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Histidine residues play important structural and functional roles in proteins, such as serving
as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel
activity. Many of these activities are modulated by the ionization state of the imidazole ring.
Here we present a fast MAS NMR approach for the determination of protonation and
tautomeric states of His at frequencies of 40–62 kHz. The experiments combine 1H
detection with selective magnetization inversion techniques and transferred echo
double resonance (TEDOR)–based filters, in 2D heteronuclear correlation experiments.
We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.
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INTRODUCTION

Histidines (His) play important structural and functional roles in proteins such as metal binding
(Stryer et al., 1964; Perutz and Mathews, 1966; Adams et al., 1969; Liljas et al., 1972), proton transfer
(Hoffee et al., 1967; Blow et al., 1969; Campbell et al., 1974), and stability (Perutz et al., 1969; Lewis
et al., 1976; Loewenthal et al., 1992). These functions are often correlated with the ionization state of
the histidine sidechain (Figure 1A) (Bachovchin and Roberts, 1978; Kossiakoff and Spencer, 1981;
Lewis et al., 1981). While the pKa of the imidazole ring for free histidine is 6.5 (Blomberg et al., 1977),
in proteins the pKa values vary widely, from 3 to 9, depending on the interactions with neighboring
residues and degree of burial (Zhou et al., 1993; Plesniak et al., 1996). At pH values above the pKa,
anionic τ and π tautomers with hydrogens at either Nε2 or Nδ1 are present, while below the pKa the
protonated imidazole ring possesses hydrogens at both Nε2 and Nδ1. For a protein at intermediate pH
values, it is possible that a fraction of His residues is protonated and the remaining fraction
unprotonated (French and Hammes, 1965; Edwards and Sykes, 1980; Hass et al., 2008).

Methods to determine His ionization states in proteins are solution NMR (Kilmartin et al.,
1973; Markley, 1975; Bachovchin and Roberts, 1978; Perutz et al., 1985; Pelton et al., 1993;
Shimba et al., 1998; Hass et al., 2008; Hansen and Kay, 2014) or neutron diffraction (Kossiakoff
and Spencer, 1980; Maeda et al., 2004; Kovalevsky et al., 2010), with the latter limited to very
large single crystals and requiring a neutron source, both difficult conditions to meet routinely.
Therefore, solid-state magic angle spinning (MAS) NMR constitutes a viable alternative (Wei
et al., 1999). Similar to solution NMR, the tautomeric state of histidines can be unambiguously
determined from a unique combination of 15N sidechain chemical shifts (Munowitz et al., 1982;
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FIGURE 1 | (A) Four states of histidine: left to right, charged state, neutral τ tautomer, anionic τ tautomer, and anionic π tautomer. (B) Pulse sequence for the 1H-detected
TEDOR-based 15N selective filtered experiment. Tr is the MAS rotor period, τmix is the total TEDOR mixing time. The phase on the individual pulses are: φ1 � 16 × (0) 16 ×
(2), φ2 � 1, φ3 � 0,φ4 � 0, φ5 � 0213 2031, φ6 � 2, φ7 � 0, φ8 � 02, φ9 � 1133, φ10 � 4 × (0) 4 × (1) 4 × (2) 4 × (3), φ11 � 4 × (1) 4 × (0), φ12 � 4 × (1) 4 × (0) 4 × (1) 4 × (0) 4
× (3) 4 × (2) 4 × (3) 4 × (2), φrec � 3113 0220 1331 2002, where 0 � x, 1 � y, 2 � –x, and 3 � –y. Δ is set to one rotor period during which 1H rf field of ωr amplitude
is applied for effective Z-filtering. MISSISSIPPI water suppression sequence is applied during Δ′ time period. (C) Synthetic 1H-detected TEDOR-based 15N selective
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Wei et al., 1999; Miao et al., 2014) and the corresponding N-H
distances can be estimated, allowing for hydrogen bonding studies
(Shenderovich et al., 2015). Protonation states for the crystalline
histidine amino acid have been determined by MAS NMR for
different pH values (Li and Hong, 2011) and crystalline short
peptides (Platzer et al., 2014). Using 15N selective filtered,
13C-detected experiments with the inversion pulses at frequencies
of the different tautomers (Miao et al., 2014) permits their
identification. For proteins containing several histidine residues,
the above experiments are challenging due to low sensitivity and
spectral overlap. Therefore, only a handful of such studies have been
reported to date (Hu et al., 2006; Hu et al., 2010; Miao et al., 2015;
Kwon et al., 2019; Maciejko et al., 2019; Vasa et al., 2019; Movellan
et al., 2020). In order to increase resolution, the original pulse
sequence can be reconfigured as a 2D experiment by introducing
a 13C-13C mixing period based on proton-driven spin diffusion
(PDSD) (Bloembergen, 1949) and extending the second Z-filter
(Miao et al., 2014). 2D and 3D proton-based experiments were also
introduced with 1H chemical shifts either recorded in the indirect
dimension (Miao et al., 2015) or detected directly (Shenderovich
et al., 2015; Vasa et al., 2019; Movellan et al., 2020).

