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Chronic kidney disease (CKD) leads to clinically severe bone loss, resulting from
the deranged mineral metabolism that accompanies CKD. Each individual patient
presents a unique combination of risk factors, pathologies, and complications of bone
disease. The complexity of the disorder coupled with our incomplete understanding
of the pathophysiology has significantly hampered the ability of nephrologists to
prevent fractures, a leading comorbidity of CKD. Much has been learned from animal
models; however, we propose in this review that application of multiple techniques
of mathematical modeling and artificial intelligence can accelerate our ability to
develop relevant and impactful clinical trials and can lead to better understanding
of the osteoporosis of CKD. We highlight the foundational work that informed our
current model development and discuss the potential applications of our approach
combining principles of quantitative systems pharmacology, model predictive control,
and reinforcement learning to deliver individualized precision medical therapy of this
highly complex disorder.

Keywords: osteoporosis, chronic kidney disease, artificial intelligence, mathematical modeling, in silico clinical
trials

INTRODUCTION

The bone abnormalities associated with chronic kidney disease, so-called renal osteodystrophy,
are part of a clinical syndrome called chronic kidney disease-mineral bone disorder (CKD-
MBD) that includes renal osteodystrophy, abnormalities of mineral metabolism, and vascular
calcification. Osteoporosis, defined by the National Osteoporosis Foundation (now called the
Bone Health and Osteoporosis Foundation) as a decrease in bone mineral associated with loss
of bone architecture and strength (1), may be a contributory factor for renal osteodystrophy,
but is only one of many different pathologies that affect the bone health of patients with CKD
(2). The management of renal osteodystrophy presents significant challenges due to the broad
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heterogeneity of contributing factors, each of which may have
differing impacts in individual patients. Chief among these
factors are derangements in the regulation of vitamin D,
parathyroid hormone (PTH), calcium homeostasis, phosphate
homeostasis, acid base balance, sex hormones, and a variety
of more recently discovered mediators including sclerostin,
fibroblast growth factor 23, dickkopf 1, activin A, and numerous
inflammatory agents. In the absence of a bone biopsy, it is not
possible to definitively diagnose the specific bone disease present
in an individual patient; therefore, throughout this article, we
will use the term CKD-MBD instead of osteoporosis. The goal in
addressing this complex disorder is to develop specific treatments
based on the identification of modifiable alterations in the risk
factor profile for each patient, allowing for an individualized
precision approach, to prevent fractures and accompanying soft
tissue calcification. In many ways, this approach has been realized
in oncology, but little progress in this realm has been made in
nephrology (3, 4).

Two recent developments suggest that the treatment
of CKD-MBD is a promising clinical area to apply the
principles of personalized medicine. The first is precision
drug dosing to achieve pharmacologic targets within a narrow
therapeutic range. This therapeutic avenue originates within
the engineering literature and centers on the application of
artificial intelligence, machine learning, and control theory to
administer pharmacologic agents precisely in the dialysis patient
population (5, 6). A second advancement is the development
of a quantitative systems biology model of osteoporosis. In
science, we often develop models of human disease in animals
in which we can rigorously test the impact of manipulations
of specific biochemical processes to observe their outcomes.
We then develop and test hypotheses in human beings based
on extrapolation of the results in animal models using the
clinical trial mechanism, ultimately resulting in therapeutic
guidelines. We propose that the future direction in the treatment
of CKD-MBD in chronic kidney disease can be mapped out
through merging a systems biology model with state-of-the-art
engineering techniques. This approach can identify and test
therapeutic manipulations to determine the effects on disease
parameters that are routinely measured, those that are not
routinely measured, and even parameters that at this time are
clinically unmeasurable but ultimately result in relevant clinical
outcomes such as bone fracture. In this manuscript, we will
discuss the steps toward achieving these clinical goals through
the application of a systems biology approach to this complex
clinical disorder.

