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SUMMARY

Whereas intracellular carbon metabolism has
emerged as an attractive drug target, the carbon
sources of intracellularly replicating pathogens,
such as the tuberculosis bacillus Mycobacterium
tuberculosis, which causes long-term infections
in one-third of the world’s population, remain
mostly unknown. We used a systems-based
approach—13C-flux spectral analysis (FSA) com-
plemented with manual analysis—to measure the
metabolic interaction between M. tuberculosis and
its macrophage host cell. 13C-FSA analysis of exper-
imental data showed that M. tuberculosis obtains a
mixture of amino acids, C1 and C2 substrates from
its host cell. We experimentally confirmed that the
C1 substrate was derived from CO2.

13C labeling
experiments performed on a phosphoenolpyruvate
carboxykinase mutant revealed that intracellular
M. tuberculosis has access to glycolytic C3 sub-
strates. These findings provide constraints for devel-
oping novel chemotherapeutics.

INTRODUCTION

Tuberculosis (TB) remains a major problem throughout the world

and is responsible for 8.8 million cases of TB each year, resulting

in 1.4 million deaths (World Health Organization, 2011). New

drugs are urgently needed to combat the emergence ofmultidrug

(MDR) and extensively resistant (XDR) TB (Sharma and Mohan,

2006; Velayati et al., 2009) strains of the pathogen. Intracellular

metabolism ofM. tuberculosis is an attractive target for develop-

ment of novel anti-TB drugs; but despite more than a century of

research, fundamental questions remain, such as the nature of

the nutrients the pathogen obtains from its macrophage host

cell. Mutagenesis studies (Muñoz-Elı́as and McKinney, 2005;

Pandey and Sassetti, 2008) provide indirect evidence for a diet

of fatty acids derived from host lipids, including cholesterol.
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However, definitive conclusions are compromised by the multi-

ple roles of enzymes, the redundancy of metabolic pathways

(Venugopal et al., 2011), and often contradictory data. More

direct methods are therefore required to unravel the diet and

metabolism of intracellular M. tuberculosis, which could illumi-

nate novel treatment strategies against TB.

Recently, 13C-isotopologue profiling analysis (13C-IPA) based

on mass spectrometry has been used to directly measure the

intracellular metabolism of Listeria monocytogenes (Eisenreich

et al., 2006) and several enterobacterial pathogens (Götz et al.,

2010). This method involves using 13C-labeled substrates (13C-

labeled substrates can either be provided during the infection

or host cells can be labeled prior to infection) to track the intra-

cellular metabolism of bacteria. The bacterial and host cells

are then separated and the pattern of label in stable metabolites

(proteinogenic amino acids) is measured using mass spectrom-

etry. Model-free analysis is then used to infer the substrates

transport reactions and central metabolic pathway utilization

that are most consistent with the data. We previously applied

the systems-based tool 13C-metabolic flux analysis (13C-MFA)

(Wiechert et al., 2001) to directly measure metabolic fluxes of

M. tuberculosis in vitro (Beste et al., 2011) and demonstrated

the operation of an alternative pathway to the TCA cycle, the

GAS pathway, which utilizes the Glyoxylate shunt and Anapleur-

otic reactions for oxidation of pyruvate, and Succinyl CoA

synthetase for the generation of succinyl CoA and involves sig-

nificant levels of CO2 fixation. The method is based on similar

principles to 13C-IPA but uses in silico modeling to infer meta-

bolic fluxes from the labeling patterns. Classical 13C-MFA can

only be applied to metabolic systems in steady state. Thus, to

examine the non-steady-state metabolism of intracellular TB

bacilli, we developed a systems-based tool—13C-flux spectral

analysis (13C-FSA)—and applied it to investigate the diet and

metabolism of intracellular M. tuberculosis.

RESULTS

Measuring the Intracellular Metabolism of
M. tuberculosis

We used the THP-1 cell line as our model system for investi-

gating the metabolic interaction between M. tuberculosis and
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Figure 1. Total 13C Labeling of Amino Acids Derived from Macro-

phages and M. tuberculosis Protein

GC-MS measured values for the total 13C incorporation into proteinogenic

amino acids by RPMI-grown Mycobacterium tuberculosis (MTB), intracellular

MTB, and infected THP-1 macrophages after 48 hr. The THP-1 cells were

prelabeled by passaging with uniformly labeled [U-13C6] glucose prior to the

infections. Essential amino acids are indicated (*). Error bars indicate SD of

triplicate or quadruplicate samples from independent macrophage infections.

