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Abstract: Predicting radiobiological effects is important in different areas of basic or clinical applica-
tions using ionizing radiation (IR); for example, towards optimizing radiation protection or radiation
therapy protocols. In this case, we utilized as a basis the ‘MultiScale Approach (MSA)’ model and
developed an integrated mathematical radiobiological model (MRM) with several modifications and
improvements. Based on this new adaptation of the MSA model, we have predicted cell-specific
levels of initial complex DNA damage and cell survival for irradiation with 11B, 12C, 14N, 16O, 20Ne,
40Ar, 28Si and 56Fe ions by using only three input parameters (particle’s LET and two cell-specific
parameters: the cross sectional area of each cell nucleus and its genome size). The model-predicted
survival curves are in good agreement with the experimental ones. The particle Relative Biological
Effectiveness (RBE) and Oxygen Enhancement Ratio (OER) are also calculated in a very satisfactory
way. The proposed integrated MRM model (within current limitations) can be a useful tool for
the assessment of radiation biological damage for ions used in hadron-beam radiation therapy or
radiation protection purposes.

Keywords: mathematical radiobiological model (MRM); complex DNA damage; cell survival; rela-
tive biological effectiveness (RBE); high-LET

1. Introduction

Ionizing Radiation (IR) is considered to be a “double-edged sword” because it not
only affects the basic biological properties of neoplastic cells but also restructures normal
cells causing serious damage to them. Hadron radiation therapy has been extensively used
during the last decades all around the world as a part of the treatment for oncological
patients as a potential alternative to conventional radiation therapy [1]. In contrast to
ionizing charged particles which have a finite range, ionizing photons (X- or γ-rays) are
able to penetrate matter and deposit energy at all depths in a patient’s body, albeit with
exponentially decreasing dose levels after the first few centimeters. The finite range of a
charged particle is exploited in hadron therapy to reduce dose and therefore biological
damage to healthy tissue in proximity to a tumor target. In particular, the rapid increase in
the Linear Energy Transfer (LET) = dE/dx (dE represents the energy loss and dx represents
the increment of path length) at the end of an ion’s path through a patient’s body gives
rise to the so-called Bragg peak. Ion beams exhibit a strong increase in LET in the Bragg
peak as compared with the entrance region and they biologically attain higher cell killing
and enhanced mutagenesis and chromosomal instability [2]. In cancer radiotherapy, the
physical and biological properties of ion beams are more favorable than those of the
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conventional photon beams. On the other hand, the relative biological effectiveness (RBE).
values for different ions used in radiotherapies tend to increase with increasing LET up
to a maximum value before decreasing with further increases in LET. The RBE of an IR is
defined as the ratio of a dose of standard radiation (usually low-LET γ-rays) to the dose
of test radiation to produce same biological effects. Because LET is proportional to the
square of the particle’s charge, ions with atomic numbers Z greater than a proton (Z = 1)
have the ability to deliver more dose at larger LET values than protons (or X-rays). This
attribute of ions with Z > 1, along with the increase in LET in the Bragg peak region, creates
opportunities to increase the RBE in a tumor target without a concurrent increase in the
RBE of nearby healthy tissue, i.e., the therapeutic ratio tends to increase with increasing
atomic number.

The most critical target regarding biological effects of IR in cells is the DNA macro-
molecule. However, recent studies [3,4] have shown that extranuclear damage also con-
tributes to many cellular endpoints, including reproductive cell death. IR produces a
number of DNA lesions types, such as base damages or closely spaced (10–20 bp) clustered
lesions formed through the direct deposition of energy in the DNA and by the indirect
reaction with radicals and reactive oxygen species (ROS) that can diffuse a few nanometers
away from the ion’s trajectory and damage the DNA [5]. For clinical applications of particle
radiotherapy, it is important to develop predictive models in order to quantify the level
of biological damage induced. In recent decades, such radiobiological models have been
developed [6,7] to describe the response of cells to IR, which correlate irradiated cells’
reaction to the delivered dose and other parameters expressing cell sensitivity. These
models take into account the secondary electrons produced by the interaction of ions with
the biological matter, free radical diffusion away from the locus of their production, as well
as the biological effects of the deposited dose in combination with the local number density
of these secondary particles. The role of low energy electrons in causing biological damage
has been previously emphasized [8,9].

At the level of individual cells, X-or γ-rays deposit their energy uniformly at all
locations within a cell, whereas charged particles deliver highly localized energy deposits
within a few nanometers of the particle trajectory. The concept of an “absorbed dose”,
which is the expected value of the stochastic distribution of energy deposits formed in a
target of interest divided by the mass of the target, does not fully account for biologically
relevant differences in the small-scale spatial deposition of energy by low- and high-LET
radiations. Despite the limitations of the “absorbed dose”, it remains the most widely
used parameter for relating the deposition of energy in cells or tissue to specific biological
endpoints, including reproductive cell survival.

The most common example of the aforementioned models is the linear-quadratic
(LQ) survival model [10] which provides a simple relationship between cell survival and
delivered dose. In this model, the fraction of surviving cells S is modeled using a linear-
quadratic (LQ) function of radiation dose d:

−ln S = αd + βd2 (1)

where α, β are cell-specific coefficients that vary with the LET of an ion (and the effective
LET associated with the secondary electrons produced by X-rays). According to the
interpretation first introduced in 1972 by Kellerer and Rossi [10], it was supposed that a
lethal event is caused by a single radiation track (the linear term αd) or by two independent
radiation tracks (the quadratic term βd2). Chadwick and Leenhouts considered that
the linear term expresses non-repairable double strand breaks (DSBs) and the quadratic
term expresses a combination of two sublethal single strand breaks (SSBs) [11]. The LQ
model is considered to be more valid for doses that are not much larger than the value
of the α/β ratio for a cell type [12]. This model, despite being of an empirical nature, is
considered to be the best-fitting one for the description of cell survival under irradiation
and is widely used both experimentally and clinically. Other models such as the Padé
linear quadratic (PLQ) model [13], the universal survival curve (USC) model [14] and a
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mechanistic formulation of a linear-quadratic-linear (LQL) model [15] contribute to its
further clinical and experimental applications. The amorphous track structure model
which was introduced by R. Katz in the mid-60 s for describing the response of biological
systems to heavy ion irradiation [16–18] utilizes the concept of action cross section as the
probability of targets in the radiation detector being activated to extract cell killing. At that
time, the knowledge of electron tracks was used for defining the properties of the ion ones
represented in two dimensions. The main goal of this model is to calculate the RBE. This
model provides a well-defined method for directly predicting cellular survival in mixed
ion and photon fields [19]. However, in this model the evaluated relation of the radial
dose distribution with the survival probability of the cells was based on survival curves for
X-rays. This model also explained the changing shape of survival curves and the variation
of radiosensitivity with LET.

The Local Effect Model (LEM) [20,21] describes radiobiological effects based on amor-
phous track structure in link with dose response after X-ray irradiation. The chosen-for-
irradiation cell is divided into a vast number of tiny voxels and a modified LQ model
is applied for every voxel in order to assess the number of lesions produced in such a
voxel. The total number of lesions is derived by summing up the local lesions while the
final state of the cell is determined depending on the number of lesions. Especially, in
the LEM IV version [22], the reproductive fate of a cell is attributed to the local density
of initial DSBs and their mutual proximity within the nucleus. The DSBs are classified
as either ‘isolated DSB’ or ‘clustered DSBs’, but there are no specific assumptions about
biological interactions of DSBs to form lethal lesions. The parameters α and β used in
the LEM are taken from X-ray irradiation data. This model takes into account the details
of track structure in the nm-scale. It also makes use of Monte Carlo (MC) methods and
numerical techniques to determine some quantities used by it [23]. On the other hand,
the mechanisms of action operating on the LEM’s spatial scale are not explicitly modeled
in some cases. Additionally, while the LEM IV tends to minimize the number of ad hoc
adjustable parameters, it increases the computational complexity of the model [24].

The Microdosimetric-Kinetic Model (MKM) [25] uses estimations of stochastic energy
deposition into volumes of the µm-scale. This model is formulated in terms of potentially
lethal lesions (PLL). It discerns two types of lesions, the type I which is not repairable and
thus lethal to the cell, and the type II which may undergo one of four transformations. In
the MKM, the cell nucleus is divided into domains so that PLL are limited to the domain
in which they are created. The MKM uses six input parameters (three of them are cell-
specific) and it assumes that it is the frequency of intra-track and inter-track pairwise
PLL interactions which determines the formation of chromosome aberrations and cell
death as a function of the LET of each particle. This model relies on the LQ model for the
representation of low- and high-LET cell survival response [26].

The Repair-Misrepair-Fixation (RMF) model [24,27] links the induction of initial DSBs
to the formation of lethal point mutations and chromosome aberrations. A coupled system
of non-linear ordinary differential equations is used to model the time-dependent kinetics
of DSB induction, rejoining and interaction to form lethal or non-lethal chromosome aber-
rations. It is assumed that it is the formation of lethal point mutations and chromosome
damage rather than the initial DSBs or DNA lesion complexity which is the leading mecha-
nism underlying the effects of particle LET on cell survival. The RMF model treats initial
DSB formation as a compound Poisson process. This model makes use of the fast Monte
Carlo Damage Simulation (MCDS) code [28,29] to determine the RBE for DSB induction.

The concept of the lethal and potentially lethal lesions used by the latter models is
promptly derived from the interpretation attempts of the LQ model. On the other hand,
the real nature of these sublesions remains undefined until nowadays. These models
consider the misrepaired lesions as lethal ones; on the contrary, according to new advances
in radiobiology, it is proved that misrepaired lesions are involved in genomic instability
and cell transformation rather than radiosensitivity and cell death or apoptosis [30]. These
models are based on the notion of DNA repair, and the repair rate per unit time used by
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them is supposed to be constant; this is not always compatible with the repair kinetics which
show the existence of a continuous DSB spectrum of repair efficiency probabilities [31].
Additional radiobiological questions to be solved include: (i) the proved hypersensitivity
to low doses [32] and (ii) the fact that there are radiosensitive syndromes which are
not caused by a decrease in DSB repair kinetics (as in the Huntington’s disease [33] in
neurofibromatosis and Usher’s syndrome [34]).

The general mechanistic model proposed by McMahon et al. [35] predicts the radiosen-
sitivity of cells irradiated by X-rays, proton and carbon ions with extension to other charged
particle exposures, and calculates the RBE of carbon ions. It also obtains survival curves and
corresponding LQ parameters for different cell lines. This model compares its predictions of
radiosensitivity with 800 survival curves from the literature. It is based on the mechanistic
model by the same authors published in 2016 [36] which begins from spatial distributions
of DSBs, incorporates the kinetics of different DNA repair processes and the probability
and severity of misrepair. It provides predictions of a range of endpoints including DNA
repair, genetic aberration and cell survival based on a set of 11 fitting parameters describing
different processes common across a range of cell types. Then, cell-specific predictions are
made from these parameters based on specific phenotypic characteristics. The latest model
proposed by Mc Mahon et al. extends the first one and generates predictions of X-ray
sensitivity based on parameters established in the mechanistic fit, and then is combined
with a Monte Carlo simulation of energy distribution around particle tracks, involving the
fitting of an additional parameter to link energy distribution to DSBs. The mechanistic
model BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) in
addition to cell survival curves predicts chromosome aberrations, in the form of chromo-
some aberration dose-response curves which are considered as an important indicator
of tissue damage [37,38]. It assumes that (1) IR produces ‘cluster lesions’, where each of
them produces two independent chromosome fragments, (2) fragment mis-rejoining or
un-rejoining generates chromosome aberrations, and (3) some of these aberrations may
cause cell death. This model uses only two parameters, but several mechanisms are not
described explicitly to avoid the introduction of further parameters. It also makes some
approximations (e.g., two chromosome free-ends with initial distance smaller than a cut-off
value will undergo end-joining with 100% probability, whereas two fragments with initial
distance larger than that value will never undergo end-joining) which deflect from our
knowledge of chromosome exchanges. It also accepts that cell death can result only from
chromosome aberrations, bypassing other pathways such as apoptosis and necrosis. The
model’s results of cell survival show a tendency to underestimate the surviving fraction at
the higher doses.

The mechanistic model of cellular survival proposed by Wang et al. [39] offers pre-
dictions between the DSBs induced because of the irradiation of a cell and the probability
of its survival, as well as calculation of the RBE of charged particles. It uses two input
parameters, of which one is the average number of DSBs yielded by each particle, and
six fitting parameters. This model is based on the assumption that DSBs are the initial
DNA lesions after cell irradiation and that primary particles which caused no DSBs do not
contribute to cell death. It also considers that only the non-homologous end-joining (NHEJ)
is the dominating pathway of DSB repair, and thus this contributes to cell death.

The RITCARD (Radiation Induced Tracks, Chromosome Aberrations, Repair, and
Damage) algorithm (Application to Simulation of Chromosome Aberrations) [40] models
human chromosome geometric configuration as well as simulates the radiation-induced
breaks and their repair.

In clinical radiobiology, biophysical models must fulfill the following important cri-
teria: to be mathematically simple, accurate, easy to handle and make use of a limited
number of degrees of freedom in order to predict cell survival under irradiation. The so-
called ‘Multiscale Approach (MSA)’ [41–44] offers a physical phenomenon-based analysis
of the physical processes that take place on different spatial, temporal and energy scales
in the micro-environment of the cell after its irradiation by ions [41]. The MSA includes
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many relevant effects known so far by the scientific community, which occur inside the cell
when irradiated, starting from the physical stage, entering the chemical one and following
the whole way down to the biological stage. This approach can be expanded to include
secondary theoretical physical processes like nuclear fragmentation [45], charge-exchange
processes through collaboration with other codes [46] and is characterized by adaptability
to changes of external conditions, e.g., the presence of sensitizing nanoparticles [47]. It also
comprises the contribution of new damage mechanisms, such as the thermo-mechanical
effect with the formation and development of shock waves on the nanometer scale around
the ion path [48] which might contribute drastically to DNA damage especially for ions
with LET > 1000 keV/µm [49] (as those produced in accelerator laboratories or found
in cosmic rays). Although such waves have not been detected experimentally so far but
only described theoretically [50,51], their existence, as a result of the rapid increase in
temperature and pressure in a close distance around the ion’s path, challenges radiobio-
logical research to take action. The MSA has been used to predict survival probabilities of
irradiated cells with ions of different charge and energy, and calculate RBE and oxygen
enhancement ratio (OER). At this point it must be mentioned that the original MSA ap-
proach does not offer capability for survival prediction under a dose fractionation pattern
in contrast to more established rather empirical models like LQ, MRM, LEM or others with
a proven clinical use.

In this paper, the methodology followed is described and applied to the analysis of
measurements for ions studied or already used in hadron therapy, with the introduction
of some crucial modifications to the original model. In this improved adaptation of ‘MSA
model’, the complex DNA damage was assessed together with the obtaining of the survival
curves of different cell series irradiated with heavy ions of different energy and LET. The
OER and RBE were calculated and compared with experimental data. The ions studied
cover a large spectrum of ion irradiation applications, not only in radiation therapy but
also in radiation protection (especially 56Fe, which is considered as one of the most harmful
components of cosmic radiation).

2. Results

In Section 4, we analyze the whole methodology followed as well as the parameters
used in our model in order to obtain the final results. Therefore, having followed this
methodology, we depict (Figure 1) the survival curves of different asynchronous cells for
irradiation with some heavy ions with random values of LET and we compare them to
the corresponding experimental ones from various references. In this model, we used the
values—for the cell-specific input parameters—given by the corresponding references in
which the experimental curves are demonstrated. As can be seen, for both values of the
coefficient γ we obtain survival curves in very good agreement with the experimental data.

We now proceed to the calculation of the oxygen enhancement ratio (OER) at the 10%
survival level for V79 (Chinese hamster) cells irradiated with 12C carbon ions. OER is
defined as the ratio of the dose delivered to the cell under hypoxic conditions to that under
normoxic conditions, leading to the same biological effect [52]. In our case:

OER = d10,hypoxic/d10,normoxic (2)

where d10,normoxic the dose at 10% survival level in normoxic conditions, and d10,hypoxic the
dose at 10% survival level in hypoxic conditions. We calculate the values of d10 through
the survival curves for V79 cells for normoxic and hypoxic conditions (for γ = 0.0001)
as obtained by our method, and then we calculate the OER; after that we compare these
values of OER with the corresponding ones from [53].
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[20]. (iv) NB1RGB cells (normal human skin fibroblast) irradiated with 28Si of LET = 59 keV/µm (for γ = 0.01) [56]. (v) 
NB1RGB cells (normal human skin fibroblast) irradiated with 20Ne of LET = 45 keV/µm (for γ = 0.01) [56]. (vi) V79 cells 
(Chinese hamster) irradiated with 56Fe of LET = 2106 keV/µm (for γ = 0.0001) [57]. vii) V79 cells (Chinese hamster) irradi-
ated with 40Ar of energy T = 17138.5 MeV (for γ = 0.01) [58]. (viii) V79 cells (Chinese hamster) irradiated with 14N of LET 
= 125 keV/µm (for γ = 0.0001) [59]. (ix) V79 cells (Chinese hamster) irradiated with 11Β of LET = 110 keV/µm (for γ = 0.01) 
[60]. 

Thus, we obtain the diagram of the OER as a function of LET (Figure 2). As can be 
seen, our results describe in a satisfactory way the decrease in the OER with LET increase 
and its asymptotical tendency towards the value 1 at high LET values. The values of the 
OER as obtained through our approach are in very good agreement with the experimental 
data. Under hypoxic conditions, when there is a reduction in oxygen concentration in the 
cell, there are less free radicals formed than under normal aerobic conditions, which leads 
to a decrease in the DNA damage caused by them. 

Figure 1. Survival curves (i–ix) for various heavy ions and a wide range LET values, obtained by this proposed model for
asynchronous cell populations. In each diagram the dots represent the corresponding experimental data. Very good agree-
ment is ascertained. (i) Survival curve for KS-1 cells (human brain glioblastoma) irradiated with 12C of LET = 13.3 keV/µm
(for γ = 0.0001) [54]. (ii) V79 cells (Chinese hamster) irradiated with 12C of LET = 359.5 keV/µm (for γ = 0.0001) in
hypoxic conditions [55]. (iii) CHO cells (Chinese hamster ovary cells) irradiated with 16O of energy T = 1424 MeV,
(for γ = 0.0001) [20]. (iv) NB1RGB cells (normal human skin fibroblast) irradiated with 28Si of LET = 59 keV/µm (for
γ = 0.01) [56]. (v) NB1RGB cells (normal human skin fibroblast) irradiated with 20Ne of LET = 45 keV/µm (for γ = 0.01) [56].
(vi) V79 cells (Chinese hamster) irradiated with 56Fe of LET = 2106 keV/µm (for γ = 0.0001) [57]. (vii) V79 cells (Chinese
hamster) irradiated with 40Ar of energy T = 17138.5 MeV (for γ = 0.01) [58]. (viii) V79 cells (Chinese hamster) irradiated with
14N of LET = 125 keV/µm (for γ = 0.0001) [59]. (ix) V79 cells (Chinese hamster) irradiated with 11B of LET = 110 keV/µm
(for γ = 0.01) [60].

Thus, we obtain the diagram of the OER as a function of LET (Figure 2). As can be
seen, our results describe in a satisfactory way the decrease in the OER with LET increase
and its asymptotical tendency towards the value 1 at high LET values. The values of the
OER as obtained through our approach are in very good agreement with the experimental
data. Under hypoxic conditions, when there is a reduction in oxygen concentration in the
cell, there are less free radicals formed than under normal aerobic conditions, which leads
to a decrease in the DNA damage caused by them.
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Figure 2. Distribution of the Oxygen Enhancement Ratio (OER) at the 10% survival level for V79
cells exposed to 12C (for γ = 0.0001) for different Linear Energy Transfer (LET) values. Our results are
depicted with blue dots while the experimental data are depicted by the green open dots [53].

Our final calculation is that of the RBE. This quantity for each cell line is defined as
the ratio of the d10 to that of X-rays under aerobic conditions. All the data are the ratio to
survival after irradiation with 200 kVp X-rays under normoxic conditions. We have used
the survival curves as obtained via our methodology for some different cell series irradiated
with 12C ions of different values of LET in the range 10–500 keV/µm. Our reference data
are taken from [53,54]. In Figure 3 the diagram of the RBE at the 10% survival level is
depicted as a function of LET for γ = 0.0001. As we notice, the RBE10% increases with LET,
reaches a peak at around 140 keV/µm (for V79 cell line, which has the biggest spectrum of
LET values compared to the other corresponding ones) and then decreases at larger LET
values. This feature constitutes the so called ‘overkill effect’ [61,62]; at high LET values the
energy is deposited into the cell nucleus by a small number of ions. This energy exceeds
the one required to kill the cell. One can notice that the calculated values of RBE10% are in
good agreement with the experimental results.

Although not shown, the OER and RBE values calculated with γ = 0.01 (as deduced
in the present study) lead to almost identical results (within 10%) to those obtained for
γ = 0.0001, thus, offering equally good agreement with the experimental data and other
studies depicted in Figures 2 and 3.
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depicted with open symbols while the experimental data are the filled symbols) [53,54].

3. Discussion

Modeling the damages induced by such ionizing particles crossing the living tissues
requires a full and accurate knowledge of the whole radiation history, the energy deposited
during inelastic collisions and the part of energy which is transferred to secondary particles
produced by them into living matter. Analyzing the scheme of the MSA, one should start
with the propagation of an ion with a certain energy through biological matter, which is
replaced in our calculations by water, since the largest percentage of a cell is of that [63].
Thus, liquid water is widely accepted as a tissue-equivalent medium for modeling the
charged particle-induced processes in biological matter exposed to ionizing radiations.

The use of interaction cross sections for water medium—instead of DNA—is justified
on the basis of the following arguments: The interaction cross sections of DNA are not
as well-understood as those for water. For example, experimental energy-loss studies for
DNA (either as a whole or for its individual bases) are scarce, while theoretical calculations
are too uncertain due to its complex electronic structure (e.g., too many subshells, strong
long-range correlation, influence of molecular geometry). Thus, it is not clear yet how
accurate the existing calculations are using semi empirical dielectric response functions
of solid-DNA which neglect the geometric structure and consider the energy distribu-
tion of the numerous subshells very roughly (see [64–68]). Similarly, it is not clear how
realistic the atomic calculations are that pertain to the individual bases which neglect
long-range correlation and polarization effects that strongly influence the most important
outer-shell electronic transitions [69–72]. In general, the discrepancy in the inelastic and
stopping cross sections among different DNA studies seems much larger than possible
differences between DNA and liquid water, which seem to be of the order of 20–30%
over the present energy range. In contrast, for water, there is a rich body of literature
on theoretical calculations and experimental measurements for the interaction cross sec-
tions both in its gaseous and liquid phase, along with several intercomparison studies
of different physics models [73–76]. However, many uncertainties still remain for water,
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especially in the low energy range [77–79], there exist several well-established physics
models (see Emfietzoglou et al. [78]). Therefore, most Monte Carlo track structure codes
for DNA damage calculations (e.g., PARTRAC, KURBUC, GEANT4-DNA, among others)
still use interaction cross sections for liquid water to model the interaction of charged
particles with DNA [71]. This approximation was also adopted here.

Such an ion-projectile moving through matter interacts with a few bio-molecules along
its path. The greatest damage to the cell is induced by the secondary electrons ejected as
a result of excitation and ionization of the medium after the ion’s passage and the free
radicals which are inevitably formed and propagate through the medium (direct damage).
Most of these electrons have energies below 45–50 eV and undergo elastic and inelastic
collisions with bio-molecules, but the main mechanism of bio-damage is the latter one.
These secondary electrons share the following characteristics during propagation: their
range of movement in bio-matter is up to 10 nm, their angular distribution of velocities
after ejection is largely uniform, they lose most of their energy within only a few nm from
the ion’s path and then continue to move until they become bound or until the formation of
solvated ones; this occurs within 50 fs from the ion’s passage through the biological matter.
Moreover, the elastic and inelastic scattering of these electrons prove to be nearly isotropic.
It is of note that these secondary electrons have the potential to ionize just one or two
water molecules and this could be explained by the fact that since the average energy of
secondary electrons in the vicinity of the Bragg peak is about 40 eV (the ionization potential
of water molecules Iw = 10.8 eV) the maximum average energy that can be transferred to
a secondary electron of the next generation is ~(40 eV − Iw)/2 = 15 eV, a value of energy
which can barely cause another ionization [41]. All these features allow the use of the
random walk approximation for the study of their transport.

The secondary electrons with energies more than 100 eV (δ-electrons) have been
excluded from the random walk approximation; they are characterized by mean free paths
of more than a few nm, and they are emitted mostly at small angles. Although they carry
the potential to produce further ionizations than the former ones (those with energies lower
than 50 eV), they do not spread much further than them. On the other hand, the probability
of generating an electron with energy that exceeds 100 eV or even much more than that, is
small compared with that of an electron which has a very lower energy. As a result, their
inclusion in this model is ignored [41].

The physical description of an ion’s propagation through living tissues is obtained
through a quantity called stopping power Se (or equivalently, −dE/dζ, i.e., the loss of
ion’s kinetic energy E per unit path length ζ). In the case of ions, there is little difference
between the position of their energy loss and that absorbed by biological matter along
their path, since the ion’s energy is distributed to secondary electrons which have much
shorter ranges in comparison with the length ζ. Therefore, to a first approximation the
linear energy transfer (LET) can be considered identical to the stopping power. The main
physical characteristics of the aforementioned secondary particles can be obtained through
the calculation of the singly—differential cross sections (SDCS) (Equation (8)) for the
ionization of water molecules, the total ionization cross sections (TICS) (Equation (11))
and their average ejected energy (Waverage) (Equation (12)). The above mentioned physical
characteristics (SDCS, TICS and Waverage) of the ions that have been used in the methodology
of the ‘MSA’ in this paper (protons, 11B, 12C, 14N, 16O, 20Ne, 40Ar, 28Si and 56Fe) are based
on dielectric formalism [80] with the use of a semi-empirical parameterization [64,65] of
the optical energy-loss function (OELF) (Equation (3)) of liquid water as target medium for
this scope.

Another assumption adopted in this model is that the scattering of secondary electrons
has a cylindrical symmetry with respect to the longitudinal axis ζ of the ion’s path; this
is because a typical range of the diffusion distance of a secondary electron in the Bragg
peak region is less than 10 nm while the generating ion crosses a distance of ~1 µm.
Simultaneously, the number of emitted secondary electrons per unit length ζ does not
depend on ζ since the stopping power is approximately constant along a path of that range.
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Towards quantification of complex DNA damage in this approach, we calculated
the average number densities of the secondary electrons produced on the ion’s path as a
function of time and distance. Taking a step further, we obtained a corresponding number
density of the new electrons induced by ionizations of the first generation of secondary
electrons, since many of the latter have the potential to ionize molecules of the medium.
After these second ionizations, the ionized molecules can become sources of reactive
oxygen species (ROS), which play a basic role to lesions in the irradiated cell. Selecting the
proper time fraction, it is feasible to obtain the initial spatial distribution of free radicals
(especially hydroxyl radicals, OH•) (Equation (13)) which react with DNA and cause their
own damage to this macromolecule.

We also calculated the secondary electrons fluence Fe(ρ) (see Equation (16)) (i.e., the
integral of the number of secondary electrons that reach and impinge on a unit surface
of the target per unit time, over the entire time after the ion’s crossing and over the
target’s surface), which is dependent on the radial distance from the ion’s path ρ and the
geometrical orientation of the surface-target. The calculation of this quantity is made for a
fundamental element—target of DNA: two DNA twists, part of the macromolecule that is
wrapped around the lateral surface of a nucleosome. This surface-target of DNA occupies
2.3 × 6.8 nm2 on the surface of a cylinder (histone octamer) (the radius of that cylinder
is 5.75 nm) [63]. All the calculations have been made for the case where this cylinder
is oriented in a perpendicular position with respect to the axis ζ of the ion’s path; the
numerical results for this geometrical case are proved not to deviate significantly from
other possible geometrical orientations-positions of the cylinder with respect to axis ζ.

Another basic physico-mathematical quantity which intercedes in the whole analysis
is the probability of a secondary electron incident on a DNA twist to induce a single strand
break (SSB) ΓSSB; its values range in a wide interval, depending on the electron’s energy
and the irradiated environment of a certain medium, according to different studies [81–86].
The chosen value for this probability used in our calculations (see Equation (17)) is that for
the corresponding calculations for plasmid pBR322, as was estimated through fitting to
experimental data and adopted by the authors of the MSA model [41]. This probability is
important for the calculation of the number of SSBs induced per unit length of the ion’s
trajectory, per ion.

The exact calculation of the number of DSBs induced per single cell can be charac-
terized as elusive, since there are many indistinct views about the mechanism of causing
such lesions and their induction. DSB is defined as two bistranded SSBs which occur on
the opposite strands of DNA within a distance of ~10 bp [87]; in our calculations, within a
single twist of DNA. DSBs are generally considered as serious lesions, still capable of being
repaired by the existing endogenous repair mechanisms of the cell, but getting complicated
and lethal for the cell’s life if other lesions occur close to them [88]. There are studies which
suggest that a DSB may occur of a single electron that dissociatively attaches to a part of the
DNA [9,89]. Another aspect about the production of a DSB is the one which inculpates two
separate SSBs on opposite strands. In the latter case, double ionization events involving
three electrons may cause such a lesion [90]. In this situation, a remark that, the ratio of
the number of DSBs and SSBs per unit length of the ion’s path is constant and does not
depend on the dose—only if tracks of different ions do not interact—gives us the solution
to our question. The latter is proved by the fact that an increase in dose does not necessarily
mean that there is also an increase in the density and interaction of ion tracks. Those
tracks could overlap only when the dose has reached a critical value; this condition has
not been observed in experiments so far [41]. Thus, the calculation of the DSB yield per
single ion incorporates two different cases; the first where SSBs are converted into DSBs
and the second where DSBs are induced by separate electrons. In our calculations, in the
former case, the fraction λ of SSBs converted to DSBs (see Equations (18) and (23)) has taken
the average value 0.15 (its values range between 0.1 and 0.2) [9,81,89]. The calculation of
complex DNA damage in our model, following the methodology proposed by the authors
of the Multiscale approach [44], implies that DSBs occur via SSB conversion since there is
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adopted a single-hit scenario, which means that a hit of an ion may inactivate a cell with a
given probability.

Apart from SSBs, DSBs and other isolated base lesions which occur in the DNA
molecule after cell irradiation, there are also clustered damage sites (multiply damaged
sites) i.e., complex DNA damage, which are defined as a cluster of DNA lesions (SSBs,
DSBs, damaged bases, etc.) within maximum two DNA twists. These ensembles of lesions
which are treated as a single damage site by the cell’s repair mechanisms, determine the
criterion of cell lethality. Precisely, since cellular repair as an individual process has not
been included in the calculations of DNA damage of this model, the classification of DSBs
on the basis of increasing complexity made by Schipler and Iliakis [88] has been adopted
(through the parameter ν, in Equation (23)). It was assumed that a lesion which comprises a
DSB and at least two other simple lesions within two DNA twists (T3-DSB, according to the
aforementioned classification) is potentially lethal. The latter type of lesion is characterized
by an increased complexity and in this case the cell energizes the simultaneous use of two
repair pathways (e.g., DSB repair and BER, [60]). If we consider further a class of a superior
order of complexity from this classification (e.g., T4-DSB, which represents a non-DSB
damage cluster), the type of complexity gets higher, engaging potentially a different choice
for the appropriate repair pathway that has to be followed.

On the other hand, according to the relevant bibliography, there are obvious inconsis-
tencies indicating gaps in our knowledge regarding the parameters which determine DSB
repair pathway choice and the rationale on which this choice is based [91,92]. For example,
we still cannot answer the question of why cells choose to follow an error prone repair
pathway when an error-free repair pathway is available [93]. In such cases, things point to
issues that need to be made clear when the network of repair pathways and the decisions
that underlie their choice are analyzed [94,95]. Thus, we made use of an indirect way of
characterizing whether a complex lesion is lethal or not: By introducing the criterion of
lethality, we have tested successfully a large number of cell lines in different conditions
of irradiation (different ions-projectiles with low to high LET values, small to large val-
ues of fluence, as well as aerobic and hypoxic environment) and we have demonstrated
representatively some of them in our study. According to this criterion, the probability of
lethal damage is described through Equation (23), where the order ν of complexity of a
clustered damage site (i.e., the number of simple lesions in a cluster) is larger than or equal
to 3. In this way, by introducing a weight coefficient corresponding to the probability of
repair, we partially overcome the lack of a DNA repair component, as it is assumed that
the clustered damage of the order of complexity equal to three or higher containing a DSB
is lethal to the cell. It is natural to expect that sites with clustered damage of high orders
are lethal for the cell, while the decreasing order increases the probability of a successful
repair. We already know from a plethora of relevant studies [91,96,97] that lethal damage
in DNA depends on the degree of damage complexity and dose. In general, our model
includes, in an indirect way, the process of DNA repair which is embedded into this general
criterion. Of course, this criterion may differ among different cell lines, but it expresses
the average cell response to ion irradiation. This model, in its present form, is proved to
simplify the way of assessing lethal damage to irradiated cells—in comparison to other
radiobiological models—considering that inherent repair of DNA damage is included in
the aforementioned criterion.

Important to our assessments is also the average number of ions passing through the
cross-sectional area of the irradiated cell nucleus Nion (Equation (25)) as well as the average
distance of the ion’s crossing through the nucleus of the cell Xnc (Equation (28)). Finally, an
equally critical quantity for the calculations of clustered DNA damages in irradiated cells
is the number of clustered damage sites per unit length of the ion’s path ns, (Equation (20))
which depends on the genome size of the cell, the nuclear volume and the phase of the cell
cycle. In the latter case, the number density of DNA is averaged over the different phases
of the cell cycle in order to give a certain value that fits to an average cell.
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A very important calculation for the assessment of complex DNA damage in the MSA,
and generally for obtaining the survival curves, is the average number of multiple damage
sites per cell induced by free radicals; more precisely, by hydroxyl radicals OH•. Because
among the reactive species produced by water radiolysis, the charged species H+ and
OH− are quickly neutralized (thus, they are not considered harmful). Similarly, solvated
electrons and H atoms do not induce DNA strand breaks since the electrons add to the
DNA bases (this fact does not induce a breakage of a phosphoric acid ester bond of the
sugar moiety). Therefore, OH• radicals add primarily to the double bonds of the bases
and abstract H atoms from the sugar moiety to a large extend. These radicals (OH•) are
mainly responsible for the induction of strand breaks in a DNA molecule [98]. As a whole,
for the estimation of the average number of multiply damaged sites per cell induced by
OH•, an equation is applied (Equation (21)); this equation comprises a nearly constant
average value of area density of hydroxyl radicals—calculated indirectly from the average
value of the number density of hydroxyl radicals within a distance of 10 nm from the ion’s
path—and the Heaviside step function which describes accurately a considered uniform
distribution of these species within that distance from the ion’s trajectory. In this case, the
presence of hydroxyl radicals beyond the distance of 10 nm from the ion’s path is totally
excluded. This product is multiplied by the probability Γr,SSB of any OH• reaching the
DNA to produce a SSB.

Last but not least is the development of a factor—part of the Equation (16) which
calculates the fluence of the secondary electrons through our target; that is the attenuation
exponential factor e−γk which discerns electrons that do not take part in the random
walk. The coefficient γ is defined as the ratio of the ionization cross sections of secondary
electrons with a minimum energy capable to induce DNA damages to the total cross section
(The total cross section is the sum of the excitation, ionization and elastic cross sections,
respectively) [99]. In our paper, we examined two different values for the coefficient γ: the
first one (γ = 0.0001), adopted by the authors [100], corresponds to secondary electrons with
energy equal to or higher than the ionization potential of water molecules (10.79 eV) [101],
while the second one (γ = 0.01) is an alternative value for the case that the energy of these
electrons is equal or larger than 17.5 eV (this is the threshold energy for the induction of
an SSB, according to [87]). In the latter case, the probability of an SSB induction ΓSSB is
considered equal to 1.

We showed that our MRM model can efficiently predict the survival curves of different
human cells irradiated by ions in very good agreement with the experimental data without
using any kind of fitting to experimental data, by utilizing only three input parameters
(particle’s LET or kinetic energy T, and two cell-specific parameters: the cross sectional
area of each cell nucleus An and its genome size Ng). In fact, when we study human
cells, these cell-specific parameters may be reduced to only one; the cross sectional area
(another parameter used in our model is Nrk which may take any value ≤15 × 10−3 nm−2,
thus it is a default one). We also showed through this model that one may safely use
another alternative way to that proposed by the authors of the ‘MSA model’, of considering
the damage caused to DNA by the secondary electrons, simply by entering a different
threshold of their energy when hitting the target (through the coefficient γ). It is of note
that our results are independent of the cell cycle phase in which the cells are irradiated
since this model incorporates all the phases of the cell cycle by introducing an average
number density of DNA over the different phases as a function of fractions of the total cell
cycle duration [49].

In this study, we have used the parameter Ng as the genome size (the number of
base pairs in the cell nucleus) considering that in the interphase most of the chromatin is
relatively decondensed and uniformly distributed throughout the nucleus. This means that
the corresponding yields for all normal human cells will be the same; of course, this does
not happen in cancer cells which are characterized by an elevated mitotic index [102]. In
this model, and in the case of cancer cells which are generally characterized by unregulated
growth, and larger nuclei [103], by giving the corresponding measured values of the cell
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parameters Ng and An for every studied cell, we efficiently predict cell survival after
their irradiation with heavy ions. In this way, we prove the model’s adaptability to any
alternation between normal and cancer cell lines, and vice versa. For example, through our
analysis, the survival curves of the normal human skin fibroblast (NB1RGB) cells (number
of chromosomes: 46.3 and area of cell nucleus: 172.3 µm2) and the brain glioblastoma (KS-1)
cancer cells (number of chromosomes: 83.3 and area of cell nucleus: 221.4 µm2) [54] after
their irradiation with different ions and different LET values, as depicted in Figure 1i,iv,v,
show a very good agreement with the experimental data. We must note that in our present
results, the survival curves depicted in Figure 1 are representatively part of a large number
of cell lines studied by us through the present model, and a significant part of experiments
that have been included and summarized in the PIDE database [104].

As can be seen from the survival curves presented in our study, the performance of
our model at low-medium doses is satisfying enough, since all the curves show a very
good agreement with the experimental data at doses lower than 2 Gy (2 Gy/day is a typical
dose fraction in radiation oncotherapy) except for that of Figure 1vi, for V79 cells irradiated
with 56Fe with LET = 2106 keV/µm (an ion studied especially in cosmic radiation field, and
not in radiation therapy) because of the absence of experimental data in this low LET area).

We may now discuss the limitations of the present model. The sensitivity of the MRM
model to parameters changes is proved to be very high. Actually, except for the coefficient
γ -which is analyzed in Section 4—and, when changed, this happens simultaneously with
a change in the probability ΓSSB of a SSB induction, the other non-variable parameters are:
(i) the probabilities ΓSSB and Γr,SSB for the induction of a SSB on our elemental DNA target
due to an electron, or an OH• incident on it, respectively, (ii) the conversion probability
λ of a SSB to a DSB and (iii) the order ν of damage complexity (in Equation (18)). More
analytically: (i) The ‘famous’ value 0.13 for the probability Γr,SSB is proved to be constant
in literature over the years [87,105,106], and we have also kept it like this in our study. If
we use any other value between 0.14 and 0.22, according to Van Rijn et al. (1985) [107],
our final results are not affected at all. On the other hand, this also does not happen with
the probability ΓSSB, which has been chosen by us taking the value 0.03, according to the
authors of the MSA [41], but may vary from 10−4 to 10−1 [81,108]. In our calculations, any
value of that probability from 10−4 to 8 × 10−2 does not affect the value of the number of
lethal DNA lesions per ion YC, or the slope of the survival curve for any cell studied. For
values larger than 8 × 10−2 there occur extensive uncontrollable declinations in our results
from the experimental data. Besides, for values lower than 10−4, our final results do not
change at all. (ii) About the parameter λ, we have already analyzed its values given by
us above. (iii) As for the parameter ν which also has been discussed above, we may note
that if we tried to use other values lower or higher than the selected one (ν = 3), then this
would mean that we either take into account lesions which are easily repaired and are not
considered lethal (ν = 1 or 2) [88], or (for ν = 4) we exclude from our calculations lesions
(i.e., T3-DSB) which are difficult to be repaired and they are considered lethal; in this case,
our calculations lead to completely wrong results.

Radiotherapy (RT), besides cancer cells, affects also the tumor microenvironment
(tumor stroma); the latter surrounds the cancer cells and it consists of non-malignant cells,
extracellular matrix, as well as cells of the immune system [109]. Tumor microenviron-
ment’s complexity is strongly connected to tumor growth, metastasis, response to therapy
and radioresistance [110]; the latter remains until nowadays the main reason for the failure
of treatments at cancer patients. Until recently, RT was focused only on the direct tumor
cytotoxicity and the induced DNA damage. However, since the immunomodulatory ef-
fects of ionizing radiation on the tumor microenvironment have been steadily recognized,
there is a strong interest of the scientific community in utilizing radiotherapy to activate
an anti-tumor immune response [111]. RT participates in releasing and presenting the
antigens, gathering T-cells in the tumor, activating T-lymphocytes and stimulating them to
recognize and kill the cancer cells [112]. During all the tumor’s life, a mutual communica-
tion takes place between the cancer cells and their surrounding tumor microenvironment’s
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components; they dynamically interact with each other, controlling initiation, progression,
invasion and metastasis of the tumor [113]. Generally, there is proved to be a delicate
balance between the immune system activation and the immunosuppression as they are
both induced by radiotherapy; and this balance depends on the fractionation scheme and
dose [114]. Up until now, according to the bibliography reports, there is no clear evidence
about which doses stimulate the activation of the antitumor immune response and which
of them provoke immunosuppression [115]. In any case, our model may contribute to the
therapy planning, since its results are proved to be satisfactory even in the very low doses.

Since one of our model’s goals is the optimization of ion-beam therapy, we must also
keep in mind the principle of fractionation of the radiation dose; this may be synopsized
as follows: by dividing a dose into several small fractions, normal tissues are spared due
to repair of sublethal damage between dose fractions and repopulation of the cells if the
whole time is long enough. Simultaneously, damage to tumor cells is increased because
of reoxygenation and redistribution of the irradiated cells into radiosensitive phases of
the cycle between dose fractions. This technique produces in general better tumor control
for a certain level of toxicity of normal tissue than a single undivided dose [116]. Because
our model functions very efficiently in the ‘low’ dose area, it can potentially be used
in the future for predicting the dose-response relationship for a multifraction regimen.
Currently, this is a limitation for MRM compared to other more advanced but rather
empirical approaches as summarized in [117].

Up until now, we have not considered DNA repair; it is assumed that inherent repair
of DNA damage is included in the criterion of lethality, as was analyzed above. We may
say that this criterion together with Equation (29) produce linear survival curves for ion
irradiation of cells. Nevertheless, the existence of ‘shouldered’ survival curves also in
experiments for specific cells could be partially translated—through the methodology and
the principles of the MRM—as the fact that there are still potentially ‘lethal’ damages
which can be repaired by the irradiated cell. It is of note that an extended research on
cells irradiated with X-rays and their survival curves [52] shows that the linear survival
curves indicate a single-hit scenario of DNA damage, which also means that a single hit of
a cell’s DNA-target with, in our model, an ion leads to inactivation of that cell with a given
probability; a probability which includes the probability of DNA repair. On the other hand,
linear survival curves are a signature of cells exposed to densely ionizing radiations (such
as heavy ions, used in radiation therapy of cancer [58]).

Considering possible future developments of the MRM, we could focus, at first, on the
cellular repair mechanisms which reduce the number of complex lesions through processing
after subjection to ionizing radiation. Currently, we know that different pathways have
been evolved to amend DSBs or generally complex damage: the homologous recombination
(HR) repair pathway, the DNA-PK- dependent non-homologous end-joining (D-NHEJ)
and the (back-up) B-NHEJ [118]. Modeling approaches based on biochemical kinetic
equations which would comprise simultaneously all these different repair pathways would
be welcomed to this model.

The original ‘MSA’ also incorporates the theory of shock waves generated by the
developed high pressure inside the cylindrical surface of radius ~1 nm that encircles
the ion’s path. Although such waves have not yet been discovered experimentally, their
existence is expected according to thermodynamics. The action of shock waves which
are predicted by this approach may be critical for the DNA damage, especially for that
percentage of damage induced by free radicals. This is based on the sudden expansion
of the medium which may transfer these radicals further and more effectively than the
classical mechanism of diffusion. However, in this work, we did not take into account this
potential mechanism, its study and thermo-mechanical analysis maybe of importance for
assessing more accurately DNA damage for future developments.

Up until now the radiobiological models have been focused on the damage induced
to the DNA of an irradiated cell, but new indications from recent research results show
that this may not be the only leading target of radiation. Breakage of cellular DNA
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after radiation occurs in both the nuclear and the extra-nuclear DNA. Besides nuclear
(nDNA), mitochondrial DNA (mtDNA) is also affected by IR; the latter is proved to be
more susceptible to IR than the former one [119]. Many investigations showed that mtDNA
can be an easily available target for free radicals [120,121]. These organelles may occupy
up to 30% of the total cell volume [122]. IR can induce various lesions in mtDNA (such
as strand breaks, base mismatches and large deletions [123]. A large number of studies
show that mitochondria and their interactions with the nucleus play a basic role in the
induction of oxidative stress post irradiation [124], in the epigenetic changes as well as in
genomic instability [125]. They also initiate and amplify bystander signals [126]. Thus, a
possible future extension of our model to assess potentially lethal lesions in the mtDNA—
concentratively in an irradiated cell—could contribute to an increase in the tumoricidal
efficacy of a targeted radiation therapy.

Another issue for embedding in this model is that of bystander effects after cell irra-
diation, which means the occurrence of biological effects in unirradiated cells as a result
of exposure of other neighboring cells of the same population to ionizing radiation which
show a non-linear response to dose [127,128]. Cells that are not directly hit by ions (often
called bystander cells) may exhibit responses similar to irradiated cells. Cell culture ex-
periments and in vivo observations have shown the induction of DNA DSBs, mutation,
chromosomal aberration, apoptosis, and genomic instability [129]. It is of note that by-
stander effects are characterized as a low-dose phenomenon [101]. Since our presented
model has the ability to predict the survival fraction of irradiated cells with ions of different
LET, this fact in combination with experimental data from irradiated cell lines could give a
more accurate prediction of survival curves even for surrounding non-hit cells [130].

In the same way, we may refer to the radiation adaptive response, a phenomenon that
was first reported by Olivieri et al. [131] and followed by other studies [132,133]. According
to this phenomenon, human lymphocytes can become ‘adapted’ by prior exposure to low
level irradiation (‘adaptive dose’) so that they become less sensitive to the chromosome-
breaking damage due to high-dose X-rays (‘challenging dose’) delivered subsequently.
Therefore, this adaptive response to low doses occurs only within a relatively small ‘win-
dow’ of dose [134]. This means that very low doses of IR in human and animal cells
could induce mechanisms whereby cells become better adapted to confront subsequent
exposures to high doses [135]. The adaptation induced by low doses of IR is attributed to
the induction of a repair mechanism; if the latter is active at the time of exposure to high
doses this would lead to less residual damage [134].

Eukaryotic cells are proved to have radiation-inducible DNA repair mechanisms
that may be regulated in response to DNA damage. This fact has a practical importance
especially for clinical application in radiation oncotherapy when designing the proper
dose fractionation, thus, it is connected to the split dose protocols and the analysis of
‘irregularities’ in dose-response curves; this also means that it is relevant to the analysis of
effects of very low doses or low dose rates in human cells [136,137]. There are also findings
suggesting that bystander effects induced by irradiation of cells might contribute to the
induction of the radiation adaptive response [138]. These phenomena are of great impor-
tance at low doses and have an impact on the shape of the dose–response relationship. The
high sensitivity of our model in low doses, as has been mentioned above, may contribute
to the observation of these phenomena, too.

Thus, there are many challenging research areas in which the MRM model could
be expanded in the near future, with the accumulation of more experimental data. Its
versatility makes it adaptable to modern experimental conditions and results since it is
based on a complete physical, biological and chemical framework.

4. Materials and Methods

In this work, in all of our equations, we have kept the same symbols for all the
quantities described by the authors of the ‘MSA model’, in order to facilitate the readers
when we cite their references. All our results were extracted with the use of the MATLAB
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software (R2019a, MathWorks). Before proceeding to our calculations we present a flow
diagram of the whole methodology of our model (Figure 4).
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energy) are based on the dielectric formalism [139] with the use of the energy-loss function
(ELF) Im

[
−1

ε(k,E)

]
calculated for liquid water, where ε(k, E) is the complex dielectric function,

and E and h̄ × k are the energy and momentum transfers, respectively. Since ELF is
experimentally known, one can compute the ionization cross sections. This function can be
determined experimentally from optical data [73,140].

In order to calculate ELF, one has to calculate at first the optical ELF (OELF) for
zero momentum transfer k = 0. OELF may be calculated from experimental optical data
for a large number of materials, of which biological ones are only a few [66]. For its
calculation, we have used an empirical approximation also suggested by [141] which is
based on the observation that some bioorganic compounds along with water have a rather
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ELF = Im
[
−1

ε(k, E)

]
=

α× E

[E2 − E2
p(k)]

2 + γ2E2
(5)

More elaborate dispersion relations have been developed for liquid water [78,144] and
can be used in future extensions of the MSA.

The energy transfer is:
E = W + Bi (6)

where Bi is the binding energy of the i-shell. For water, we keep the estimate of de Vera et al. [64]
of a mean binding energy B from the ionization thresholds of all outer electronic shells,
and therefore:

E = W + B (7)

(The mean binding energy for liquid water B = 18.13 eV).
For liquid water, the microscopic singly-differential cross section (SDCS) dσ

dW [64] for
an electron emitted with kinetic energy W from the electronic i-shell of the target, by an ion
of kinetic energy T, mass M and charge Z is:

dσ

dW
=

e2

N
× (M)× Ze f f 2

πT × h2 ×
∫ k+

k−
(ELF)

1
k

dk (8)

with integration limits:
k+ =

√
M×

(√
T +
√

T − E
)

k− =
√

M×
(√

T −
√

T − E
)
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The molecular density of water is: N = 0.033 molecule/Å3.
While SDCS depend mainly on the charge and the velocity of the ion that enters

matter, and since charge is dependent on velocity, the formula for the effective charge Zeff
of an ion (with charge z) [145] has been included in our calculations:

Zeff = z [1 − exp (−125 β × z−2/3)] (9)

Noteworthy is the fact that the macroscopic cross section Λ is related to the microscopic
one, σ [64]:

Λ = N × σ (10)

Now, one can proceed to the calculation of the total ionization cross sections (TICS):

TICS = Λ(T) =
∫ ∞

0

dΛ(T, W)

dW
dW (11)

and the average energy of the emitted electrons:

Waverage(T) =
1

Λ(T)

∫ ∞

0
W

dΛ(T, W)

dW
dW (12)

By the described method we processed the physical data of different ions, i.e., protons,
11B, 12C, 14N, 16O, 20Ne, 28Si, 40Ar and 56Fe, as projectiles in liquid water and we show
our results in the following two diagrams (see also Table S1). In Figure 5, the TICS of the
studied ions calculated through this method are shown as a function of the ion’s kinetic
energy T. From this graph one can notice that the TICS for every ion get their maximum
in a certain different value of energy and these peaks shift to larger energies as the mass
of the ions get increased. At the same time, TICS represent the number dNe

dζ of secondary
electrons emitted per unit length from the ion’s path, and from this graph is shown that
the heavier the ion, the larger the number of ejected electrons becomes while it crosses
biological matter. This number of ejected electrons contributes greatly to the damage in a
cell, and especially in its DNA.

In Figure 6, the average energies Waverage of secondary electrons produced are depicted
as the result of ionization after the passage of these ions through liquid water as a function
of the ion’s energy. As can be seen, the peak of the curve for every ion shifts to the right (to
larger kinetic energies of the ion) as the mass of the ion grows larger but they all tend to a
stable maximum value below 45 eV. This also means that the difference in the impact on
living matter from its crossing by different ions will be focused on the number of secondary
electrons produced per unit length of the ion’s path, and of course, on the corresponding
number of OH•.

The next step is the calculation of the OH• number density in the medium after the
ion’s crossing through it. For this reason, we follow the differential equations described by
the authors [49], calculating the number density of OH• for carbon ions 12C of a certain
LET. We then extend it to every value of LET and to every ion-projectile. For this reason we
use the mean free path data from [146,147]) taking into account that the average energy of
secondary electrons ejected from all the heavy ions that we study is nearly the same, as
referred above. Thus, we demonstrate the final form of the equations by which the initial
number density of hydroxyl radicals nOH•(ρ, t) (as a function of distance from the ion’s
path ρ and time t) is acquired:

nOH•(ρ, t) =
∫ t

0

dNe

dζ
× δ2(ρ)× δ(t)dt +

∫ t

0

n1(ρ, t)
τ1

dt +
∫ t

0

n2(ρ, t)
τ2

dt (13)

where δ is the Dirac delta function, and the number density of first-generation secondary
electrons n1(ρ, t):

n1(ρ, t) =
dNe
dζ
× 1

4πD1t
× e−

ρ2
4D1t−

t
τ1 (14)
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and dNe
dζ the number of emitted secondary electrons per unit length (i.e., the value of

TICS, as mentioned above), as well as the number density of second-generation secondary
electrons n2(ρ, t) :

n2(ρ, t) =
1

2πτ1
× dNe

dζ
×
∫ t

0

1
D1 · t′ + D2(t− t′)

× e
− ρ2

4[D1 ·t′+D2 ·(t−t′)]−
t−t′
τ2
− t′

τ1 dt
′

(15)

while the diffusion coefficients Di = vi·li/6, where vi is the electron’s velocity and li its elastic
mean free path in the medium, with the values D1 = 0.265 nm2/fs, D2 = 0.057 nm2/fs
and the average lifetimes of the two generations’ electrons, respectively, τ1 = 0.64 fs and
τ2 = 15.3 fs (mean free path data have been taken from [146,147]). We have considered
time t ' 50 fs as that of integration over these equations, since at this fraction of time the
transport of these electrons is over [49,130]. This time is shorter than that of the formation
of hydroxyl radicals, but by the time OH• are formed there are no more active sources.
These radicals react with other biomolecules in a cell. Therefore, we demonstrate the graph
(Figure 7) which shows the initial distribution of hydroxyl radicals for different heavy ions
and different random values of the stopping power Se.
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These radicals diffuse around the ion’s track at distances ρ ~ 6 nm, but not more than
10 nm [148,149]. This is why we studied the spatial distribution of them over a distance
ρ = 0–10 nm from the ion’s path. For all these different values of stopping power and all
the ions that we study, we calculate the average value of the OH• number density within
this distance, which represents the number density of these radicals at a random point
in a distance ρ from the ion’s path (where our target could be); its value proves to have
an order of magnitude 10−2 nm−3. This approximation will be used in this paper for the
assessment of DNA damage from hydroxyl radicals, and this is also an innovative method
which deviates from that used by the authors of the MSA up until now.
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Calculation of Complex DNA Damage and Survival in an Irradiated Cell

Since we know that TICS expresses the number dNe
dζ of ejected secondary electrons

per unit length of an ion’s path through biomatter, we calculate their values as a function
of the ion’s energy T and stopping power Se for all the ions that we study (see Table S1).
This will be important in order to calculate the fluence of secondary electrons through the
selected target and, consequently, to assess DNA complex damage. We have used the data
for protons and carbon ions in liquid water from the appendix of ICRU Report 90 [150], and
the corresponding data for the rest of the heavy ions (except for 56Fe) from the appendix of
ICRU Report 73 [151], while for 56Fe the data have been taken from SRIM 2008 [152] (see
Supplementary data, Table S1). In this way, one may address to these datasets and obtain
the number of emitted electrons per unit length of the ion’s trajectory dNe

dζ for any value of
the ion’s kinetic energy T or stopping power Se in liquid water.

Since we know the number of ejected secondary electrons from the ion’s path per unit
length, we may calculate in a pure geometrical way the fluence of the secondary electrons
through an elemental structure of DNA which has been chosen for target and this is the
surface of two twists of DNA (part of the segment of DNA that is wrapped around the
lateral surface of a nucleosome). Its dimensions are 2.3 × 6.8 nm2. Having mentioned
previously the whole geometry of this target hit by secondary electrons and following the
formulae described by [41] we give the final formula for this fluence Fe(ρ) (for γ = 0.0001):

Fe(ρ) =
dNe
dζ × 5.75×

×[
∫ 1.15
−1.15 dz

∫ ∞
−∞ dζ

∫ B
A dφ

∫ ∞
r

0.2
× r

2k (
3

2πk×0.04 )
1.5.e

−3r2
2k×0.04− 0.0001×k × (5.75−ρcosφ−ζsinφ)

r dk
]

(16)

with limits

A = max

[
−0.591,

(
arctan

ζ

ρ
− arccos

5.75√
ζ2 + ρ2

)]

and

B = min

[
0.591,

(
arctan

ζ

ρ
+ arccos

5.75√
ζ2 + ρ2

)]
where

r =
√
(5.75× cos φ− ρ)2 + (5.75× sin φ− ζ)2 + z2

For the elastic mean free path l of secondary electrons with energies less than 45 eV we
have chosen the value 0.2 nm (its values range between 0.1 and 0.45 nm, [146]. It is of note
that the coordinate ζ is considered to range from −∞ to +∞, since the length scale along
the Bragg peak is measured in tens of µm, while the radial one in nm. As mentioned above,
we have used both the cases which discern the energy threshold of secondary electrons
which hit our surface-target, as it is expressed through the coefficient γ. The used values of
γ are calculated as the ratio of the ionization cross sections of those secondary electrons,
with a certain energy threshold to induce damages to the target DNA, to the total cross
section. The values of cross sections have been taken from [75]. Our final results about
complex DNA damage printed in this paper, have been calculated by using both the values
of γ and at last, these results are compared between them.

We may now introduce the probability ΓSSB of an electron incident on this target to
induce a SSB. This probability can be estimated in several ways [81,82,86]. We have chosen
the value ΓSSB = 0.03, since it is validated via experiments on plasmids by the authors [41]
and used to great extent by them. Multiplying this probability by the fluence of secondary
electrons through this target we get the average number of SSBs for this fundamental
target-part of DNA:

Ne = ΓSSB × Fe(ρ) (17)
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Taking into account, until now, only the action of secondary electrons, we may express
the probability Pe(ρ) that the order ν of damage complexity at that given segment of DNA
is equal or larger than 3, following the criterion of cell lethality (which is based on the
classification of Schipler and Iliakis [88] which mentions that any complex DNA damage
that contains a DSB together with at least two more simple lesions is potentially lethal for
the cell, as it was described above:

Pe(ρ) = λ×
∞

∑
ν=3

Nν
e

ν!
e−Ne (18)

thus, we assume that such a clustered damage site of complexity order equal to three or
more is lethal.

We also use λ = 0.15 [9] as the conversion probability of an SSB to a DSB, since in
the MSA, DSBs take place only through an SSB conversion [89]. More simply, if a single
electron induces a SSB, the same electron induces also a DSB with a probability 0.1–0.2 of
that to cause an SSB.

The number of complex damage sites per unit length of the ion’s path dNcd,e
dζ through

the cell due to secondary electrons is:

dNcd,e

dζ
=
∫ ∞

0
ns × Pe(ρ)2πρdρ (19)

where ns is the number of complex damage sites per unit length of the ion’s path (number
density), which is proportional to the ratio of base pairs of the cell’s DNA to the nuclear
volume, ns∼Nbp/Vn. Here, we must take into account that a double DNA twist includes
20 bp [153] and the fact that in order to calculate the final expression of ns one must
consider the dependence of Nbp on the phase of the cell’s cycle and then average it over
these different phases. The final expression for ns [42]:

ns = (π/16) Ng/
(
An × Xnc

)
(20)

where Ng is the genome size (for human cells, it is equal to 3.2 Gbp [63]), An is the
cross sectional area of each cell nucleus and Xnc is the average length of ions’ traverse
through nucleus.

The next step is to include the indirect effect of hydroxyl radicals, which induce in
their own way damage to DNA. However, in this case, a corresponding fluence of hydroxyl
radicals through the same target is not able to be calculated. However, we know the radial
distribution of the hydroxyl radicals number density and what we seek is the surface
density of them at any distance ρ in a cylindrical volume of radius 10 nm around the ion’s
trajectory; for this reason, since we have no evidence about this magnitude, we consider
values of the hydroxyl radicals surface density less by at least one order of magnitude than
the average number density that we assessed above (i.e., values≤ 10−3). These values must
then be reduced to the surface of this elemental target of DNA, (i.e., 15.64 nm2); these are
the values of Nrk that we use below. Therefore, in this paper—deviating from the classical
MSA—we introduce at first the step function, in order to describe the surface density
of OH• as a function of the distance ρ, and then we multiply it by the OH• activation
probability Γr,SSB, so as to calculate the average number of lesions like SSBs, base damages,
etc., due to hydroxyl radicals Nr:

Nr = Nrk × θ(10− ρ) · Γr,SSB (21)

where Nrk ≤ 15×10−3 nm−2. It turns out that for any value of Nrk equal or less than this
approximate value, we get results—about the surviving fraction of the cells—which are
in very good agreement with the experimental ones, as will be shown below. The step
function excludes radicals at distances larger than 10 nm from the ion’s path.
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On the other hand, we have used the value Γr,SSB = 0.13 for the probability of
any OH• reaching the DNA to produce a SSB [87,105]. This value is also estimated by
Milligan et al. [106]. Other assessments for the value of Γr,SSB range from 0.14 to 0.22 [107].
It was also supposed that hydrated electrons and H atoms react mainly with the bases
of DNA [154] to induce base radicals, and thus, are excluded from our calculations. All
the aforementioned refer to the classical normoxic conditions of the irradiated cell. In the
case of hypoxic conditions, where oxygen concentration is very low or nearly absent, the
DNA damage induced by radicals may be repaired and therefore we may consider that
the average number of SSBs induced by radicals, Nr is about the half of that for normoxic
conditions [5,155]. Thus, in our approach, only this parameter, Nr depends on oxygen
concentration. In general, it has been shown that direct damage is important and for
example constitutes ~70% or a total damage to cells by particles of 2 MeV/um, equivalent
to 56Fe [57].

We then add the average number of simple lesions due to secondary electrons Ne to
that one due to OH• Nr, to find the total average number of such lesions Nc:

Nc = Ne + Nr (22)

According to the criterion of lethality that has been set in the MSA, we may proceed
to calculate the probability of lethal damage Pl(ρ):

Pl(ρ) = λ×
∞

∑
ν=3

Nc
ν

ν!
e−Nc (23)

where ν is the number of simple lesions per cluster.
The yield of lethal damages per unit length of the ion’s trajectory dNl

dζ is then:

dNl
dζ

= ns ·
[∫ 10

0
Pl(ρ)× 2πρdρ +

∫ ∞

10
Pe(ρ)× 2πρdρ

]
(24)

since hydroxyl radicals act only within the distance ρ = 0–10 nm from the ion’s path
in contrast to secondary electrons that are considered everywhere in the volume that
we examine.

On the other hand, for a given type of cell irradiated with a given dose d (measured in
Gy) of an ion beam (assuming that there is a uniform distribution of ions in the beam) with
LET (or stopping power Se—in keV/µm—since these terms are considered synonymous in
this approach), the average number of ions that cross the cell nucleus Nion will be:

Nion = An × d/Se (25)

and reducing it to the proper units:

Nion = [An·106 (nm3) × 10−24 × d (Gy)]/[Se (eV/nm) × (1.6 × 10−19)] (26)

where An is the cross-sectional area of each cell nucleus (in µm2). Additionally, there is a
probability Pν(d), depending on dose, that exactly ν ions are crossing the nucleus for this
certain dose d:

Pν(d) =
Nν

ion
ν!

e−Nion (27)

Considering a cell nucleus with diameter Dn, the average length of an ion’s crossing
through it is:

Xnc = π × Dn

4
(28)
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The number of lethal DNA lesions in the cell nucleus per ion Yc will be:

Yc =
dNl
dζ
× Xnc ×

∞

∑
ν=1

νPν(d) (29)

And finally, the cell survival probability Πsurv is:

Π
surv

= e−Yc (30)

Thereupon, we may calculate the survival fraction of any cell irradiated with anion,
expressing it as a function of dose d, and then compare it to experimental data of the
same cell irradiated in aerobic or hypoxic conditions. We did so for a large number of
mammalian cells (for both the different values of the coefficient γ). Knowing the nuclear
characteristics of every cell (cross-sectional area, diameter of the nucleus, and genome size)
we can obtain its survival curves after irradiation with an ion of specific LET.

The formula and values used above refer to the case of γ = 0.0001. In the alternative
case of γ = 0.01 that we introduce innovatively in this paper, the only thing we must change
is the value of the probability that an electron incident on this elemental target has to
induce an SSB, ΓSSB = 1 [87].

5. Conclusions

We describe an improved adaptation of the MSA model to predict the initial complex
DNA damage to cells irradiated with ions and especially heavy ions, the MR model. In
our model, the starting point of the calculations was the singly-differential cross sections
which determine the main characteristics of secondary electrons. The latter plays a key role
in assessing cellular damage at the DNA scale. The next step was to define an elemental
target of DNA and calculate damage to it by secondary electrons and free radicals before
reducing these results to the whole extent of the macromolecule in the cell nucleus. Overall,
calculated survival curves for a broad spectrum of cell series and heavy ions were found to
be in good agreement against experimental data (see Figure 1). Importantly, the present
methodology uses only three input parameters (in human cells only two input parameters)
without fitting to the experimental data. Another advantage of this model is that it produces
very satisfactory results in assessing complex DNA damage and cell survival generally for
asynchronous irradiated cell populations. We optimized in a more logical reasoning, the
quantification of free radicals in the close area around the ion’s trajectory based on reliable
parameter values of the modern corresponding bibliography. We also applied our model to
many different heavy ions which are being studied during the last decades on the basis for
example of optimization of ion-beam therapy for medical treatment or radiation protection
during space travelling. For the latter, studying radiation-induced biological damage by
such heavy ions would aid scientific research to assess more accurately hazards of human
exposure to cosmic radiation during space missions and cancer risk.

We calculated the RBE, a key quantity for the description of radiation biological effects
induced by ions on living matter, which, despite its complexity and dependence on several
parameters, is still a fundamental factor for determining the quality of an oncological
radiation treatment. On the same basis, we calculated the OER which helps us to compare
the radiobiological effects of ions to those at different aerobic and hypoxic conditions of
the irradiated cell.

The advantages of the MRM can be summarized as follows: (1) it uses only a limited
number of input parameters (three in total) of which two are dependent on each applied
cell. Although this is not uncommon for other more established empirical models like LQ,
RMF still the parameterization number for MRM is considered low (but more complicated
and difficult to apply) and plus (2) it uses no fitting to experimental data (the only fitting
done in the whole model is that of the probability ΓSSB of an electron incident on a DNA
target to induce an SSB) and (3) it predicts cell survival curves for a broad spectrum of cells
irradiated with many different heavy ions having a broad range of LET values (even for
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56Fe ions which exist in cosmic radiation). Our model is not cell-cycle-phase specific but
predicts survival very well for asynchronous cell cultures (Figure 1). Last but not least,
(4) it is extendable to new physical quantities and theories (e.g., the shock waves, still
undiscovered, but theoretically predicted in high LET radiation), to biological phenomena
and new discoveries in radiobiology (the damage caused in mitochondria and other cell
organelles during the irradiation).

The current limitations are that no repair mechanistic model has been incorporated
yet and therefore ‘shouldered’ survival curves cannot be predicted, but this is something
primarily for X-rays as well-known and discussed above. Another major limitation when
it comes to radiation therapy (RT), is that MRM cannot be applied yet to fractionation
treatment protocols and in general incorporate human tissue effects after RT.

Supplementary Materials: The following are available online. Table S1: The values of the kinetic
energy T (MeV), the stopping power Se (eV/nm) and the number of secondary electrons ejected per
nm of the ion’s path ( dNe

dζ ) for all the ions used in this paper (protons,12C,11B, 14N, 16O, 20Ne, 40Ar,
28Si and 56Fe).
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13. Belkić, D.; Belkić, K. Padé–Froissart exact signal-noise separation in nuclear magnetic resonance spectroscopy. J. Phys. B At. Mol.

Opt. Phys. 2011, 44, 125003. [CrossRef]
14. Park, C.; Papiez, L.; Zhang, S.; Story, M.; Timmerman, R.D. Universal survival curve and single fraction equivalent dose: Useful

tools in understanding potency of ablative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 847–852. [CrossRef] [PubMed]

http://doi.org/10.1007/s00066-016-1005-9
http://doi.org/10.3390/qubs3020013
http://doi.org/10.1667/RR13505.1
http://www.ncbi.nlm.nih.gov/pubmed/24369848
http://doi.org/10.1088/0031-9155/60/6/2325
http://www.ncbi.nlm.nih.gov/pubmed/25715947
http://doi.org/10.1667/RR2663.1
http://www.ncbi.nlm.nih.gov/pubmed/21823972
http://doi.org/10.1016/j.asr.2007.02.066
http://doi.org/10.1088/0034-4885/79/11/116601
http://doi.org/10.1140/epjd/e2005-00206-6
http://doi.org/10.1088/0031-9155/18/1/007
http://www.ncbi.nlm.nih.gov/pubmed/4803965
http://doi.org/10.1016/j.semradonc.2008.04.004
http://doi.org/10.1088/0953-4075/44/12/125003
http://doi.org/10.1016/j.ijrobp.2007.10.059
http://www.ncbi.nlm.nih.gov/pubmed/18262098


Molecules 2021, 26, 840 26 of 30

15. Guerrero, M.; Carlone, M. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and
exponentially decaying sources. Med. Phys. 2010, 37, 4173–4181. [CrossRef] [PubMed]

16. Butts, J.J.; Katz, R. Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat. Res. 1967, 30, 855–871.
[CrossRef]

17. Katz, R.; Ackerson, B.; Homayoonfar, M.; Sharma, S.C. Inactivation of Cells by Heavy Ion Bombardment. Radiat. Res. 1971,
47, 402–425. [CrossRef]

18. Katz, R.; Zachariah, R.; Cucinotta, F.A.; Zhang, C. Survey of cellular radiosensitivity parameters. Radiat. Res. 1994, 140, 356–365.
[CrossRef]

19. Waligórski, M.P.R.; Grzanka, L.; Korcyl, M. The principles of Katz’s cellular track structure radiobiological model. Radiat. Prot.
Dosim. 2015, 166, 49–55. [CrossRef]

20. Scholz, M.; Kellerer, A.M.; Kraft-Weyrather, W.; Kraft, G. Computation of cell survival in heavy ion beams for therapy. The model
and its approximation. Radiat. Environ. Biophys. 1997, 36, 59–66. [CrossRef]

21. Elsässer, T.; Krämer, M.; Scholz, M. Accuracy of the Local Effect Model for the Prediction of Biologic Effects of Carbon Ion Beams
In Vitro and In Vivo. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 866–872. [CrossRef]

22. Elsässer, T.; Weyrather, W.K.; Friedrich, T.; Durante, M.; Iancu, G.; Krämer, M.; Kragl, G.; Brons, S.; Winter, M.; Weber, K.J.; et al.
Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison of proton and
carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1177–1183. [CrossRef]

23. Friedrich, T.; Scholz, U.; Elsässer, T.; Durante, M.; Scholz, M. Calculation of the biological effects of ion beams based on the
microscopic spatial damage distribution pattern. Int. J. Radiat. Biol. 2012, 88, 103–107. [CrossRef]

24. Stewart, R.D.; Carlson, D.J.; Butkus, M.P.; Hawkins, R.; Friedrich, T.; Scholz, M. A comparison of mechanism-inspired models for
particle relative biological effectiveness (RBE). Med. Phys. 2018, 45, e925–e952. [CrossRef]

25. Hawkins, R.B. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental
and clinical applications. Int. J. Radiat. Biol. 1996, 69, 739–755. [CrossRef] [PubMed]

26. Hawkins, R.B. A Microdosimetric-Kinetic Model for the Effect of Non-Poisson Distribution of Lethal Lesions on the Variation of
RBE with LET. Radiat. Res. 2003, 160, 61–69. [CrossRef]

27. Carlson, D.J.; Stewart, R.D.; Semenenko, V.A.; Sandison, G.A. Combined use of Monte Carlo DNA damage simulations and
deterministic repair models to examine putative mechanisms of cell killing. Radiat. Res. 2008, 169, 447–459. [CrossRef] [PubMed]

28. Semenenko, V.A.; Stewart, R.D. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing
radiation. Radiat. Res. 2004, 161, 451–457. [CrossRef] [PubMed]

29. Semenenko, V.A.; Stewart, R.D. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys. Med. Biol.
2006, 51, 1693–1706. [CrossRef]

30. Jeggo, P.A.; Löbrich, M. DNA double-strand breaks: Their cellular and clinical impact? Oncogene 2007, 26, 7717–7719. [CrossRef]
31. Foray, N.; Monroco, C.; Marples, B.; Hendry, J.H.; Fertil, B.; Goodhead, D.T.; Arlett, C.F.; Malaise, E.P. Repair of radiation-induced

DNA double-strand breaks in human fibroblasts is consistent with a continuous spectrum of repair probability. Int. J. Radiat. Biol.
1998, 74, 551–560. [CrossRef] [PubMed]

32. Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and possible mechanisms.
Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [CrossRef]

33. Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; Bodgi, L.; Lartin, O.; Devic, C.; Vogin, G.; Pereira, S.; Foray, N. Mutations of the
Huntington’s disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA
double-strand breaks: Corrective effect of statins and bisphosphonates. Mol. Neurobiol. 2014, 49, 1200–1211. [CrossRef] [PubMed]

34. Deschavanne, P.J.; Fertil, B. A review of human cell radiosensitivity in vitro. Int. J. Radiat. Oncol. Biol. Phys. 1996, 34, 251–266.
[CrossRef]

35. McMahon, S.J.; McNamara, A.L.; Schuemann, J.; Paganetti, H.; Prise, K.M. A general mechanistic model enables predictions of
the biological effectiveness of different qualities of radiation. Sci. Rep. 2017, 7, 10790. [CrossRef]

36. McMahon, S.J.; Schuemann, J.; Paganetti, H.; Prise, K.M. Mechanistic Modelling of DNA Repair and Cellular Survival Following
Radiation-Induced DNA Damage. Sci. Rep. 2016, 6, 33290. [CrossRef]

37. Carante, M.P.; Aimè, C.; Cajiao, J.J.T.; Ballarini, F. BIANCA, a biophysical model of cell survival and chromosome damage by
protons, C-ions and He-ions at energies and doses used in hadrontherapy. Phys. Med. Biol. 2018, 63, 075007. [CrossRef]

38. Tello Cajiao, J.J.; Carante, M.P.; Bernal Rodriguez, M.A.; Ballarini, F. Proximity effects in chromosome aberration induction:
Dependence on radiation quality, cell type and dose. Dna Repair 2018, 64, 45–52. [CrossRef]

39. Wang, W.; Li, C.; Qiu, R.; Chen, Y.; Wu, Z.; Zhang, H.; Li, J. Modelling of Cellular Survival Following Radiation-Induced DNA
Double-Strand Breaks. Sci. Rep. 2018, 8, 16202. [CrossRef]

40. Plante, I.; Ponomarev, A.; Patel, Z.; Slaba, T.; Hada, M. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair
and Damage. Radiat. Res. 2019, 192, 282–298. [CrossRef] [PubMed]

41. Surdutovich, E.; Solov’yov, A.V. Multiscale approach to the physics of radiation damage with ions. Eur. Phys. J. D 2014, 68, 353.
[CrossRef]

42. Verkhovtsev, A.; Surdutovich, E.; Solov’yov, A.V. Predictive Assessment of Biological Damage Due to Ion Beams. In Nanoscale In-
sights into Ion-Beam Cancer Therapy; Solov’yov, A.V., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 359–377.
[CrossRef]

http://doi.org/10.1118/1.3456927
http://www.ncbi.nlm.nih.gov/pubmed/20879577
http://doi.org/10.2307/3572151
http://doi.org/10.2307/3573247
http://doi.org/10.2307/3579113
http://doi.org/10.1093/rpd/ncv201
http://doi.org/10.1007/s004110050055
http://doi.org/10.1016/j.ijrobp.2008.02.037
http://doi.org/10.1016/j.ijrobp.2010.05.014
http://doi.org/10.3109/09553002.2011.611213
http://doi.org/10.1002/mp.13207
http://doi.org/10.1080/095530096145481
http://www.ncbi.nlm.nih.gov/pubmed/8691026
http://doi.org/10.1667/RR3010
http://doi.org/10.1667/RR1046.1
http://www.ncbi.nlm.nih.gov/pubmed/18363426
http://doi.org/10.1667/RR3140
http://www.ncbi.nlm.nih.gov/pubmed/15038766
http://doi.org/10.1088/0031-9155/51/7/004
http://doi.org/10.1038/sj.onc.1210868
http://doi.org/10.1080/095530098141122
http://www.ncbi.nlm.nih.gov/pubmed/9848273
http://doi.org/10.1016/S0360-3016(00)01471-1
http://doi.org/10.1007/s12035-013-8591-7
http://www.ncbi.nlm.nih.gov/pubmed/24277524
http://doi.org/10.1016/0360-3016(95)02029-2
http://doi.org/10.1038/s41598-017-10820-1
http://doi.org/10.1038/srep33290
http://doi.org/10.1088/1361-6560/aab45f
http://doi.org/10.1016/j.dnarep.2018.02.006
http://doi.org/10.1038/s41598-018-34159-3
http://doi.org/10.1667/RR15250.1
http://www.ncbi.nlm.nih.gov/pubmed/31295089
http://doi.org/10.1140/epjd/e2014-50004-0
http://doi.org/10.1007/978-3-319-43030-0_11


Molecules 2021, 26, 840 27 of 30

43. Solov‘yov, A.V.; Surdutovich, E.; Scifoni, E.; Mishustin, I.; Greiner, W. Physics of ion beam cancer therapy: A multiscale approach.
Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2009, 79, 011909. [CrossRef] [PubMed]

44. Surdutovich, E.; Solov’yov, A.V. Multiscale modeling for cancer radiotherapies. Cancer Nanotechnol. 2019, 10, 6. [CrossRef]
45. Garcia-Molina, R.; Abril, I.; de Vera, P.; Kyriakou, I.; Emfietzoglou, D. Role of the interaction processes in the depth-dose

distribution of proton beams in liquid water. Int. J. Mod. Phys. Conf. Ser. 2012, 373, 012015. [CrossRef]
46. De Vera, P.; Garcia-Molina, R.; Abril, I. Propagation of swift protons in liquid water and generation of secondary electrons in

biomaterials. In Nanoscale Insights into Ion-Beam Cancer Therapy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 61–98.
47. Haume, K.; de Vera, P.; Verkhovtsev, A.; Surdutovich, E.; Mason, N.J.; Solov’yov, A.V. Transport of secondary electrons through

coatings of ion-irradiated metallic nanoparticles. Eur. Phys. J. D 2018, 72, 116. [CrossRef]
48. De Vera, P.; Mason, N.J.; Surdutovich, E.; Solov’yov, A.V. Thermo-mechanical damage of biomolecules under ion-beam radiation.

In Nanoscale Insights into Ion-Beam Cancer Therapy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 339–357.
49. Surdutovich, E.; Solov’yov, A.V. Multiscale Physics of Ion-Beam Cancer Therapy. In Nanoscale Insights into Ion-Beam Cancer

Therapy; Solov’yov, A.V., Ed.; Spinger: Berlin/Heidelberg, Germany, 2017; pp. 1–60. [CrossRef]
50. Zel’dovich, Y.B.; Raı̆zer, Y.P. Shock Waves. In Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic

Press Inc.: New York, NY, USA; San Francisco, CA, USA; London, UK, 1966; Volume 2, pp. 45–67.
51. Landau, L.; Lifshitz, E. Shock Waves. In Fluid Dynamics, 2nd English ed.; Pergamon Press: Oxford, UK, 1987; Volume 6, pp. 313–360.
52. Alpen, E.L. Chapter 9—Modification of the Radiation Response. In Radiation Biophysics, 2nd ed.; Alpen, E.L., Ed.; Academic Press:

Cambridge, MA, USA, 1998; pp. 194–221. [CrossRef]
53. Furusawa, Y.; Fukutsu, K.; Aoki, M.; Itsukaichi, H.; Eguchi-Kasai, K.; Ohara, H.; Yatagai, F.; Kanai, T.; Ando, K. Inactivation of

aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat. Res. 2000,
154, 485–496. [CrossRef]

54. Suzuki, M.; Kase, Y.; Yamaguchi, H.; Kanai, T.; Ando, K. Relative biological effectiveness for cell-killing effect on various human
cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int. J. Radiat. Oncol. Biol. Phys.
2000, 48, 241–250. [CrossRef]

55. Antonovic, L.; Brahme, A.; Furusawa, Y.; Toma-Dasu, I. Radiobiological description of the LET dependence of the cell survival of
oxic and anoxic cells irradiated by carbon ions. J. Radiat. Res. 2013, 54, 18–26. [CrossRef]

56. Tsuruoka, C.; Suzuki, M.; Kanai, T.; Fujitaka, K. LET and ion species dependence for cell killing in normal human skin fibroblasts.
Radiat. Res. 2005, 163, 494–500. [CrossRef]

57. Hirayama, R.; Ito, A.; Tomita, M.; Tsukada, T.; Yatagai, F.; Noguchi, M.; Matsumoto, Y.; Kase, Y.; Ando, K.; Okayasu, R.; et al.
Contributions of direct and indirect actions in cell killing by high-LET radiations. Radiat. Res. 2009, 171, 212–218. [CrossRef]

58. Hall, E.J.; Giaccia, A.J. Cell Survival Curves. In Radiobiology for the Radiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia,
PA, USA, 2012.

59. Tilly, N.; Brahme, A.; Carlsson, J.; Glimelius, B. Comparison of cell survival models for mixed LET radiation. Int. J. Radiat. Biol.
1999, 75, 233–243. [CrossRef] [PubMed]

60. Thacker, J.; Stretch, A.; Stephens, M.A. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated
heavy ions. II. Chinese hamster V79 cells. Int. J. Radiat. Biol. Relat Stud. Phys. Chem. Med. 1979, 36, 137–148. [CrossRef]

61. Barendsen, G.; Walter, H.; Fowler, J.; Bewley, D. Effects of different ionizing radiations on human cells in tissue culture: III.
Experiments with cyclotron-accelerated alpha-particles and deuterons. Radiat. Res. 1963, 18, 106–119. [CrossRef]

62. Gulliford, S.; Prise, K. Relative Biological Effect/Linear Energy Transfer in Proton Beam Therapy: A Primer. Clin. Oncol. 2019,
31, 809–812. [CrossRef]

63. Alberts, B.; Johnson, A.D.; Lewis, J.D.; Morgan, D.; Raff, M. 4. DNA, Chromosomes, and Genomes. In Molecular Biology of the Cell;
NORTON: New York, NY, USA, 2015.

64. De Vera, P.; Garcia-Molina, R.; Abril, I.; Solov’yov, A.V. Semiempirical model for the ion impact ionization of complex biological
media. Phys. Rev. Lett. 2013, 110, 148104. [CrossRef]

65. De Vera, P.; Abril, I.; Garcia-Molina, R.; Solov‘yov, A.V. Ionization of biomolecular targets by ion impact: Input data for
radiobiological applications. J. Phys. Conf. Ser. 2013, 438, 012015. [CrossRef]

66. Garcia-Molina, R.; Abril, I.; Kyriakou, I.; Emfietzoglou, D. Inelastic scattering and energy loss of swift electron beams in
biologically relevant materials. Surf. Interface Anal. 2017, 49, 11–17. [CrossRef]

67. Abril, I.; Garcia-Molina, R.; Denton, C.D.; Kyriakou, I.; Emfietzoglou, D. Energy Loss of Hydrogen- and Helium-Ion Beams in
DNA: Calculations Based on a Realistic Energy-Loss Function of the Target. Radiat. Res. 2010, 175, 247–255. [CrossRef] [PubMed]

68. Abril, I.; Garcia-Molina, R.; de Vera, P.; Kyriakou, I.; Emfietzoglou, D. Chapter six—Inelastic Collisions of Energetic Pro-
tons in Biological Media. In Advances in Quantum Chemistry; Belkić, D., Ed.; Academic Press: Cambridge, MA, USA, 2013;
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69. Możejko, P.; Sanche, L. Cross section calculations for electron scattering from DNA and RNA bases. Radiat. Environ. Biophys.
2003, 42, 201–211. [CrossRef] [PubMed]

70. Bernhardt, P.; Paretzke, H. Calculation of electron impact ionization cross sections of DNA using the Deutsch–Märk and
Binary–Encounter–Bethe formalisms. Int. J. Mass Spectrom. 2003, 223, 599–611. [CrossRef]

71. Huo, W.M.; Dateo, C.E.; Fletcher, G.D. Molecular data for a biochemical model of DNA damage: Electron impact ionization and
dissociative ionization cross sections of DNA bases and sugar-phosphate backbone. Radiat. Meas. 2006, 41, 1202–1208. [CrossRef]

http://doi.org/10.1103/PhysRevE.79.011909
http://www.ncbi.nlm.nih.gov/pubmed/19257071
http://doi.org/10.1186/s12645-019-0051-2
http://doi.org/10.1088/1742-6596/373/1/012015
http://doi.org/10.1140/epjd/e2018-90050-x
http://doi.org/10.1007/978-3-319-43030-0_1
http://doi.org/10.1016/B978-012053085-4/50011-9
http://doi.org/10.1667/0033-7587(2000)154[0485:IOAAHC]2.0.CO;2
http://doi.org/10.1016/S0360-3016(00)00568-X
http://doi.org/10.1093/jrr/rrs070
http://doi.org/10.1667/RR3360
http://doi.org/10.1667/RR1490.1
http://doi.org/10.1080/095530099140690
http://www.ncbi.nlm.nih.gov/pubmed/10072185
http://doi.org/10.1080/09553007914550891
http://doi.org/10.2307/3571430
http://doi.org/10.1016/j.clon.2019.06.009
http://doi.org/10.1103/PhysRevLett.110.148104
http://doi.org/10.1088/1742-6596/438/1/012015
http://doi.org/10.1002/sia.5947
http://doi.org/10.1667/RR2142.1
http://www.ncbi.nlm.nih.gov/pubmed/21268719
http://doi.org/10.1007/s00411-003-0206-7
http://www.ncbi.nlm.nih.gov/pubmed/14523567
http://doi.org/10.1016/S1387-3806(02)00878-3
http://doi.org/10.1016/j.radmeas.2006.04.029


Molecules 2021, 26, 840 28 of 30

72. Bug, M.U.; Baek, W.Y.; Rabus, H.; Villagrasa, C.; Meylan, S.; Rosenfeld, A.B. An electron-impact cross section data set (10 eV–1
keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations. Radiat. Phys. Chem.
2017, 130, 459–479. [CrossRef]

73. Emfietzoglou, D.; Nikjoo, H. The effect of model approximations on single-collision distributions of low-energy electrons in
liquid water. Radiat. Res. 2005, 163, 98–111. [CrossRef] [PubMed]

74. Emfietzoglou, D. Inelastic cross-sections for electron transport in liquid water: A comparison of dielectric models. Radiat. Phys.
Chem. 2003, 66, 373–385. [CrossRef]

75. Kyriakou, I.; Šefl, M.; Nourry, V.; Incerti, S. The impact of new Geant4-DNA cross section models on electron track structure
simulations in liquid water. J. Appl. Phys. 2016, 119, 194902. [CrossRef]

76. Emfietzoglou, D.; Kyriakou, I.; Abril, I.; Garcia-Molina, R.; Nikjoo, H. Inelastic scattering of low-energy electrons in liquid water
computed from optical-data models of the Bethe surface. Int. J. Radiat. Biol. 2012, 88, 22–28. [CrossRef] [PubMed]

77. Nikjoo, H.; Taleei, R.; Liamsuwan, T.; Liljequist, D.; Emfietzoglou, D. Perspectives in radiation biophysics: From radiation track
structure simulation to mechanistic models of DNA damage and repair. Radiat. Phys. Chem. 2016, 128, 3–10. [CrossRef]

78. Emfietzoglou, D.; Cucinotta, F.A.; Nikjoo, H. A complete dielectric response model for liquid water: A solution of the Bethe ridge
problem. Radiat. Res. 2005, 164, 202–211. [CrossRef] [PubMed]

79. Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I. Inelastic mean free path of low-energy electrons in condensed media:
Beyond the standard models. Surf. Interface Anal. 2017, 49, 4–10. [CrossRef]

80. Emfietzoglou, D.; Papamichael, G.; Nikjoo, H. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New
Model Dielectric Response Function. Radiat. Res. 2017, 188, 355–368. [CrossRef]

81. Sanche, L. Low-Energy Electron Interaction with DNA: Bond Dissociation and Formation of Transient Anions, Radicals, and
Radical Anions. In Radical and Radical Ion Reactivity in Nucleic Acid Chemistry; Greenberg, M., Ed.; John Wiley & Sons Inc.:
Hoboken, NJ, USA, 2009; p. 239.

82. Fabrikant, I.; Caprasecca, S.; Gallup, G.A.; Gorfinkiel, J.D. Electron attachment to molecules in a cluster environment. J. Chem
Phys. 2012, 136, 184301. [CrossRef]

83. Becker, D.; Sevilla, M. The chemical consequences of radiation damage to DNA. Adv. Radiat. Biol. 1993, 17, 121–180.
84. Gianturco, F.A.; Sebastianelli, F.; Lucchese, R.R.; Baccarelli, I.; Sanna, N. Ring-breaking electron attachment to uracil: Following

bond dissociations via evolving resonances. J. Chem. Phys. 2008, 128, 174302. [CrossRef]
85. Sanche, L. Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons. In Radiation Damage in Biomolecular Systems;

García Gómez-Tejedor, G., Fuss, M.C., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–43. [CrossRef]
86. Panajotovic, R.; Martin, F.; Cloutier, P.; Hunting, D.; Sanche, L. Effective cross sections for production of single-strand breaks in

plasmid DNA by 0.1 to 4.7 eV electrons. Radiat. Res. 2006, 165, 452–459. [CrossRef] [PubMed]
87. Nikjoo, H.; O‘Neill, P.; Goodhead, D.T.; Terrissol, M. Computational modelling of low-energy electron-induced DNA damage by

early physical and chemical events. Int. J. Radiat. Biol. 1997, 71, 467–483. [CrossRef]
88. Schipler, A.; Iliakis, G. DNA double-strand-break complexity levels and their possible contributions to the probability for

error-prone processing and repair pathway choice. Nucleic Acids Res. 2013, 41, 7589–7605. [CrossRef] [PubMed]
89. Huels, M.A.; Boudaiffa, B.; Cloutier, P.; Hunting, D.; Sanche, L. Single, double, and multiple double strand breaks induced in

DNA by 3-100 eV electrons. J. Am. Chem. Soc. 2003, 125, 4467–4477. [CrossRef]
90. Surdutovich, E.; Solov‘yov, A. Double strand breaks in DNA resulting from double ionization events. Eur. Phys. J. D 2012, 66, 206.

[CrossRef]
91. Symington, L.S.; Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011, 45, 247–271.

[CrossRef]
92. Chapman, J.R.; Taylor, M.R.; Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 2012,

47, 497–510. [CrossRef] [PubMed]
93. Beucher, A.; Birraux, J.; Tchouandong, L.; Barton, O.; Shibata, A.; Conrad, S.; Goodarzi, A.A.; Krempler, A.; Jeggo, P.A.; Löbrich,

M. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. Embo J. 2009,
28, 3413–3427. [CrossRef]

94. Brandsma, I.; Gent, D.C. Pathway choice in DNA double strand break repair: Observations of a balancing act. Genome Integr.
2012, 3, 9. [CrossRef]

95. Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008,
18, 134–147. [CrossRef]

96. Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [CrossRef]
97. Pfeiffer, P.; Goedecke, W.; Obe, G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal

aberrations. Mutagenesis 2000, 15, 289–302. [CrossRef]
98. Von Sonntag, C. Formation of Reactive Free Radicals in an Aqueous Environment. In Free-Radical-Induced DNA Damage and Its

Repair: A Chemical Perspective; Springer: Berlin/Heidelberg, Germany, 2006; pp. 7–46. [CrossRef]
99. Surdutovich, E.; