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ABSTRACT. Zearalenone (ZON), produced by Fusarium fungi, exhibits estrogenic activity. 
Livestock can be exposed to ZON orally through contaminating feeds such as cereals, leading 
to reproductive disorders such as infertility and miscarriage via endocrine system disruption. 
However, the details of ZON metabolism remain unclear, and the mechanism of its toxicity has 
not been fully elucidated. In this study, we investigated the kinetics of ZON absorption and 
metabolism in rat segmented everted intestines. ZON absorption was confirmed in each intestine 
segment 60 min after application to the mucosal buffer at 10 µM. Approximately half of the 
absorbed ZON was metabolized to α-zearalenol, which tended to be mainly glucuronidated in 
intestinal cells. In the proximal intestine, most of the glucuronide metabolized by intestinal cells 
was excreted to the mucosal side, suggesting that the intestine plays an important role as a first 
drug metabolism barrier for ZON. However, in the distal intestine, ZON metabolites tended to be 
transported to the serosal side. Glucuronide transported to the serosal side could be carried via 
the systemic circulation to the local tissues, where it could be reactivated by deconjugation. These 
results are important with regard to the mechanism of endocrine disruption caused by ZON.
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Zearalenone (ZON) is a nonsteroidal estrogen-like mycotoxin produced by Fusarium species [7]. ZON has been shown to 
disrupt reproductive processes by mimicking the action of 17β-estradiol [42]. ZON is a common contaminant of grains such as 
corn and wheat worldwide [1, 26]. Due to its high thermal stability, ZON is not degraded by heat treatment during processing, 
resulting in reports of ZON contamination of foods produced from grains [51]. ZON contamination of livestock feeds is also a 
problem, particularly feeds for pigs.

ZON primarily affects the reproductive organs in mammals, resulting in reproductive disorders such as uterine hypertrophy, 
vulva vaginitis, infertility, and miscarriage [56]. Delay in reaching sexual maturity and disruption of implantation have been 
demonstrated experimentally in rodents treated with ZON [24, 54]. After oral exposure to ZON, the mycotoxin is rapidly absorbed 
in the gastrointestinal tract. ZON uptake is estimated to be 80–85%, and the mycotoxin and its modified forms can be detected in 
blood after administration [35]. ZON and its major derivatives are shown in Fig. 1 [33].

ZON is metabolized to α- and β-zearalenol (ZOL) via enzymatic reactions mediated by 3α- and 3β-hydroxy-5-steroid 
dehydrogenases (HSDs). The resultant α- and β-ZOL are metabolized via double bond reduction to α- and β-zearalanol (ZAL), 
respectively. In an alternative pathway, ZON is reversibly reduced to zearalanone (ZAN) [33, 36]. These metabolites are reactive 
and exhibit more-potent estrogenic activity than ZON (relative estrogen potency: α-ZAL >α-ZOL >β-ZAL >ZON >β-ZOL) 
[17, 33]. Activated ZON derivatives undergo conjugation reactions catalyzed by UDP-glucuronosyltransferase (UGT) 1A1 and 
UGT1A8 [40]. The resulting glucuronides have low estrogenic activity and are eliminated from the body via the urine or feces 
[10, 28, 33]. The alternative metabolism of ZON (i.e., metabolic activation and conjugation) is associated with various potential 
adverse reproductive effects. To elucidate the mechanism of ZON-induced adverse effects on target organs, therefore, it is essential 
to clarify the metabolism and disposition of ZON during passage through the gastrointestinal tract.

Binder et al. suggested that biotransformation of ZON occurs in the intestinal wall during absorption [2]. However, details 
regarding the actual and dynamic behavior of the compound during absorption within the intestinal wall remain unclear. Because 
there are gender differences in the effects of ZON, especially reproductive disorders during pregnancy [24], we used a rat everted-
intestine model to examine the metabolism and disposition of ZON, focused on gender and pregnancy differences, in the intestine, 
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which functions as the first barrier through xenobiotic metabolism. In this rat everted-intestinal model, it is possible to track the 
mucosal excretion and serosal transport of compounds over time by site of the intestine [13].