Herein, we present an alternative MAS experiment that uses
1H detected transferred-echo double resonance (TEDOR)-
based 15N selectively filtered 2D correlations at fast MAS
frequencies of 40–60 kHz. The advantages of the
1H-detected fast-MAS experiments presented here are: i)
improved sensitivity due to 1H detection, and ii) improved
resolution via the second dimension and selective recoupling
of aromatic resonances directly attached to 15N atoms.
Microcrystalline assemblies of U-13C,15N- and fractionally
deuterated (FD) (Mance et al., 2015) 13C,15N-HIV-1
CACTD-SP1 protein samples, possessing solely a single His
residue, His-226, are ideally suited for pulse sequence
optimization and therefore were selected for illustrating our
current approach. Extension to ultrafast MAS frequencies (up
to 110 kHz), should yield even higher sensitivity and
resolution for proteins with multiple histidines.

MATERIALS AND METHODS

Sample Preparation
U-13C,15N-L-histidine was purchased from Cambridge Isotope
Laboratories, recrystallized from an aqueous solution at pH 6.0,
adjusted by mixing HCl and NaOH. The sample was packed into a
1.3 mm MAS rotor. Microcrystalline assemblies of U-13C,15N- and
FD-13C,15N-HIV-1 CACTD-SP1were prepared in the presence of the
assembly cofactor inositol hexakisphosphate (IP6) as described

previously (Wagner et al., 2016) except for growing
Escherichia coli in M9 medium containing 13C glucose, 15N
NH4Cl, isotopically labeled precursors, and (for the deuterated
sample) D2O. Proteins were assembled with 1.6 mM IP6
(Sigma-Aldrich), for a final reaction volume of 1 ml at pH
8.0. Assemblies were incubated overnight at 20°C and packed
into 3.2 mm (U-13C,15N), 1.9 mm (FD-13C,15N), or 1.3 mm
MAS rotors (U-13C,15N).

MAS NMR Spectroscopy
MAS NMR experiments on U-13C,15N-CACTD-SP1 and
FD-13C,15N-CACTD-SP1 microcrystalline assemblies were
performed on a 20.0 T Bruker AVIII spectrometer outfitted
with 3.2 mm E-Free HCN and 1.9 HCN probes, respectively.
The MAS frequency was 14 and 40 kHz, respectively, controlled
to within ± 10 Hz by a Bruker MAS controller. The actual sample
temperature was maintained at 4 ± 1°C throughout the
experiments using the Bruker temperature controller.

The Larmor frequencies were 850.4MHz (1H), 213.9MHz (13C)
and 86.2MHz (15N). The typical 90° pulse lengths were 2.6–3.0 μs for
1H, 4.3–4.5 μs for 13C, and 4.2–4.7 μs for 15N. The 1H-13C and 1H-15N
cross-polarization employed a linear amplitude ramp of 90–110% on
1H, and the center of the ramp was matched to a Hartmann–Hahn
condition at the first spinning sideband; contact times of 0.7–1.5ms
and 1.0–1.7ms were used, respectively. 50 ms CORD (Hou et al.,
2013) mixing time was applied to facilitate 13C-13C mixing.

MAS NMR experiments on U-13C,15N-L-histidine and
FD-13C,15N-CACTD-SP1 microcrystalline assemblies were
performed on a 14.1 T Bruker AVIII spectrometer outfitted
with 1.3 mm HCN probe. Larmor frequencies were 599.8 MHz
(1H), 150.8 MHz (13C), and 60.7MHz (15N). The MAS frequency
was 60 kHz, controlled to within± 10Hz by a BrukerMAS controller.
The actual sample temperaturewasmaintained at 40± 1°C throughout
the experiments using the Bruker temperature controller. The typical
90° pulse lengths were 1.4–1.6 μs for 1H, 2.7–3.0 μs for 13C, and
3.3–3.6 μs for 15N. The 1H-13C and 1H-15N cross-polarization
employed a linear amplitude ramp of 90–110% on 1H, center of
the ramp was matched to a Hartmann–Hahn condition at the first
spinning sideband, with contact times of 1.0–5.0ms and 1.3–5.0ms,
respectively. Band-selective 15N-13C SPECIFIC-CP contact time was
5.0–6.0ms. SWFTPPM (Vinod Chandran et al., 2008) decoupling
(15 kHz) was used during the TEDOR block and acquisition periods.
The selective 15N 180° r-SNOB (Kupce et al., 1995) pulse length in the
Z-filtered TEDOR experiments was 500 µs and the bandwidth —
2 kHz; the rf power was 4 kHz. During the Z-filter time period Δ,
60 kHzCWdecoupling was applied for τr on 1H channel, while during
the time period Δ’, MISSISSIPPI (Zhou and Rienstra, 2008) water
suppression was applied. The TEDOR block duration was 1–3ms.

