Petri dish between two solid water phantom
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slabs (2 and 3 cm each) and exposed at two opposite fields. The dose rate selected was 200 UM/min.
Prescribed doses were delivered on a uniform square field of 20 x 20 cm? at the cell level.

The 3D-CRT approach was chosen for the simulation, being broadly used in clinical practice,
although breast cancer treatment can be performed by several other radiotherapy techniques, as IMRT
(intensity-modulated radiation therapy) and VMAT (volumetric-modulated arc therapy).

The 2 Gy represents the conventional fractional dose delivered in standard treatment, whereas
10 Gy was selected to represent the highest dose/fraction treatment as stereotactic body radiotherapy,
even though rarely employed for breast cancer.

3.4. Cell Adhesion Analysis

MCF10A and MDA-MB-231 cells were cultured on PAAm substrates at a final density of
1000 cells/cm?. Cells were fixed and immunostained for cell spreading and nuclear area in the
control condition and 1 and 3 d after irradiation. Cells were washed with PBS and fixed in 4%
paraformaldehyde for 20 min, rinsed twice with PBS, permeabilized with 0.1% Triton X100 for 5 min,
and blocked with 10% goat serum for 1h. Cells were incubated with Alexa 488 phalloidin at 1:200
dilution. Finally, nuclei were stained with Hoechst 33342. Images of cells were acquired using an
Olympus IX81 inverted microscope and a 10x objective. Images were imported into Image] software
(NIH, Bethesda, MD, USA) for quantification of cell spreading and nuclei area. Individual cells and
nuclei were thresholded manually on the basis of phalloidin and nuclei staining, and their spreading
and nuclei areas were determined using the “Measure” command in Image].

3.5. Cell Motility

MCF10A and MDA-MB-231 cells were cultured on PAAm substrates at a final density of
1000 cells/cm?. Cell motility experiments were performed by time-lapse microscopy (Olympus
IX81 with 4x). Phase-contrast images were acquired at 10 min interval for 24 h for a total number of
144 frames. Cell positions in each frame were tracked manually using Image] and Manual Tracking
plugin (http://rsweb.nih.gov/ij/). Migration velocity and MSD were calculated, starting from trajectories
using the following formula:

(i1 = x0) + (yir1 — i)
U:zv‘\/ +1 — +1 (1)

MSD(t) = [x(t - 7) = x(1)]* + [y(t = 7) - y(1)]? @

where x; e y; were the coordinates of cell in the i-th frame, AT is the time interval between two frames, ¢
is the time, and 7 is the lag time.
To estimate diffusion coefficient D and directional persistence P, MSDs curves were fitted with
Firth’s Formula [48]:
MSD(t) = 4D(t - P(1-¢77)) ©)

The fitting was done with ordinary nonlinear least-squares regression analysis.

3.6. Statistical Analysis

Statistical comparisons were performed with a Student’s unpaired test when data exhibit a normal
distribution. Otherwise, a nonparametric Mann-Whitney test was used. P-values of <0.05 denote
statistically significant differences.

4. Conclusions

In summary, our findings indicate that ECM mechanics can play a very active role in mediating
responses of cells to RT. In particular, RT had significant effects on biophysical properties of MDA-MB-231
cells cultured on stiff ECM mimicking tumor environment, whereas their adhesion and nuclei resulted
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in being less affected when cells interact with substrate mimicking a physiological mechanical
environment. MCF10A features were less affected by RT on both substrates, suggesting a stronger
ability of these cells to preserve themselves, at least in terms of spreading and nuclei morphology.
On the contrary, the migration velocity of both cell lines was significantly reduced on soft substrate,
indicating a sort of radioprotective role of physiological ECM that impaired cell motility and invasion.
These preliminary findings, together with further and thorough examinations, can shed light on the
ECM-mediated molecular mechanism underlying the response of healthy and tumor cells to radiation
treatments, generate data with a higher translational significance, and pave the way for exploring new
frontiers in the diagnostic and therapeutic use of RT.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1170/s1,
Figure S1: Zoomed pictures of spreading of MCF10A and MDA-MB-231 cells, Figure S2: Percentage distribution
of cell spreading area of MCF10A cells before and after RT, Figure S3: Percentage distribution of cell spreading
area of MDA-MB-231 cells before and after RT.
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