DEVELOPMENT OF A MATHEMATICAL
MODEL OF CHRONIC KIDNEY
DISEASE-MINERAL BONE DISORDER

The first step in the development of a tool for the precision dosing
of drugs used to treat CKD-MBD is the development of a model
system. The traditional approach would be the development
of a murine model of CKD-MBD (7). For example, dilute
brown non-Agouti (DBA/2) mice, when fed a high phosphate

diet, are susceptible to develop medial vascular calcification
and low turnover bone disease, a reasonable animal model
to test therapeutic strategies for the treatment of vascular
calcification and renal osteodystrophy. Animal models, however,
present significant limitations. First, decades of experience with
mouse models have demonstrated the pitfalls in extrapolating
information learned in the mouse to human pathophysiology.
Second, multiple different animal models are required to
investigate the varied abnormalities found in CKD-MBD. Not all
patients with CKD and renal osteodystrophy have low turnover
bone disease and even within the category of low turnover
bone disease, not all CKD patients demonstrate the same
pathophysiology (8, 9). One additional issue is that these studies
are generally performed in an animal strain, thus limiting the
ability to assess inter-animal variability in response to therapies.
Mice show significant genetic diversity in bone disease, even
in the absence of CKD. Third, assessing the effect of multiple
interventions can require very large numbers of animals and the
development of multiple protocols resulting in considerable time
and financial investment.

An alternative tool to investigate CKD – MBD is a
comprehensive mathematical model of a human, developed using
information from animal studies and from measurements of
key biochemical components in humans. In the parlance of
the contemporary literature, this approach is referred to as
a quantitative systems pharmacology (QSP) modeling. A QSP
model is robust and can be easily altered as new information is
acquired. Biochemical processes can be described by ordinary
differential equations, good examples being the mathematical
properties of enzyme kinetics which often follow a Michaelis-
Menten process. Using a library of mathematical functions, we
can describe the concentration of a substance in the body over
time and how that substance can interact with any biological
process. A combination of these equations can then be used
to describe the activity of a specific enzyme, a combination of
enzymes and systems can describe an organ, and by linking the
effects on different organs, we attempt to describe the human.

We have published an example of a QSP model of CKD-MBD
that spans all stages of CKD and incorporates kidney replacement
therapy, and the three pharmaceutical agents commonly used in
the treatment of advanced CKD-MBD (10). This model is shown
in Figure 1 as several interconnected compartments, including
kidney, bone, soft tissue, and parathyroid gland. This model was
derived from the published literature (11–13) and validated using
human data collected in the Chronic Renal Insufficiency Cohort
(CRIC) study (14, 15). Using this QSP model, we were able to
describe the time course of the changes in serum concentrations
of calcium (Ca), phosphorus (P), and parathyroid hormone
(PTH), the three parameters routinely measured as part of
clinical practice in the treatment of CKD-MBD as recommended
by the Kidney Disease Improving Global Outcomes (KDIGO)
guidelines (16). Additionally, the changes in the concentration
of biochemical parameters such as FGF23 and calcitriol, that can
be, but are not routinely measured clinically, were accurately
predicted. Ultimately, the main strength of this model lies in
the ability to predict unmeasured and practically unmeasurable
parameters such as flux of calcium and phosphate from bone
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FIGURE 1 | Block diagram of the quantitative systems pharmacology model of Ca and PO4 metabolism in chronic kidney disease. Square blocks represent
compartments, rounded blocks represent interventions. Arrows represent interactions between biomarkers and compartments: continuous – positive interaction,
dashed – negative interaction. Interactions are mathematically described using ordinary differential equations (ODE’s).

to serum and from serum to soft tissue, the biologic processes
that directly relate to and predict the morbidity associated with
CKD-MBD like renal osteodystrophy and vascular calcification.