MATERIALS AND METHODS

Chemicals
ZON was purchased from Funakoshi Co. (Tokyo, Japan); high-performance liquid chromatography (HPLC)-grade methanol 

was purchased from Wako Pure Chemical Industries (Osaka, Japan); and β-glucuronidase was purchased from Sigma-Aldrich 
(St. Louis, MO, USA). Zearalenone glucuronide (ZON-GA) and zearalenol glucuronide (ZOL-GA), purified from rat bile after 
perfusion of the liver with ZON, were quantified by HPLC using the difference between β-glucuronidase–treated and untreated 
samples and used as standards [14].

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory 

Animals of the U.S. National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal 
Experiments of the Rakuno Gakuen University (permit number: VH18A15). All surgeries were performed under isoflurane 
anesthesia, and every effort was made to minimize animal suffering.

Animals
Male (330–400 g), nonpregnant female (240–280 g), or pregnant female (270–340 g at gestation day 18–19) Sprague-Dawley 

rats (8 to 10 weeks old) were purchased from Sankyo Lab Co. (Tokyo, Japan) and used in all experiments. The rats were fed, 
housed, and allowed to adapt to their environment for 1 week before they were used in experiments. A total of 18 rats were used 
(6 males, 6 nonpregnant females, and 6 pregnant females).

Preparation of everted intestine
Krebs Ringer’s bicarbonate buffer (NaCl, 110 mM; KCl, 5 mM; MgCl2, 1.2 mM; CaCl2, 2.5 mM; NaHCO3, 25 mM and glucose, 

10 mM) was used in all experiments. The solution was aerated with 95% O2/5% CO2, and the pH was adjusted to 7.4. After 
euthanasia by exsanguination under anesthesia, the jejunum, ileum, and colon were collected from each animal. The bowels were 
excised and prepared according to a modification of a previously described segmentation and eversion method [15]. Briefly, with 
the exception of the duodenum, the excised small intestine was lavaged and divided into three sections of equal length. The distal 
portion of each section was excised and trimmed to 10 cm and designated as segments I, II, and III in distal order, with segment 
I from the jejunum and segment III from the distal ileum (Fig. 2A). In the same manner, the colon (segment IV) was excised, 
washed, and trimmed to a final segment length of 10 cm taken from the distal end.

The four trimmed segments were turned inside out and affixed to a polyethylene tube containing mucosal buffer solution 

Fig. 1. Schematic representation of the zearalenone metabolic pathway. Zearalenone (ZON) metabolism in mammals involves 
reduction catalyzed by hydroxysteroid dehydrogenase (HSDs), and conjugation catalyzed by UDP-glucuronosyltransferase 
(UGT). The plus sign indicates the relative estrogenic potency of the compound. The order is α-zearalanol (α-ZAL) >α-zearalenol 
(α-ZOL) >β-zearalanol (β-ZAL) >ZON >β-zearalenol (β-ZOL).
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(25 ml). Serosal buffer solution (25 ml) was pumped through the everted bowels using a tube pump MP-32N (EYELA, Tokyo, 
Japan) at 5 ml/min via polyethylene tubes (Fig. 2B). ZON was added to the mucosal buffer solution at a concentration of 10 µM, 
and reaction products were collected independently from the serosal and mucosal sides at 0, 20, 40, and 60 min after the addition 
of each compound. In this rat everted-intestinal model as described, sufficient metabolic kinetics could not be analyzed when the 
substrate concentration was below this level [13]. Moreover, this level of ZON is known not to affect cell viability in experiments 
in vitro experiment [42].

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products
Mucosal and serosal samples were filtered using a disposable disk filter (HLC-DISK3; Kanto Chemical Co.) and stored at 

−80°C until analysis. The samples were then analyzed using an LC-MS/MS system (Shimadzu, Ktoto, Japan) equipped with 
an electrospray ionization source and operated in negative mode. Mobile phases A and B consisted of methanol/water/acetic 
acid (5:95:0.05) with 10 mM ammonium acetate and 100% methanol, respectively. Gradient elution was performed as follows: 
0–8 min (0–100% B), 8–10 min (100% B). Samples were resolved on a Triart C18 reversed-phase column (2.1 × 150 mm; YMC 
Co., Tokyo, Japan) and detected using multiple reaction monitoring mode. The precursor and product ions are shown in Table 1. 
13C-ZON was used as an internal standard to quantify ZON and its derivatives.