See also Table S1.
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macrophages. Although human alveolar macrophages (HAM-M)

are the natural host for M. tuberculosis, they can only be

collected via an invasive medical procedure and are impossible

to obtain in large enough numbers for systems biology-type

studies. Peripheral blood mononuclear cell-derived macro-

phages (PBMC-M) have been used as an alternative, but there

are significant limitations of using PBMC-M cells, including large

heterogeneity between donors and even within the population of

cells and variable ex vivo differentiation procedures (Martinez

et al., 2006), and it is not possible to obtain enough PBMC’s to

perform the experiments presented here. THP-1 cells can be

differentiated into macrophages following phorbol 12-myristate

13-acetate (PMA) stimulation and closely model the behavior

of activated primary alveolar macrophage (Riendeau and Korn-

feld, 2003) or peripheral blood mononuclear cell-derived macro-

phages (PMBC) following M. tuberculosis infection (Singhal

et al., 2007). Differentiated THP-1 macrophages have been

widely utilized as a model for M. tuberculosis infection in

numerous studies, which furthered our knowledge on the inter-

action between M. tuberculosis and its host cell (for examples,

see Kumar et al., 2010; Singh et al., 2012; Simeone et al.,

2012; Fontán et al., 2008).

Human THP-1 macrophage-like cells were passaged three

times in Roswell Park Memorial Institute (RPMI) media contain-

ing 100% uniformly labeled [U-13C6] glucose (13Cglucose-

RPMI), before the cells were differentiated into macrophages

by stimulation with phorbol 12-myristate 13-acetate (PMA),

also in 13Cglucose-RPMI. After washing, the cells were infected

with the H37Rv strain ofM. tuberculosis (MOI = 5), incubated for

48 hr in unlabeled RPMI medium, and harvested. Differential

centrifugation was used to separate cell lysates into intracellular

bacterial and macrophage fractions. Cells were harvested at

48 hr as preliminary time course experiments demonstrated

that M. tuberculosis was growing within macrophages at this

time point (data not shown) and intracellular amino acids had

attained a pseudoisotopic steady state (Table S1 available on-

line). In parallel, control flasks of (1) uninfected labeled THP-1

cells and (2) M. tuberculosis were cultivated in 13Cglucose-

RPMI medium for 48 hr. After acid hydrolysis, the isotopomer

(with the samemolecular formula but different isotopic composi-

tion) composition of proteinogenic amino acids was measured

using gas chromatography-mass spectrometry (GC-MS). Using

this method, ten amino acids were isolated in sufficient quanti-

ties for accurate measurement of the 13C enrichment. In the

macrophage fraction, heavy isotopomer fractions (indicating

incorporation of 13C) were detected in the nonessential amino

acids, but not the essential amino acids, as expected (Figure 1;

Table S2). In contrast, in the intracellular bacterial fraction, all

amino acids were labeled with 13C. The distinct labeling patterns

confirmed that differential centrifugation was successful in sepa-

rating macrophage and intracellular M. tuberculosis fractions

and demonstrated that the macrophages imported unlabeled

(12C) essential amino acids from the RPMI medium but made

nonessential amino acids (incorporating 13C) de novo, whereas

M. tuberculosis amino acids were all synthesized from host-

derived substrates (either de novo or directly incorporated

from the host cell into protein). Perhaps surprisingly, there was

no observed difference between the isotopologue profile of

infected and uninfected macrophages (Table S2).
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Because of the complexity of the data, we developed 13C-flux

spectral analysis (FSA) to perform unsupervised systems-level

analysis of the isotopologue profiles using an in silico model of

metabolism. 13C-FSA utilizes similar fitting approaches as 13C-

MFA, essentially to find the best fit of different hypotheses of

nutrient uptake by M. tuberculosis to the measured data. Inputs

to 13C-FSA are the isotopomer composition of macrophage

amino acids (deconvoluted from the measured labeling pat-

terns), the estimated isotopomer compositions of macrophage

glucose, acetate, and glycerol pools (also obtained from the

macrophage data and knowledge of the input 13C6 glucose),

and the M. tuberculosis labeling data. Various hypotheses for

nutrient uptake by M. tuberculosis were then tested in auto-

mated simulations (more than 600,000 optimization runs) to

identify substrates and flux distributions that minimized the

‘‘residual value’’, which is a measure of the quantity of the

measured GC-MS data that could not be accounted for by

the optimal in silico solution.
13C-FSA was used to scan a range of potential substrates

(glucose, glycerol, acetate, or single amino acids) and combina-

tions of substrates, which M. tuberculosis may obtain from the

macrophage. All single substrates generated high residual

values (poor fit to data), as shown in Figure 2, but pairs of sub-

strates that included acetate generated lower residual values,

with acetate and alanine providing the best fit. Adding a third

substrate to the combination of alanine and acetate (Figure 2,

inset) resulted in small improvements to the fit with the lowest

residual value obtained with serine. 13C-FSA generated a flux

solution with these substrates (Figure 3), which shares some fea-

tures with the GAS pathway that we previously demonstrated

operating in glycerol-limited chemostat-grown M. tuberculosis

(Beste et al., 2011).

Manual inspection of the labeling profile confirmed many as-

pects of the 13C-FSA solution. For instance, valine and alanine,
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Figure 2. Box Plot Representation of the Log Residual Values

Obtained by 13C-FSA

Combinations of up to three intracellular carbon substrates were tested

from 14 potential sources (alanine [ALA], acetate [ACE], glucose, glycerol,

asparagine/aspartate [ASP], glutamate/glutamine [GLU], histidine [HIS],

isoleucine [ISO], leucine [LEU], lysine [LYS], serine [SER], threonine [THR],

tyrosine [TYR], and valine [VAL]). One and two carbon sources are represented

by single bars, whereas three carbon sources are represented by two bars

(with and without ALA). The inset histogram represents the logged residual

values for combinations of three substrates, including ALA and ACE, showing

that the optimal combination of substrates is ACE, ALA, and SER. The box

plots depict the interquartile range (IQR) between the upper (Q3) and lower

(Q1) quartiles (blue lines) and the median (red line). The length of the box

represents the interquartile range (IQR). Whisker caps extend from the ends of

the box within one IQR in each direction. Values more than one IQR from the

upper whisker represent outliers, which are unlikely carbon sources (red

cross), whereas values of less than one IQR from the lower whisker represent

potential carbon substrates (green diamond) and are labeled with the name of

the carbon source(s).

Chemistry & Biology

Metabolic Profile of Intracellular M. tuberculosis
which are both formed from the same precursor (pyruvate), had

discordant isotopomer profiles, indicating that they were not

derived from the same precursor pool. The similarity between

the composition of both bacterial and macrophage alanine (Fig-

ure 4A), but distinct patterns found for valine (Figure 4B), indi-

cated that the M. tuberculosis alanine was directly imported

from the macrophage, whereas valine was predominantly syn-

thesized de novo in M. tuberculosis. The dominant isotope for

both bacterial and macrophage alanine was M+3 (Figure 4A).

In the macrophage, the metabolic precursor for 13C3 alanine is
13C3 pyruvate derived from [U-13C6] glucose. The

13C isotopo-

logue profile of intracellular M.-tuberculosis-derived valine

(produced by two pyruvate molecules with the removal of one

carbon atom by decarboxylation) (Figure 4B) indicated that this

amino acid was not derived from 13C3 pyruvate, owing to the

absence of 13C5 labeling. By comparison, the labeling of alanine

in the control cells grown in 13Cglucose-RPMI was predomi-

nantly 13C3, and as expected, significant levels of 13C5 valine

were also detected. These data confirm that alanine was

imported from the macrophage into M. tuberculosis and used
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for bacterial protein synthesis without any remodeling of the car-

bon skeleton. The lower but significant amounts of 13C1 and
13C2

alanine, however, indicate that, in addition to direct incorpora-

tion, some alanine is also synthesized de novo. The labeling pro-

file of valine also indicates that 13C3-labeled host pyruvate is not

a major carbon source for intracellularM. tuberculosis (Figure 4).

Manual inspection of the isotopomer composition of aspara-

gine/aspartate (ASP; the individual amino acids cannot be

separated by GC-MS) and glutamate/glutamine (GLU) were

indistinguishable between M. tuberculosis and macrophage

fractions (Figures 4C and 4D), indicating that these amino acids

were also imported from the host cell and incorporated directly

into biomass.

CO2 Fixation
Although most carbon flux in intracellular M. tuberculosis

appeared to be derived from acetate, significant 13C1 and 13C3

isotopomer signals in several amino acids (Figure 5; Table S2)

were inconsistent with an exclusive C2 feed into central meta-

bolism. A potential source for the C1 signal could be the anapler-

otic reactions (phosphoenolpyruvate carboxykinase [PEPCK]/

malic enzyme [MEZ]/pyruvate carboxylase [PYC]) operating in

the direction of oxaloacetate/malate to fix carbon from CO2 as

we previously demonstrated in vitro (Beste et al., 2011). Although

the 13C-FSA solution showed a net gluconeogenic (decarboxy-

lating rather than carbon-fixing) flux through these reactions

(Figure 3), this result does not exclude the possibility that

one or more of the contributing reactions could be operating in

the reverse (anaplerotic) direction. To test this hypothesis, we

infected unlabeled THP-1 macrophages with M. tuberculosis

in RPMI medium containing sodium [13C] bicarbonate

(13Cbicarbonate-RPMI). In accordance with expectations, there

was no incorporation of CO2-derived
13C label into amino acids

extracted from macrophages, whereas there was significant
13C incorporation into ten of the amino acids extracted from