FIGURE 1 | filtered CH HETCOR spectra showing cross peaks expected for each tautomer. Left to right, soft pulse turned off, soft pulse at 170 ppm, soft pulse at
250 ppm. The filtering patterns for neutral and anionic τ tautomers are identical. (D) 15N (top) and 13C (bottom) CPMAS NMR spectra of crystalline histidine. (E)
Aromatic region expansion of 2D NCA spectrum of crystalline histidine. (F) 1D 13C spectra using TEDOR-based 15N selective filtering in the aromatic region. Top to
bottom, soft pulse turned off; soft pulse at 250 ppm; soft pulse at 170 ppm. (G) Three complementary 1H-detected TEDOR-based 15N selective filtered CH HETCOR
spectra. Left to right, soft pulse turned off, soft pulse at 170 ppm, soft pulse at 250 ppm. The MAS frequency was 60 kHz in all experiments. Signals of charged state are
shown in purple, neutral τ tautomer – in magenta, anionic τ tautomer - in grey, and anionic π tautomer – in teal.
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Data Processing
All MAS NMR data were processed using NMRPipe (Delaglio
et al., 1995). The 13C and 15N chemical shifts were referenced with
respect to the external standards adamantane (Morcombe and
Zilm, 2003) and ammonium chloride (Bertani et al., 2014),
respectively. The 2D and 3D data sets were processed by
applying 30, 45, 60, and 90° shifted sine bell apodization
followed by a Lorentzian-to-Gaussian transformation in both
dimensions. Forward linear prediction to twice the number of the
original data points was used in the indirect dimension followed
by zero filling. The processed spectra were analyzed in
NMRFAM-Sparky (Goddard and Kneller, 2004; Lee et al.,
2015) and CCPN (Stevens et al., 2011).

RESULTS

Here, we report on a 2D 1H-detected TEDOR-based Z-filtered
experiment, which incorporates 15N selective filters for the
determination of histidine tautomeric states. The pulse sequence is
shown in Figure 1B. The experiment is well suited for fast MAS
frequencies of 40 kHz and above. The tautomeric states of His
residues are unambiguously determined using a combination of
three CH HETCOR experiments comprising: i) 15N selective
TEDOR filter, containing 13C resonances of all protonation and
tautomeric states present; ii) 15N selective TEDOR filter with a soft
pulse at 170 ppm, removing resonances of the protonated state while
Cε1 andCδ2 atoms of π tautomer andCε1 andCγ atoms of τ tautomer

FIGURE 2 | (A) A hexameric unit of HIV-1 CACTD-SP1 in the microcrystalline assembly (PDB 5I4T) shown as side view (left) and top view (right). (B) 1D 13C MAS NMR
spectra of FD-13C,15N-CACTD-SP1 with TEDOR-based 15N selective filtering in the aromatic region. Top to bottom: CPMAS spectrum; TEDOR-based 15N selectively
filtered spectra with soft pulse turned off, soft pulse at 170 ppm, and soft pulse at 250 ppm. (C) 2D CORD spectrum of FD-13C,15N-CACTD-SP1 (MAS frequency 14 kHz).
(D) Aromatic regions of 1H-detected TEDOR-based 15N selective filtered CHHETCOR spectra in FD-13C,15N-CACTD-SP1: TEDOR filter and soft pulse turned off (top left),
soft pulse turned off (top right), soft pulse at 170 ppm (bottom left), soft pulse at 250 ppm (bottom right). The MAS frequency was 40 kHz in all experiments, unless
indicated otherwise. Signals of τ tautomer are shown in magenta.
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remain; and iii) 15N selective TEDOR filter with a soft pulse at
250 ppm, retaining all signals of the charged state, Cε1 and Cγ of the π
tautomer as well as Cε1 and Cδ2 atoms of the τ tautomer. Cε1 of
anionic tautomers is always present in TEDOR filtered spectra, but
has reduced peak intensity when 15N selective pulse is applied as C-N
dipolar interaction with the non-selectively irradiated nitrogen atom
is recoupled. The sequence was first tested on a crystalline L-histidine
sample prepared at pH 6.0. The 13C and 15N 1D CPMAS and 2D
NCA spectra are shown in Figures 1D, E, respectively. The spectra
clearly indicate the presence of two forms of L-histidine, the charged
monohydrate and the τ tautomer, in approximately 2:1 ratio. As
shown in Figure 1F, conventional 13C-detected TEDOR-based

experiments are well suited for the determination of protonation
states in this sample. To test the 1H-detected sequences proposed
herein, three complementary experiments were performed. As shown
inFigure 1G, 15N selective TEDOR-filteredCHHETCORwithout or
with a soft pulse at 250 ppm (left and right panels, respectively) yield
the sidechain signals of both protonation states, while 15N selective
TEDOR-filtered CH HETCOR with soft pulse at 170 ppm retains
only Cε1 resonance of the τ tautomer (chemical shifts provided in
Supplementary Table S1). Water suppression was incorporated into
the second Z-filter, allowing to record spectra on hydrated samples.

HIV-1 CACTD-SP1 (Figure 2A) contains a single His residue,
His-226. The outstanding high spectral resolution in the

FIGURE 3 | (A) 1D 15N CPMAS and 13C MAS NMR spectra of U-13C,15N-CACTD-SP1 with TEDOR-based 15N selective filtering in the aromatic region (MAS frequency
14 kHz). Top to bottom: 15N CPMAS spectrum; 13C CPMAS spectrum; TEDOR-based 15N selectively filtered spectra with soft pulse turned off, soft pulse at 170 ppm, soft
pulse at 250 ppm, and a reference (S0) experiment. (B) Aromatic regions of 1H-detected TEDOR-based 15N selective filtered CH HETCOR spectra in U-13C,15N-CACTD-
SP1: TEDOR filter and soft pulse turned off (top left), soft pulse turned off (top right), soft pulse at 170 ppm (bottom left), soft pulse at 250 ppm (bottom right). The first
contour was set at 5× the noise rmsd. (C) 1D 1H slices of 1H-detected TEDOR-based 15N selective filtered CH HETCOR spectra in U-13C,15N-CACTD-SP1, extracted at
13C shifts shown as gray dashed lines in panel (B). Left to right: TEDOR filter and soft pulse turned off, soft pulse turned off, soft pulse at 170 ppm, soft pulse at 250 ppm.
The MAS frequency was 60 kHz. Signals of τ tautomer and π tautomer are shown in magenta and teal, respectively.
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microcrystalline FD-13C,15N-CACTD-SP1 sample allows for the
determination of histidine protonation and tautomeric states
even in the 13C-detected mode (Figure 2B). The Cε1 and Cγ

resonances are present in 1D experiments, while the Cδ2

resonance is absent in the 15N selective TEDOR-filtered 13C
CPMAS experiment with the soft pulse at 170 ppm since its
magnetization does not build up during the TEDOR block due to
the very weak dipolar coupling to Nδ1 (chemical shifts provided in
Supplementary Table S2). The 2D 13C-13C CORD spectrum
clearly shows a single set of resonances, indicating the presence of
only one histidine species (Figure 2C), although the protonation
and tautomeric state cannot be determined without additional
experiments. The three complementary 1H-detected TEDOR-
based 15N selective CH HETCOR spectra (Figure 2D) also
indicate the presence of a single species, which is
unambiguously assigned as τ tautomer. These 1H-detected 2D
spectra contain no resonances of aromatic residues other than His
(shown in black in the CH HETCOR spectrum) and Trp (these
are weak or absent in the spectra of the deuterated sample), as
only carbons attached to nitrogens are selected, making
assignment of histidine resonances straightforward.

In contrast to the FD-13C,15N-CACTD-SP1, the His-226
protonation state in U-13C,15N-CACTD-SP1 assemblies cannot
be easily determined using the 1D 13C-detected version of
TEDOR-based 15N selective filtered experiments due to low
resolution and spectral overlap (Figure 3A). In contrast, the
2D 1H-detected TEDOR-based 15N selective filtered spectra
(Figure 3B) suggest the presence of a small fraction of π
tautomer along with the predominant τ tautomer in this
sample (chemical shifts provided in Supplementary Table S2).

In addition to the His signals, the indole ring signals of the
Trp184 residue are also present in the 1H-detected TEDOR-based
experiments when the soft pulse is either turned off or centered at
250 ppm. This is expected due to the nitrogen atom Nε1 in the
indole ring, which allows for magnetization build up on adjacent
carbon atoms (Cδ1 and Cε2) during TEDOR transfer. Tryptophan
sidechain resonances appear much stronger in non-deuterated
protein assemblies compared to the FD-13C,15N -CACTD-SP1 and
can be distinguished from those corresponding to the histidine
based on chemical shift.

CONCLUSION

We demonstrated that 1H-detected 2D Z-filtered TEDOR
experiments incorporating 15N selective filters permit

unambiguous assignment of histidine protonation and
tautomeric states in microcrystalline proteins and protein
assemblies. This approach combines all the advantages of fast
MAS and proton detection. Extending the experiments to MAS
frequencies of 110 kHz and above can further improve the quality
of data sets and allow unambiguous assignment of His protonation
and tautomeric states in larger proteins and protein assemblies.
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