Statistical analysis
All data are expressed as the mean ± S.D. of six independent experiments. Mann-Whitney U test was applied to compare the 

quantitative variables by JMP 14.2 (SAS institute, Japan). In all the statistical tests, differences were considered significant if the 
P value was equal to or less than 0.05.

Fig. 2. Schematic illustration of the everted intestine model. (A) The small intestine, excluding the duodenum, was divided into three equal parts, 
and the distal part was excised and the length adjusted to 10 cm. The parts were then designated I, II, and III in distal order. In the same manner, 
the colon was excised and adjusted to 10 cm, taken from the distal end. (B) The everted intestine was affixed to a polyethylene tube. Serosal 
buffer was circulated at 5 ml/min using a pump. Zearalenone (10 µM) was added to the mucosal buffer. The water temperature was maintained 
at 37°C, and the tissue was aerated with 95% O2/5% CO2.

Table 1. Optimized multiple reaction monitoring parameters

Analyte m/z RT a) (min) CE b) (V)
Zearalenone ZON 317>273 7.58 21
Zearalanone ZAN 319>205 7.52 23
α-Zearalenol α-ZOL 319>160 7.50 32
β-Zearalenol β-ZOL 319>160 7.30 32
α-Zearalanol α-ZAL 321>277 7.41 24
β-Zearalanol β-ZAL 321>277 7.24 24
Zearalenone glucuronide ZON-GA 493>175 6.57 19
α-Zearalenol glucuronide α-ZOL-GA 495>319 6.62 29
β-Zearalenol glucuronide β-ZOL-GA 495>319 6.32 29
Zearalenone diglucuronide ZON-GA/GA 669>493 5.75 23

a) RT, retention time; b) CE, collision energy.
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RESULTS

Zearalenone absorption and transport
Upon application of ZON (10 µM) to the mucosal side of the everted intestine, the fluid concentration of ZON decreased 

over the incubation period. The rate of disappearance of ZON from the mucosal compartment was estimated at approximately 
100–200 nmol/hr in all segments (Fig. 3). In male and pregnant female rats, the disappearance tended to be diminished in the distal 
segment of the small intestine (segment III), however the disappearance of ZON was almost the same at any parts of the female rat 
intestinal segments.

On the serosal side of the everted intestine, a small amount of ZON was detected. The amount of ZON transported from the 
mucosal side to the serosal side was extremely low (approximately 2 nmol over 60 min of incubation) even in the distal colon, 
where the highest absorption of ZON was observed (Fig. 3 and Supplementary Fig. 1A).

Absorption and excretion of ZON metabolites
The present data demonstrate the transport of a small amount of ZON from the mucosal side to the serosal side of the everted 

intestine, despite the considerable amount of ZON absorbed from the mucosal fluid (Fig. 3). In a recent study, ZON was shown to 
be metabolized to ZON-GA, α-ZOL, β-ZOL, α-ZOL-GA, β-ZOL-GA, ZON-GA, and ZAN [33]. Therefore, the excretion of ZON 
metabolites from the intestinal segments was examined.

After 60 min of incubation, α-ZOL, ZON-GA, and α-ZOL-GA were detected in the mucosal and serosal buffers and quantified. 
ZAN, β-ZOL, β-ZOL-GA, and zearalenone diglucuronide were also detected, but the amounts were too low to quantify.

Excretion of α-ZOL (which is reduced at the 7α position of ZON by HSDs) to the mucosal side was observed in each segment. 
α-ZOL mucosal excretion tended to be higher in the male proximal intestine (segment I) and in male and pregnant female distal 
intestine (segments III and IV), but the amount was very small, at most approximately 0.3 nmol (Fig. 4 and Supplementary Fig. 1B). 

Fig. 3. Absorption and disposition of zearalenone in rat everted 
intestine. Upper graph shows the amount of zearalenone 
(ZON) that disappeared from the mucosal side within 60 min 
of incubation. ZON (10 µM) was added to the mucosal buffer 
solution of each segment. The amount of ZON was determined 
by subtracting the final amount of ZON in the mucosal buffer 
solution after a 60-min incubation. I, II, and III indicate the 
intestinal sites in distal order from the ligament of Trietz, and 
IV indicates the colon. Bottom graph shows the amount of un-
conjugated ZON transported to the serosal side within 60 min 
of incubation. ZON was added to the mucosal buffer solution 
of each segment at a concentration of 10 µM. Segments I, II, 
and III are distal from the jejunum and ileum, and IV is the 
colon. *P<0.05, ** P<0.01.

Fig. 4. α-Zearalenol in rat everted intestine. The amount of 
α-zearalenol (α-ZOL) excretion to the mucosal side (top graph) 
and transported to the serosal side (bottom graph) within 60 
min of incubation. Zearalenone was added to the mucosal 
buffer solution of each segment at a concentration of 10 µM. 
Segments I, II, and III are from the jejunum and ileum in distal 
order, and IV is the colon.
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In contrast, α-ZOL transport to the serosal side reached a maximum 
of approximately 0.05 nmol in the colon, an amount that was even 
less than observed with mucosal excretion; α-ZOL transport to the 
mucosal side was approximately 6 times greater than transport to 
the serosal side (Fig. 4 and Supplementary Fig. 1C).

Most of the absorbed ZON was not transported to the serosal side 
in its unmodified form nor excreted or transported as reduced α-ZOL. 
Therefore, we investigated the possibility that ZON was conjugated 
in the intestine. In all intestinal segments, ZON-GA and α-ZOL-GA, 
the glucuronidated forms of ZON and α-ZOL, were detected in large 
amounts. ZON-GA mucosal excretion reached a maximum of 85.39 
nmol in the pregnant female proximal intestine and a minimum of 
22.55 nmol in the female colon (Fig. 5 and Supplementary Fig. 1D). 
In contrast, ZON-GA serosal transport reached a maximum of 49.94 
nmol in the female colon and a minimum of 1.64 nmol in the female 
proximal intestine (Fig. 5 and Supplementary Fig. 1E). The maximum 
α-ZOL-GA mucosal excretion was 60.02 nmol in the pregnant 
female proximal intestine, and the minimum mucosal excretion was 
20.09 nmol in the female colon (Fig. 6 and Supplementary Fig. 1F). 
By comparison, the maximum α-ZOL-GA serosal transport was 
36.15 nmol in the pregnant female colon, and the minimum serosal 
transport was 2.84 nmol in the female proximal intestine (Fig. 6 and 
Supplementary Fig. 1G). Interestingly, the maximum amounts of 
ZON-GA and α-ZOL-GA were secreted to the mucosal side of the 
intestine (segments I~III), whereas in the colon, mucosal secretion of 
these glucuronides was reduced (Figs. 5 and 6). The lowest ZON-GA 
and α-ZOL-GA secretion to the serosal side occurred in the proximal 
small intestine and increased with progression distally to the colon.

Fate of ZON at 60-min post-application
The total balance of metabolism and transport after 60 min of incubation with ZON (10 µM) was examined (Fig. 7). Most of the 

absorbed substrate was recovered (>80%) in all segments in male, female, and pregnant females, with the exception of male small 

Fig. 5. Glucuronidation of zearalenone in rat everted intestine. 
The amount of zearalenone (ZON) glucuronidated and ex-
creted to the mucosal side (top graph) and transported to the 
serosal side (bottom graph) within 60 min of incubation. ZON 
was added to the mucosal buffer solution of each segment at 
a concentration of 10 µM. Segments I, II, and III are from the 
jejunum and ileum in distal order, and IV is the colon.

Fig. 6. Glucuronidation of α-zearalenol in rat everted intestine. 
The amount of α-zearalenol (α-ZOL) glucuronidated and 
excreted to the mucosal side (top graph) and transported to 
the serosal side (bottom graph) within 60 min of incubation. 
Zearalenone was added to the mucosal buffer solution of each 
segment at a concentration of 10 µM. Segments I, II, and III are 
from the jejunum and ileum in distal order, and IV is the colon.

Fig. 7. Fate of zearalenone during a 60-min incubation in rat 
everted intestine. Total decrease in mucosal zearalenone (ZON) 
during a 60-min incubation is depicted as the sum total of the 
fraction column in each intestinal segment. ZON, zearalenone 
transported to the serosal side; α-ZOL, total α-zearalenol 
transported to the serosal side and secreted to the mucosal 
side; ZON-GA, total zearalenone glucuronide transported to 
the serosal side and secreted to the mucosal side; α-ZOL-GA, 
total α-zearalenol glucuronide transported to the serosal side 
and secreted to the mucosal side; Unknown fate, zearalenone 
of unknown fate. Segments I, II, and III are distal from the 
jejunum and ileum, and IV is the colon.
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intestine segments I and II and pregnant female colon segment IV (Fig. 7). Absorbed ZON was rapidly metabolized to α-ZOL, 
ZON-GA, and α-ZOL-GA, based on the observation that absorbed ZON did not remain completely in its unmodified form in 
any of the intestine segments. Furthermore, each glucuronide was largely excreted to the mucosal side, but in the distal intestine, 
approximately half of each glucuronide was transported to the serosal side (Figs. 5 and 6).

DISCUSSION

ZON introduced orally must pass through the intestine before reaching the target organs, such as the reproductive system. 
To elucidate the mechanism responsible for the adverse effects of ZON, it is essential to clarify the fate of the compound in the 
intestine. However, details regarding the disposition of ZON during transport to the target organs remain unclear. In this study, we 
used a rat everted intestine model to elucidate the fate of ZON in the intestine, which due to metabolic activity functions as the first 
barrier to xenobiotics.

Our results indicate that most ZON absorbed from the mucosal side is reduced or glucuronidated in the intestinal cells. A small 
amount of unconjugated α-ZOL was detected, but ZAN and α-/β-ZAL were not detected. It can be inferred that ZON is readily 
converted to ZOL in the rat intestine. ZON has also been reported to be hydroxylated primarily by CYP3A subfamily enzymes 
[5, 41]. The CYP3A subfamily includes major drug-metabolizing enzymes in the intestine, and it was reported that CYP3A is 
also expressed in rat intestine [11, 23, 31], but OH-ZON was not found in our results. ZON is also known to be converted to ZOL 
by HSDs [29]. Since high levels of 3α-HSD mRNA were found in small intestine and colon [27], it seems that 3α-HSD is also 
involved in the ZON reduction reaction in the intestine. The examinations of the contribution rate of HSDs to ZOL metabolism 
represent interesting topics for future research. In our data, mucosal excretion of α-ZOL was low in each intestinal segment, 
but serosal transport was even lower. These data indicate that each intestine segment hardly passes α-ZOL to the serosal side. 
Interestingly, the almost complete absence of detection of α-ZOL suggests that α-ZOL is immediately glucuronidated. In other 
words, by inactivating ZON via glucuronidation, the intestine functions as a barrier against absorption of foreign substances. 
Because the glucuronidation of ZON was particularly extensive in all intestinal segments (Fig. 7), UGT expression and activity 
are high in the intestine, and ZON and α-ZOL likely undergo immediate glucuronidation. This suggests that the intestine functions 
as a barrier to ZON exposure. In general, enzymes of the UGT2B family glucuronidate steroid hormones [50]. UGT1A1, 1A7, 
1A8, and 2A3 are highly expressed in the rodent intestine, especially the proximal intestine [4, 38]. A study using human liver 
and intestinal microsomes reported that UGT1A1, 1A3, 1A8, and 2B7 exhibited high activity against ZON [40]. Ugt2b mRNA 
accounts for approximately 80% of total Ugt mRNA in the rat liver, whereas Ugt1a mRNA accounts for almost 90% of total Ugt 
mRNA in the rat small intestine [25]. UGT1A1 and 1A8 thus appear to be the most promising candidates responsible for ZON 
glucuronidation in the intestine.

More than half of the ZON absorbed in the small intestine in the present study was glucuronidated, and most of it was excreted 
to the mucosal side. This is consistent with the small intestinal defense mechanism against bisphenol A, an endocrine-disrupting 
chemical known to have estrogenic effects similar to ZON [13, 16]. These data suggest that the proximal intestine plays a highly 
protective role, restricting the dissemination of xenobiotics and inactivating them via glucuronidation, thus restricting exposure to the 
active substances to the middle and distal parts of the intestines. ATP-dependent transporters, namely multidrug resistance associated 
proteins (MRPs), are known to be capable of mediating transmembrane excretion of a wide range of amphiphilic compounds, 
including estrogens and glucuronides [37, 52]. MRP2, which is localized in the apical domain of enterocytes, is distributed in the 
proximal intestine in rats, and MRP3, which is localized in the basal domain, is distributed in the colon [21, 32, 46]. Interestingly, 
in this study, the excretion of ZON-GA and α-ZOL-GA in the apical direction and transport in the basal direction were consistent 
with the respective localization and distribution patterns of MRP2 and MRP3 in the rat intestine. From these data, we speculate that 
ZON-GA and α-ZOL-GA are excreted and transported in the intestine by MRP2 and MRP3, respectively (Fig. 8).

It has been shown that the entire intestine functions as a barrier to xenobiotics, but there is also a risk of exposure. In this 
study, ZON and its metabolites were also transported to the serosal side. The level of ZON serosal transport observed in each 
intestinal segment was extremely low, and this seems not to be problematic because the experiment was performed using a large 
amount of ZON. However, compared with ZON, the amount of glucuronidated form transported to the serosal side was quite high, 
approximately 10 times greater in the small intestine and approximately 20 times greater in the colon. Some of the conjugates 
transported into the blood are known to be distributed to local organs without being excreted [16, 34]. Conjugates transported to 
local organs can reportedly cause adverse effects due to deconjugation and reactivation within the local organs. In our study, the 
serosal transport of ZON-GA and α-ZOL-GA was particularly high in the colon. Anatomically, some of the compounds absorbed 
in the distal colon do not pass through the liver and circulate systemically without the first effect of the liver (Fig. 8). Therefore, 
it is possible that most of the ZON-GA and α-ZOL-GA absorbed in the colon circulate through the body and are distributed in 
local organs, where they could be reactivated by deconjugation. In addition, the serosal transport of α-ZOL-GA was comparable 
to that of ZON-GA. The estrogenic activity of α-ZOL is three times more potent than that of ZON [30]. This suggests that the 
blood absorption of α-ZOL-GA in the colon plays an important role in the mechanism by which orally ingested ZON disrupts the 
endocrine system.

ZON-GA and α-ZOL-GA excreted to the mucosal side in the proximal jejunum are thought to flow into the distal intestine with 
the digestive contents. ZON is also excreted in the bile after glucuronidation in the liver [53]. In general, glucuronides are likely 
to enter the enterohepatic circulation [39], suggesting that large amounts of ZON-GA and α-ZOL-GA flow into the distal intestine. 
In the colon, glucuronides can be deconjugated by enterobacterial β-glucuronidase [43]. Irinotecan, an antineoplastic drug, is 
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metabolized in the body by carboxylesterase to the active substance 7-ethyl-10-hydroxycamptothecin (SN-38). Thus, SN-38 
exhibits antineoplastic activity [12]. SN-38 is glucuronidated by UGT in the liver and excreted in the bile as an inactive substance, 
SN-38 glucuronide (SN-38-GA) [45]. SN-38-GA excreted in bile is reportedly deconjugated by enterobacterial β-glucuronidase and 
reactivated [20]. Reactivated SN-38 can be resorbed in the distal intestine and damage mucosal tissues [49]. The behavior pattern 
of irinotecan in the body can be applied to ZON, with ZON-GA and α-ZOL-GA flowing to the distal intestine and being reactivated 
by deconjugation, with a risk of eventual reabsorption in the colon.

In this study, the rate of recovery of absorbed ZON in the proximal intestine was low. Ingestion of low doses of ZON in 
immature gilts reportedly leads to accumulation of ZON in the proximal intestine immediately after exposure [55]. As in pigs, it 
is possible that ingested ZON accumulates in the proximal jejunum in rats, but further investigation is necessary to confirm this 
possibility. Compared with the male distal intestine and the female proximal intestine, the male proximal intestine absorbed more 
ZON from the mucosal side, and there was a large amount of undetected material, indicating unknown fate. This suggests that 
ingested ZON follows different metabolic pathways in males and females, which could be associated with sex-specific differences 
in toxicity. In our results, although there were some slight gender differences in the absorption of ZON in the intestine, there 
was no significant difference in the kinetics of ZON-GA and α-ZOL-GA, the main metabolite of ZON in the intestine, between 
male and female, and between pregnancy and non-pregnancy. It is known that the expression in the intestine of CYP3A, which 
is presumed to be involved in the reduction of ZON, is not different by gender [22]. In addition, transcriptional regulation of the 
UGT1A genes in jejunum and colon has been reported to be suppressed through estrogen receptor α (ERα) [18], but it is known 
that gender differences in UGT expression vary with species and strains [25]. It is also known that few Ugt genes are affected 
by pregnancy [48]. On the other hand, the expression in the liver of the enzymes involved in the metabolism of ZON and the 
transporters related to the transport of ZON metabolites has been reported to differ depending on the gender and presence or 
absence of pregnancy [8, 22, 25, 48]. From these facts, the difference in ZON kinetics between male and female, and between 
pregnancy and non-pregnancy, is more likely to be affected by liver metabolism than intestine. Elucidation of the detailed 
metabolic kinetics of ZON in the liver, focusing on gender and pregnancy status, is interesting topic for future research.

The intestine is the first barrier to orally ingested xenobiotics. In investigating the effects of xenobiotics, it is important to 
track the fate of the target compound in the intestine before it enters the bloodstream. The present study revealed that ZON is 
metabolized to an inactive metabolite, ZON-GA or α-ZOL-GA, in the proximal intestine and then excreted to the intestinal lumen 
(Fig. 8). This confirms that the intestine plays a significant defensive role against the dissemination of ZON in the body. However, 
the metabolites ZON-GA and α-ZOL-GA are absorbed into the blood primarily in the colon, suggesting that there is a risk of 
transport to local target organs. It would be interesting to investigate how ZON-GA and α-ZOL-GA are subsequently metabolized 
and distributed after being absorbed into the blood in the intestine. Fully elucidating the mechanism of ZON toxicity is thus an 

Fig. 8. Schematic figure of our hypothesis of intestine region-dependent metabolism and excretion of metabolites. Most of the zearalenone 
(ZON) absorbed in the intestine is glucuronidated to zearalenone glucuronide (ZON-GA) or α-zearalenol glucuronide (α-ZOL-GA) by UDP-
glucuronosyltransferase (UGT). Then, in the proximal intestine, it is likely to be excreted mainly to the mucosal side via multidrug resistance 
associated proteins 2 (MRP2), while in the distal intestine, it is likely to be mainly transported to the serosal side via MRP3. Some slight ZON 
may be transported to the serosal side in its unmodified form. It is possible that some ZON and its glucuronide absorbed in the distal colon may 
circulate systemically without passing through the liver.
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important issue for future research. Additionally, ZON is known to be metabolized by plants and fungi, undergoing glycoside or 
sulfate conjugation [19, 44]. These externally conjugated compounds are known as masked mycotoxins, and their presence as 
contaminants has been reported in food and feed products [3, 6, 47]. Although masked mycotoxins are harmless to mammals, 
considerable care is required to prevent their conversion to the parental mycotoxins after ingestion and further biotransformation 
into unidentified metabolites [9]. Future research should also investigate the behavior of these compounds.
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