the intracellular M. tuberculosis fraction (Figure 6; Table S3),

proving thatM. tuberculosis fixes CO2 carbon during intracellular

growth. In contrast, control experiments in whichM. tuberculosis

was grown directly in 13Cbicarbonate-RPMI showed significant
13C labeling in only three amino acids (glycine, ASP, and GLU),

and the 13C excess was significantly lower than for intracel-

lular M. tuberculosis (Table S3). These results demonstrated

enhanced CO2 fixation during intracellular growth and a wider

distribution of CO2-derived carbon throughout central meta-

bolism as compared with in vitro growth.

Thepredominanceof 13C label fromCO2 inASP, threonine, and

methionine during intracellular growth suggests that the carbon-

fixing reaction is one or more of the anaplerotic reactions that

generate their common precursor, oxaloactetate. Although ana-

plerotic fixation of CO2 could be performed by PEPCK, PYC, or

MEZ, our previous in vitro experiments indicated that PEPCK

was operating in the anaplerotic direction to fix CO2 (Beste

et al., 2011). CO2 has also been found to induce the expression

of the gene encoding PEPCK, pckA (Watanabe et al., 2011). To

investigate whether PEPCK was fixing intracellular CO2, we

repeated the 13C-bicarbonate labeling experiment in a pckA

knockout (KO) strain (Marrero et al., 2010). Thebackground strain

for DpckA was Erdman, but control experiments detected no

significant labeling differences betweenM. tuberculosis Erdman
e Authors
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and H37Rv. Control in vitro experiments were also performed

in 13C-bicarbonate-RPMI. Significant 13C labeling occurred in

only four amino acids from the intracellular PEPCK mutant

(glycine, ASP, MET, and GLU). In addition, incorporation into

these amino acids was 50% less than the 13C enrichment

measured for the same amino acids from the wild-type strain,

indicating that whereas PEPCK was contributing to carbon fixa-

tion inM. tuberculosis ex vivo, it wasnot the sole enzyme involved

(Figure 6; Table S3). The restriction of 13C labeling in DpckA to

TCA cycle-derived amino acids demonstrated that carbon

flux from fixed CO2 requires PEPCK to reach glycolysis- or

pentose-phosphate-derived metabolites and confirmed the glu-

coneogenic role of this enzyme when M. tuberculosis is repli-

cating within a macrophage.

C3 Substrate
The significant C3 signal in the labeling data (Figure 5; Table S2)

could have been generated by combinations of C1 and C2 units

derived from CO2 and acetate but could also indicate the

presence of an additional carbon source feeding into central

metabolism. The previous demonstration that gluconeogenic

flux of acetate was abolished in vitro in a PEPCK KO (Marrero

et al., 2010), together with our results, which show that there is

a similar block in macrophages, prompted us to use this strain

to probe for additional glycolytic substrates.We performed intra-

cellular 13C isotopologue experiments with the PEPCK deletion

mutant and respective parent Erdman strain using THP-1macro-

phages that were prelabeled by passaging in 13Cglucose-RPMI

(Table S4), using an identical protocol to the experiments

described for intracellular M. tuberculosis H37Rv. As a control,

M. tuberculosis Erdman and DPEPCK were also grown for

48 hr in 13Cglucose-RPMI media (Table S4). Again, we observed

no significant difference between the profile of H37Rv and the

Erdman strain of M. tuberculosis. These labeling experiments

showed no significant differences in isotopomer composition

between wild-type and DpckA for TCA cycle-derived amino

acids, but in the case of amino acids derived from the pentose

phosphate pathway and glycolysis/gluconeogenesis precursors

(Figure 5; Table S4), there was a reduction in the 13C1 and
13C2

signal (presumably derived from acetate or CO2) and retention

of 13C3 signal. The data clearly showed that, in addition to C2

and C1 substrates, M. tuberculosis is consuming substrate(s),

which generate 13C3 glycolytic intermediates. Moreover, the

labeling profile indicates that this substrate is entering at the

midpoint of the glycolytic/gluconeogenic pathway and then is

primarily being channeled into the pentose phosphate pathway.

DISCUSSION

We (Beste et al., 2011) and others (de Carvalho et al., 2010) have

demonstrated that M. tuberculosis cocatabolizes multiple

carbon sources in vitro. Here, we show that intracellular

M. tuberculosis also cocatabolizes several substrates, including

amino acids, C1, C2, and C3 substrates (Figure 7), a finding that

has considerable implication for efforts to develop novel antitu-

berculosis drugs that target substrate uptake or intracellular

metabolism. The major carbon source feeding central meta-

bolism was shown to be a C2 compound that is highly likely to

be acetate- or acetyl-CoA-derived from b-oxidation of host
Chemistry &
lipids, in agreement with previous indirect evidence (Muñoz-

Elı́as and McKinney, 2005; Pandey and Sassetti, 2008) of a

predominantly lipid diet for M. tuberculosis in vivo. However,

our experiments with the PEPCK KO strain demonstrated that

glycolytic C3 compounds are also carbon sources for intracel-

lular M. tuberculosis, as has been shown for intracellular

L. monocytogenes (Eylert et al., 2010). The identity of these

substrate(s) could be one or all of the amino acids that we

demonstrated were imported by intracellular M. tuberculosis,

e.g., alanine, glutamate/glutamine, or asparagine/aspartate.

However, glycerol 3-phosphate (derived from abundant mem-

brane phospholipids) or glycerol is also a potential C3

source. Glycerol kinase, required for the conversion of glycerol

to glycerol 3-phosphate, is dispensable for the growth of

M. tuberculosis in a mouse model (Pethe et al., 2010), indicating

that glycerol itself is not an essential carbon source.

M. tuberculosis auxotrophic mutants of leucine, proline, tryp-

tophan, and glutamine have previously been shown to be

severely attenuated in vivo (Lee et al., 2006; Smith et al., 2001;

Hondalus et al., 2000; Tullius et al., 2003), indicating that biosyn-

thesis of some amino acids is required in the intracellular

environment; but several auxotrophic strains (e.g., methionine,

isoleucine, and valine) can successfully proliferate in macro-

phages, indicating that other amino acids are acquired from

the macrophage (Awasthy et al., 2009; McAdam et al., 1995).

The data presented here showed that the macrophage

amino acids alanine, glutamate/glutamine, and asparagine/

aspartate were contributing to the intracellular nutrition of

M. tuberculosis. Alanine is a critical structural component of

peptidoglycan, and it has been shown that impairing the ability

ofM. tuberculous to convert L-alanine into D-alanine severely re-

stricts intracellular growth, both in vivo and ex vivo in macro-

phages (Awasthy et al., 2009). By accessing host cell alanine

pools, M. tuberculosis may ensure intracellular cell wall homeo-

stasis. The data were also consistent with additional uptake of

either glutamate and/or glutamine. M. tuberculosis has only

limited access to glutamine within a phagosome, and a gluta-

mine auxotrophic strain (glnA1 mutant) is highly attenuated in

macrophages (Tullius et al., 2003). These results, together with

our data, indicate that glutamate, rather than glutamine, is

more likely to be the substrate derived from the macrophage.

No data are available for M. tuberculosis-auxotrophic mutants

of aspartate and asparagine. However, in a transposon screen

mutations in genes involved in asparagine uptake (Rv2127 and

Rv0346c) were shown to have decreased intracellular fitness

(Stewart et al., 2005).

CO2 is perhaps the most surprising carbon source demon-

strated to be utilized by intracellularM. tuberculosis in this study.

We previously established that glycerol-grown M. tuberculosis

can incorporate CO2 carbon into biomass in vitro (Beste et al.,

2011), and this was also demonstrated in a hypoxic model of

in vitro growth (Watanabe et al., 2011). The current study pro-

vides direct evidence that M. tuberculosis not only fixes CO2

during intracellular growth but that fixation is at an increased

level as compared with in vitro growth. The product of carbon

fixation appears to be oxaloacetate generated partially, but

not exclusively, by the action of PEPCK. The remainder of the

CO2 fixation could be performed by one or more of the anapler-

otic reactions catalyzed by PYC and MEZ or via the activity
Biology 20, 1012–1021, August 22, 2013 ª2013 The Authors 1015



Figure 3. Estimated Carbon Flux Distribution through Central Metabolism for Intracellular M. tuberculosis

Arrows point in the net flux direction, and the width of each line is proportional to the underlying flux value. Glycolysis/gluconeogenesis (TCA), oxidative pentose

phosphate pathway (EMP), tricarboxylic acid cycle (TCA), anaplerotic reactions (ANA). Standard abbreviations are used for the amino acids. Metabolite

abbreviations: ACCOA, acetyl-CoA; ACE, acetate; CHO, chorismate; E4P, d-erythrose 4-phosphate; F6P, d-fructose 6-phosphate; FBP, d-fructose 1,6-

bisphosphate; FUM, fumarate; G6P, d-glucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GLX, glyoxylate; GLYC, glycerol; ICIT, isocitrate/citrate; KIV,

2-oxoisovalerate; MALOAA, l-malate-oxaloacetate; OXG, 2-oxoglutarate; R5P,a-d-ribose 5-phosphate/l-ribulose 5-phosphate/l-xylulose 5-phosphate; PEP,

phosphoenolpyruvate; PGA, 2-phospho-d-glycerate/3-phospho-d-glycerate; PYR, pyruvate; S7P, sedoheptulose 7-phosphate; SUC, succinate; SUCCOA,

succinyl-CoA. Enzyme abbreviations: CS, citrate synthase; ENO, enolase; FBA, fructose-bisphosphate adolase; FBP, fructose-bisphosphatase; FUM:fumurase;

(legend continued on next page)
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Figure 4. Isotopomer Profiles Indicate that

Alanine, ASP, and GLU Are Predominantly

Taken Up from Macrophages and Incorpo-

rated Directly into Biomass, whereas Valine

Is Predominantly Synthesized De Novo

(A–D) Proportion of 13C in isotopomers of alanine

(A) and valine (B) derived from macrophage (gray

bars), intracellular M. tuberculosis (black bars),

and M. tuberculosis grown in labeled RPMI (white

bars). Isotopomers ratios for GLU (C) and ASP (D)

represented as line plots. The THP-1 cells were

prelabeled by passaging with uniformly labeled

[U-13C6] glucose prior to the infections. Closed

symbols in black from intracellularM. tuberculosis

protein; open symbols in gray from macrophage

protein. The error bars indicate SD from 3–4

independent experiments.

See also Table S2.
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of propionyl CoA carboxylase of the methylmalonyl pathway

(MMP). MMP is one route for metabolizing propionyl CoA, which

can be generated from oxidation of odd and branched chain

fatty acids and cholesterol when sufficient amounts of vitamin

B12 are present (Savvi et al., 2008). It has also been shown

that MMP can provide an anaplerotic feed to the TCA cycle

(Savvi et al., 2008). However, in previous studies supplementa-

tion of vitamin B12 was required to activate the MMP when

M. tuberculosis was growing intracellularly (Griffin et al., 2012;

Lee et al., 2013). The role of the methyl malonyl pathway in

CO2 fixation during intracellular growth is currently under inves-

tigation in our laboratory.

Cocatabolism of glucose, glycerol, and acetate in vitro has

previously been reported to involve compartmentalized meta-

bolism with each carbon source yielding distinct products (de

Carvalho et al., 2010). Our data suggest a similar phenomenon

operating inside macrophages, with the anaplerotic reactions

operating in both the gluconeogenic (C2 substrate) and car-

bon-fixing anaplerotic (C3 substrate) direction simultaneously,

despite the absence of a requirement for anaplerosis. It has pre-

viously been proposed that carbon fixation could play a role in

maintaining redox balance in intracellular pathogens, acting as

a redox sink in conditions of reduced oxygen availability (Sriniva-

san and Morowitz, 2006), a situation that may be relevant to the

host environment of the TB bacillus. Carbon fixation provides a

potentially attractive drug target, because macrophage cells

are unable to fix CO2.

Overall, these studies describe the direct measurements of

nutrient uptake and metabolism of M. tuberculosis growing in-

side its host macrophage. This was facilitated by the develop-

ment of 13C-FSA, a powerful systems-based tool with utility in

unraveling the complex metabolic interactions between host

cells and their intracellular residents. The knowledge that

M. tuberculosis cometabolizes a mixture of glycolytic and gluco-
GAPA, glyceraldehyde 3-phosphate dehydrogenase; GND, 6-phosphogluconate

dependent; KOR/KGD, a-ketoglutarate ferredoxin oxidoreductase/a-ketogluta

malate dehydrogenase; MS, malate synthase; PCK, phosphoenolpyruvate carbo

PYK, pyruvate kinase; SDH, succinate dehydrogenase; SCS, Succinyl CoA synth

is denoted as [mac], and export to biomass is labeled _bm.
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neogenic carbon sources within a macrophage can be exploited

in the design of suitable in vitro media for high-throughput drug

screens, in addition to having implications for designing drugs

that target nutrient uptake or intracellular metabolism of this

and other intracellular pathogens.

SIGNIFICANCE

Tuberculosis (TB) is a disease that plagued ancient Egyp-

tians and remains one of the biggest killers in the world

today. A key to the success ofMycobacterium tuberculosis,

the bacterium that causes TB, is its ability to survive and

grow in macrophages, the very cells that are equipped

to eliminate bacteria from the body. In order to do this,

M. tuberculosis has to acquire nutrients and energy from

this isolated niche. Several studies have highlighted the

fact that targeting nutrient utilization is a potentially produc-

tive route for drug development, yet the nutrients consumed

by intracellular M. tuberculosis are currently unknown. We

used 13C-labeled carbon sources to directly measure the

metabolism of M. tuberculosis growing in macrophage

host cells. Our data were analyzed using a bespoke mathe-

maticalmodel, which allowed us to identify that amino acids,

C1 and C2 carbon sources were being obtained and metab-

olized by M. tuberculosis in the host cell. We have directly

measured the intracellular metabolism ofM. tuberculosis in-

side its host cell and used a mathematical approach—13C-

flux spectral analysis (13C-FSA)—to scrutinize this type of

complex interaction. We confirmed independently that the

source of the C1 substrate was CO2. Using a mutant strain,

we also demonstrated that C3 substrates were also contrib-

uting to the intracellular diet of M. tuberculosis. These

studies demonstrate that M. tuberculosis has access to a

diverse diet within its host cell, a finding which has
dehydrogenase; ICL, isocitrate lyase; ICDH, isocitrate dehydrogenase NADP-

rate decarboxylase; MEZ/PCA, malic enzyme/pyruvate carboxylase: MDH,

xykinase; PDH, pyruvate dehydrogenase; PGI, glucose phosphate isomerase;

etase; TAL, transaldolase; TKT1/2, transketolase. Import from the macrophage
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Figure 5. 13C Isotopomer Distribution of Intracellular WT and DPEPCK M. tuberculosis Demonstrates Intracellular Consumption of

Substrate(s), which Generate Significant 13C1 and
13C3 Intermediates

13C isotopomer distribution after infection of THP-1 macrophages prelabeled (with [U-13C6] glucose) with wild-type (black bars) and DPEPCK (striped bars)

M. tuberculosis superimposed on a metabolic network of central metabolism with the positioning of each chart indicating the source of the carbon backbone of

each amino acid. Error bars indicate SD of 3–4 samples from independent macrophage infections.

See also Table S4.

Chemistry & Biology

Metabolic Profile of Intracellular M. tuberculosis
significant implications for designing drugs against this and

other intracellular pathogens, as well as advancing our

knowledge of the pathogenesis of this globally important

pathogen. We also describe an automated systems-level

approach, which has utility in probing the intracellular meta-

bolism of any microbe within their host cell.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Growth Conditions

Frozen stock of M. tuberculosis was cultivated using Middlebrook7H11

agar and Middlebrook 7H9 broth containing 5% (v/v) oleic acid-albumin-

dextrose-catalase enrichment medium supplement (Becton Dickenson) and
1018 Chemistry & Biology 20, 1012–1021, August 22, 2013 ª2013 Th
0.5% (v/v) glycerol. The knockout strain of M. tuberculosis Erdman PCK

and the parent Erdman strain (Marrero et al., 2010) were kindly provided by

Sabine Erht.

Cultivation of Human THP-1 Macrophages

The THP-1 human monocytic cell line was obtained from ATCC TIB-202.

Cells were grown in RPMI 1640 medium supplemented with 0.2% glucose,

0.2% sodium bicarbonate, and 10% heat-inactivated fetal calf serum

(Sigma). Labeled RPMI medium was prepared from RPMI without glucose

or sodium bicarbonate (Sigma) by the addition of 100% [U-13C6] glucose

and unlabeled sodium bicarbonate (Cambridge Isotope Laboratories), fol-

lowed by sterile filtration. For the generation of 13C-labeled THP-1 cells,

RPMI media was prepared using 100% [U-13C6] glucose. Prelabeled

monocytes were then generated by passaging the cells three times
e Authors



Figure 6. Intracellular M. tuberculosis Utilizes Carbon from Fixed

CO2, and the EnzymePEPCK IsContributing to theObservedCarbon

Fixation
13C-incorporation into proteinogenic amino acids by wild-typeM. tuberculosis

(black bars) and DPEPCK (striped bars) after 48 hr of growing intracellularly

within THP-1 macrophages in the presence of sodium [13C] bicarbonate. Error

bars indicate SD of 3–4 samples from independent macrophage infections.

See also Table S3.

Figure 7. Substrates Consumed and Proposed Metabolic Pathways

Employed by M. tuberculosis, Replicating in Macrophages
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(12 days) in this media. RPMI was also prepared containing 0.2% sodium

[13C]bicarbonate (Cambridge Isotope Laboratories) for the carbon fixation

experiments. Cultures were passaged twice a week and maintained at a

density below 106 cells ml�1.

Infection of Macrophages with M. tuberculosis

Bacterial infections were performed in 6–10 flasks (175 cm2). Each flask was

seeded with 3 3 107 THP-1 cells and differentiated with 50 nM PMA for

72 hr at 37�C, 5% CO2, and 95% humidity. Cells were washed with PBS sup-

plemented with 0.49 mM Mg2+ and 0.68 mM Ca2+ (PBS+). M. tuberculosis

cultures were grown exponentially in 7H9 liquid medium to an optical density

of 1.0 (1 3 108 CFU ml�1) for the infection and then washed in PBS and

resuspended in RPMI with 20% FCS to obtain a bacterial suspension of

1.5 3 108 CFU ml�1. A total of 1 ml of bacterial suspension was added to

each flask (multiplicity of infection: five) and incubated for 3–4 hr. After incu-

bation the macrophages were washed three times with PBS+ and 30 ml of

RPMI, plus 20% FCS was added to each flask. After incubation for 48 hr

the floating cells were harvested by centrifugation at 300 3 g for 5 min at

4�C. The adhered and floating cells were then washed with ice-cold PBS

before being lysed with 0.1% Triton X-100. Mammalian cell debris was pel-

leted by centrifugation at 300 3 g at 4�C. The supernatant containing the

intracellular M. tuberculosis and the soluble host material was centrifuged

at 4,000 3 g for 20 min at 4�C to pellet the bacteria. The resulting superna-

tant was stored as a probe for the analysis of host cell amino acids. The re-

sulting bacterial pellet was washed twice in RIPA buffer (Sigma) and was

used as a probe for the analysis of 13C labeling of amino acids in intracellular

M. tuberculosis.

13C Biomass Hydrolysate and Preparation of Amino Acid Derivatives

Amino acid derivatives were prepared from bacterial and host cell fractions as

previously described (Beste et al., 2011). 13C excess and the isotopologue

composition was determined using GC-MS analysis as previously described

(Beste et al., 2011). 13C isotopologue abundances (i.e., 13C incorporation;
12Cn,

13C1, ., 13Cn) for each amino acid were determined for fragments con-

taining the intact carbon skeleton for each amino acid, generally using the

[M-57]+ ionmass spectra of the derivatized amino acids. Thesewere corrected

for the natural abundance of all stable isotopes.

Network Model

An isotopomer model of the central metabolism of M. tuberculosis (Beste

et al., 2011) was modified to include 11 amino acids, acetate (ACE), glycerol
Chemistry &
(GLYC), and glucose (GLC) as potential carbon exchange pools (Table

S5). Exchange of carbon between the macrophage environment and

M. tuberculosis was modeled via unidirectional reaction routes. A biomass

formula (Beste et al., 2007) was introduced to constrain metabolic flux rates.

In total, 55 intracellular reactions (25 unidirectional, 11 reversible) and 43

metabolites were subject to 14 possible uptake fluxes in the model (Table

S3). Flux rates (total of 33) were estimated using a total of 120 measured

GC-MS isotopomer/ isotopologue measurements (Table S6). For each com-

bination of potential carbon source, a network variant was built. In order to

make simulation results comparable among these model variants, the sum

of all carbon uptake fluxes was normalized to one (= 100%), as the ratio

between biomass formation and carbon uptake is not known for intracellular

M. tuberculosis.

13C-Flux Spectral Analysis

In order to reveal potential carbon sources (as isotopomers) for the

intracellular mycobacterial cell, a multistage sampling-based 13C-MFA-type

approach was implemented. First, the measured labeling patterns of

macrophage amino acids were deconvoluted by generating random

isotopomer labeling patterns for each potential substrate imitating the

measured isotopologues. If necessary, the direction of transport fluxes

was modified from a nominal efflux to a nominal uptake flux. Because of

stoichiometric constraints, additional flux directions were also adapted to

guarantee a nonempty flux solution space. Second, multistart flux estima-

tions were run based on initial flux space sampling as described elsewhere

(optimization library: NAG C; [http://www.nag.co.uk] with flux sampling

rate = 100 and maximal iteration number max_iter = 150; Dalman et al.,

2013) to account for locality pitfalls of the nonlinear weighted least-squares

fitting problem. Results for all measured isotopologues and initial and

optimal flux distributions were recorded and ranked using the residual valine,

and the best 100 flux fits (lowest residual valine) were selected for further

analysis. Combinations of up to three carbon sources were rigorously

analyzed in a large-scale computational study (in excess of 600,000 optimiza-

tion runs) performed with the high-performance software 13CFLUX2 (Weitzel

et al., 2013).

Statistical Analysis

Statistical analysis was performed using the Statistics Toolbox in Matlab

2001b (The Mathworks), and flux maps were visualized using Omix

(v. 1.5.8, http://www.13cflux.net/omix). Best flux estimates were calculated

by minimizing the sum of squares (residual values) of the offsets between

the measured and simulated labeling patterns. Flux estimations, including

the calculation of residual valine, were performed using 13CFLUX2

module multifitfluxes compiled for openSUSE 11.4 64bit (http://www.

13cflux.net).
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