One immediate application of this model would be to study
the effect of pharmacologic manipulation of the model to
investigate treatment alternatives. Potentially informative queries
would be: (1) Of the three, Ca, P, PTH, which should be
prioritized to minimize calcium efflux from the bone and influx
into soft tissue? (2) Given the limitation of the maximum
tolerated dose of phosphate binders which agent, calcimimetic, or
calcitriol should be prioritized? (3) What serum concentrations
of Ca, P, and PTH should be targeted to minimize calcium
efflux from the bone and influx into soft tissue? To give a very
simple example, through the use of simulated patient data, the
investigator could ask the model to predict mineral flux with
the use of only calcimimetics and phosphate binders vs the use
of only calcitriol and phosphate binders. Based on the results,
a hypothesis would be formulated and tested in a population of
patients with CKD. Multiple questions of increasing complexity,
reflecting the complexity of the clinical disorder, could be posed
to the model and the most promising avenues subsequently tested
in human studies, potentially saving time and money.

Decisive advantages in working with a QSP model is the
flexibility to update the model as new information is obtained
and to query the model to determine which parameters to
manipulate to optimize response. Newer therapies such as

antibodies against sclerostin or FGF23 can be incorporated into
the model. Additional markers and mediators of CKD-MBD such
as sex hormone concentration, urine citrate, and inflammatory
cytokines can be included. The model can be aged in silico in
several ways such as decreasing the glomerular filtration rate and
thereby decreasing phosphate excretion. Also, those factors that
change with age or even sex can be coded into the mathematical
relationships within the model which can subsequently be tested
against any number of hypotheses.

INTRODUCTION OF ARTIFICIAL
INTELLIGENCE

Teaching a computer to “think” like a human would has been
attempted for over half a century. Turing first introduced the
idea in 1950 but only recently have applications of artificial
intelligence penetrated into medicine (17). The ostensibly
simplistic goal of Turing’s experiments was to see if a human
subject could discriminate between decisions made by a
computer that had been trained to think like a human and
decisions made by a human. Ideally, if the computer was
adequately trained, the human subject would not be able to
make this distinction. In medical literature, Artificial Intelligence
is being touted as an attractive methodology to deal with
extraordinary amounts of data (Big Data) that cannot be easily
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analyzed by the human brain. That is, as we combine information
from the electronic medical records with -omic data and data
from other sources, we need a unifying processing framework
which we can utilize these data to benefit the patients.

Present day Artificial Intelligence methods are founded on
two algorithms that we can use to “teach the computer to
think”: Supervised and Unsupervised Learning. In Supervised
Learning, the training data that the computer uses to decide is
paired with a predetermined, presumably correct, response. The
computer learns to associates input patterns with a particular
outcome. The most common tool used in this approach is the
Artificial Neural Network (ANN). Artificial Neural Networks
are built upon a machine construct of a human neuron, where
dendrites collect input and compute a response in the neuron
cell body and pass this information to the next neuron through
the axon. An ANN is a collection of neurons, mathematically
represented as a set of complex non-linear equations. A standard
ANN typically uses a single processing layer (hidden layer) of
neurons that stores information estimating the importance of
each input and the associations between inputs and outputs.
Deep Neural Networks (DNN) are an extension of ANN’s which
add multiple hidden layers of neurons with different processing
functions. DNNs have gained popularity due to their success
with high dimensional data problems, such as image and text
classification (18).

The main goal of Supervised Learning is to efficiently replicate
the medical expertise developed through clinical experience and
encoded in the training data. Certainly, there is a role for
the development of this type of application within the medical
realm. A good example is the interpretation of kidney biopsy
material (19, 20). Using this application, investigators reviewed
2,542 kidney biopsies and 12,259 immunofluorescence images.
The accuracy of the artificial intelligence approach to the tissue
diagnosis ranged from 79 to 94% compared to the pathologist
diagnosis. The authors considered this level of concordance
comparable to the performance by a human pathologist. The
major gain derived from the AI approach was the fact that the
images were processed 117 times faster; however, there was no
increase in accuracy. The authors acknowledge that the results
may have been influenced by the single center nature of the
obtained sample and that the process may not identify rare
diagnoses since those cases may not be available for “training”
the neural network. This manuscript illustrates a common
misconception about the capabilities of artificial intelligence.
A supervised learning approach will interpolate well within the
range of the data with which it is trained but cannot extrapolate
outside of that data. The expectation that a supervised artificial
intelligence approach will yield superior outcomes in terms of
accuracy of diagnosis or novel clinical insights is a fallacy. These
models must be rigorously tested during their development and
then validated against a separately derived data set to ensure
reproducibility which does not always occur. Further, these
methods need to be tested against standard statistical tools to
show superiority rather than novelty.

In Unsupervised Learning, the Artificial Intelligence
agent independently organizes data into similar groups.
Using the example above of interpreting biopsy images, an

Unsupervised Learning could be used to group image data
based on pixel intensity (image segmentation) and look for
correlations in those groups when compared to the pathology
report. One would then need to investigate the features
that are being sorted like cellularity within the glomerulus,
thickness of the basement membranes, presence of a crescent,
or other pathologic parameters. This is like the statistical
technique called factor analysis or nearest neighbor. Using this
methodology, the incorporation of Artificial Intelligence has
the capability of identifying new or previously unrecognized
patterns and thus could suggest new classification schema
(21–24). Thus, Unsupervised Learning holds the promise of
introducing new ideas and generating new hypotheses of disease
development or progression.

A methodology that combines features of Supervised and
Unsupervised Learning is Random Forest (25). A Random Forest
(RF) approach looks to discover relationships between sets of
data that will allow a decision tree to be produced that will allow
categorization of patients. Using this application, the authors
of a recent study leveraged the availability of large data sets
and machine learning approaches to generate new information
about CKD and parameters of mineral metabolism. The analysis
allowed the authors to discover strong associations between
PTH and phosphate, clarifying how phosphate modifies PTH in
association with calcium and other variables. The authors were
able to demonstrate a stronger association between phosphate
and PTH than using a traditional linear regression analysis.
They could also evaluate the effect of pharmacologic intervention
in these patients.

FROM MODEL DEVELOPMENT TO IN
SILICO TESTING IN CHRONIC KIDNEY
DISEASE-MINERAL BONE DISORDER

Several models for the approach to kidney disease have been
discussed beginning with animal models which then lay the
framework for the mathematical models that we have described:
the QSP model, the QSP model incorporating supervised
learning, and the model incorporating unsupervised learning.
Any of these models can be used to investigate human disease
to varying levels of success. Animal models allow for the
investigation of specific genetic manipulations in the whole
animal. Mathematical models can help achieve the same goal.
However, the speed and breadth of the testing that can occur
in a mathematical model is far beyond what can be done in
individual animal models.

To that end, we can use the CKD-MBD model to perform
in silico testing. In this process, we use the computing
power to run thousands or millions of iterative simulations
to evaluate the impact of time, disease, and pharmacologic
manipulation on the model. Such models have been developed
and tested over the last decade, two of which are particularly
pertinent to the subject of renal osteodystrophy. In one
published example, the authors developed a model of bone
biology and calcium homeostasis using literature-derived data
on the relevant specific parameters, including serum PTH,
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calcitriol, calcium and phosphorus (7–9). They used this model
to perform in silico studies of the effect of hyper- and
hypoparathyroidism, kidney disease, and the pharmacologic
agents PTH 1-34 and denosumab, the receptor activator of
NF-kappaB ligand (RANKL) inhibitor (9). In their first work,
the authors used the model to link bone remodeling markers
with bone mineral density. They also simulated the effect
of administration of a calcimimetic and calcitriol on the
metabolic processes represented by the model. Subsequently,
the authors describe the administration of the monoclonal
antibody denosumab used in the treatment of osteoporosis.
In the same publication, the authors demonstrate the robust
ability of the model to incorporate new information in order
to make predictions with a new therapeutic agent. The authors
conclude that their model can be used as a platform for
evaluating therapeutics. Another published example described
the regulation of the parathyroid gland (26), incorporating the
major mechanisms of production, secretion, and degradation of
PTH. These authors also recognize the utility of the model in
evaluating therapeutics.

THERAPY INDIVIDUALIZATION IN
CHRONIC KIDNEY DISEASE-MINERAL
BONE DISORDER

The premise of this article is to address frontiers in treatment
of CKD-MBD. We have already discussed briefly how both
animal and mathematical models are being used to describe the
disease process of CKD-MBD. These models have been developed
to mimic both individual organs and the whole organism.
This information can be used to investigate the effects of new
pharmacologic agents both, in living beings and virtually in silico.
We would like to conclude this overview with advancements
using the above referenced work and merging it with the concept
of control theory in order to achieve personalized precision
therapy of CKD-MBD.

Our group has been at the forefront of the development of
novel ways to individualize therapy for patients with chronic
kidney disease. Our initial work centered on the management
of anemia in ESRD patients. Achieving guidelines goals for
anemia management has been challenging in this population in
large part due to the practice of addressing the erythropoietin
dosing monthly while recognizing that the RBC lifespan is
90 days, creating a disconnect between prescription and outcome
assessment. To address this complexity, we introduced an
additional AI tool, Model Predictive Control (MPC). This AI
application has two requirements: a model of the system of
interest and a controller. The model can be mechanistic, as
described in a QSP model. Alternatively, the model can be an
Artificial Neural Network which, like the RF model discussed
above, is applicable only for patients treated in the same manner
as the patients whose data were used to develop it (27). The
second part of MPC is the controller, which is equipped with
information about the goals of the therapy. For our work, an AAN
model of erythropoietin therapy for patients with the anemia
of CKD was developed incorporating the target hemoglobin,

erythropoietin type, maximum dosage, as well as other factors the
physician would take into consideration. The controller would
then interrogate the model of the patient to determine the
optimal erythropoietin dose based on the patient’s prior response
to erythropoietin and current hemoglobin level. A decision
support tool based on this work is being used in clinical practice
to monitor the anemia of chronic kidney disease patients.

We are now actively pursuing expansion of this methodology
to include the treatment of CKD-MBD. We have already
developed the model of the patient that can be used by a
controller to determine the results of some manipulation whether
it be age, decrease in renal function, or therapeutic intervention.
Although we could apply the MPC approach that has already
proved effective in the case of anemia management, due to
the complexity of CKD-MBD and the desire to discover new
information, we approach this problem using yet another tool
out of the Artificial Intelligence toolbox, called Reinforcement
Learning (RL). RL is a family of psychology-inspired methods
based on the concept of active learning performed by an
intelligent Agent to maximize a cumulative reward related to
user-specified goal. The RL Agent performs actions in response
to observations it makes and constantly adjusts the mapping
between observations and actions. For every action it takes, the
Agent receives a reward signal which measures how closely the
results controlled by Agent’s actions matches the specified goal.
When the reward increases, the Agent’s actions are reinforced.
Conversely, if the reward decreases, Agent is discouraged from
such actions. In this sense, RL is a hybrid between Supervised
and Unsupervised Learning. The supervision comes in the
form of a pre-specified goal. However, the Agent learns the
observation-action mapping on its own. Compared to Supervised
and Unsupervised Learning which strictly depend on the training
data, RL has the unique ability to discover novel information by
interactively generating new data (28).

The current treatment of CKD-MBD often follows a
somewhat linear and uniform pattern guided by clinical practice
guidelines that specify the serum concentrations of calcium,
phosphorus, and PTH that are desired (29). Patients are generally
administered a phosphate binder at the initiation of dialysis.
Subsequently, a vitamin D drug is added if a phosphate binder
alone does not result in the desired KDIGO goals for PTH and
calcium. Finally, calcimimetics are added for failure of PTH
control or adverse effects on Ca and P levels. The treatment
regimen is complicated by the reported poor adherence to
phosphate binders and tolerability of the oral calcimimetic. Using
a QSP model-based RL, we can virtually design a dosage regimen
that maximizes the percentage of calcium, phosphorus, PTH
measurements that are within their target ranges. Based on
our prior experience in this area (1), we are confident that a
new dosing tool could be developed, and we have developed
the controller and have completed simulated clinical trials
using this model.

Thus far, we have discussed the application of AI to achieve
the biochemical guidelines established for the treatment of
CKD-MBD, as these simple biochemical parameters – calcium,
phosphorus, and PTH – represent the current standard of
practice targets. The more significant power of this AI approach
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is the ability to study the effects of therapeutics on more
clinically relevant outcomes. The goal of the treatment of CKD –
MBD is to decrease morbidity and mortality in chronic kidney
disease. The morbidity and mortality are primarily associated
with the movement of calcium from the bone leading to loss
of bone mass and structure and a high fracture rate in this
patient population and the movement of calcium into tissue
leading to cardiovascular complications. Our QSP model not

only predicts the concentrations of calcium, phosphorus, and
PTH but also predicts the flux of calcium into and out of the
bone and soft tissue. Using the RL tool combined with the
QSP model we can design a reward structure that prioritizes
the administration of a single or multiple therapeutic agents to
optimize calcium flux. Given specific safeguards like avoiding
low serum calcium which can also be encoded into the reward
function, we can propose different calcium, phosphorus, and

FIGURE 2 | Simplified depiction of the predicted time course of routinely measured markers of mineral metabolism in the simulated (in silico) treatment of CKD-MBD
using phosphate binder, vitamin D analog, and a calcimimetic. Top panel, PTH; Middle panel, phosphorus; and Bottom panel, calcium.
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PTH targets. Further, scenarios where two or three of the agents
used to treat CKD – MBD are manipulated simultaneously
can be tested.

AN EXAMPLE OF USING A
QUANTITATIVE SYSTEMS
PHARMACOLOGY MODEL AND
REINFORCEMENT LEARNING

In this example we will combine that model with a RL approach
to simulate the change in model parameters in patients with

stage 5 CKD on dialysis and how we can examine the measured,
unmeasured, and unmeasurable parameters within the model to
guide therapy (30). In this case, the reward function is simply
the attainment of the KDIGO recommended concentrations of
calcium, phosphorus, and PTH. The reward function can take
many forms where each of these three concentration objectives
can have their own weight; however, in this example each
concentration is weighted equally. The reward function can
also use the unmeasured or unmeasurable parameters or any
combination of parameters.

The simulation was performed in the computer program
Matlab using the reinforcement learning toolbox. Simulations
were run for 30 months following the initiation of dialysis.

FIGURE 3 | Simplified depiction of the predicted time course of non-routinely measured markers of mineral metabolism in the simulated (in silico) treatment of
CKD-MBD using phosphate binder, vitamin D analog, and a calcimimetic. Top panel, FGF 23; Bottom panel, calcitriol.
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FIGURE 4 | Simplified depiction of the predicted time course of model-estimated (unobservable) parameters of mineral metabolism in the simulated (in silico)
treatment of CKD-MBD using phosphate binder, vitamin D analog, and a calcimimetic. Top panel, osteoblast (dashed line) and osteoclast (continuous line) activity.
Middle panel, Ca influx into the vascular smooth muscle cell tissue. Bottom panel, net Ca efflux out of the bone compartment.

Frontiers in Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 807994

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-807994 March 21, 2022 Time: 14:8 # 9

Gaweda et al. Applying Artificial Intelligence to Renal Osteodystrophy

Starting concentrations of calcium, phosphorus, and PTH were
randomly drawn from a range of values normally seen at
initiation. Using the reinforcement learning algorithm, the
program determines the drug to administer and at what dose.
The program does not prioritize one drug over another but
purely makes its decision based on a trial-and-error process.
The results of this simulation in one subject are shown for
illustration purposes. In Figure 2, we can see the model
predictions for serum measurements of calcium, phosphorus,
PTH which comprise the measured parameters in CKD-MBD.
As the computer learns the pharmacodynamics of the system it
achieves a lowering of PTH and phosphorus and an increase in
calcium concentrations within the first 5 months. In Figure 3, we
can see the unmeasured parameters (FGF23 and calcitriol). The
model predicts a corresponding drop in FGF 23 concentrations
over this time as well as an increase in calcitriol. The increase in
calcitriol is a result of the administration of exogenous drug and
does not represent increased production.

Figure 4 shows the unmeasurable parameters in CKD-MBD
(calcium flux, osteoblast and osteoclast activity). Using the

TABLE 1 | Comparison of animal models and machine models of human disease.

Model type Advantages Disadvantages

Animal Biologic model
Familiarity within scientific
community
Ability to constrain subject
variability

“Black box” to some extent,
not all variables described
Applicability to human
disease inconsistent
Number of replicates and
variables limited
Lack of generalizability from
one well defined animal
model to another or from
one specific set of
experimental constraints to
another
Need for multiple models,
increasing with greater
complexity of biologic
process
Expensive

AI – Supervised
learning

Accuracy of output easily
compared to MD
performance
Can be updated for new
discoveries in diagnosis
and therapies
Analysis of clinical data very
rapid

Lack of familiarity by
clinicians
Output defined by current
biologic and therapeutic
assumptions
Inability to identify novel
associations or disease
processes

AI – Unsupervised
learning

Can identify new patterns
of clinical disease
Can be used for in silico
trials for hypothesis testing
Can be used to predict
difficult to measure biologic
parameters
Can be used for
individualized precision
medicine
Can be updated for new
discoveries in diagnosis
and therapies

Lack of familiarity by
clinicians
Reluctance on the part of
clinicians to accept
predictions that are
contrary to prior
understanding/practices
Accuracy of predictions
dependent on accuracy
and completeness of model
parameters

KDIGO recommended targets for calcium, phosphorus, and
PTH the model would predict that little change occurs in the
movement of calcium into tissue, but bone calcium loss decreases
by about 50%. Using the approach that we have outlined; one
could run different simulations where we optimize calcium
movement into the tissue and from the bone to investigate a
different dosing strategy.

According to the model, the manipulation of the simulated
patient using pharmacologic agents will result in decreased
activity in both osteoclasts and osteoblast with the ratio of blast to
osteoclasts decreasing over time. Information obtained from the
model on these parameters may be useful in determining low and
high turnover bone disease or how the administration of newly
developed compounds may impact activity.

SUMMARY

The medical community has shown increasing acceptance of
machine learning techniques in the practice of medicine. In
this review, we have highlighted several Artificial Intelligence
techniques that can be applied to clinical conditions and
suggest that this toolbox offers a variety of approaches for
understanding pathogenesis of disease, outcomes, and response
to therapy. Our success using a machine learning approach
in the treatment of anemia of chronic kidney disease suggests
that we will be able to produce similar results in CKD-
MBD. The advantages and disadvantages of the different
models we have discussed are summarized in Table 1. As
the complexity of the drug dosing problem escalates such
as in the administration of three agents simultaneously the
power of these new approaches will increase. New models that
specifically investigate the biochemical and cellular processes that
occur within the bone that can lead to renal osteodystrophy
are needed. Major strengths of the in silico AI approach
are the flexibility in modifying the model as new clinical
findings emerge, the predictive capacity in the context of a
multifaceted clinical syndrome, and the ability to generate
and test novel hypotheses rapidly and safely. These novel
hypotheses, tested in silico, can then be translated into
more conventional human-based trials, optimized through
the preliminary simulations. These models will enable the
rapid testing of new therapeutic approaches, including those
biochemical processes that may be targeted for the development
of new agents to improve care.
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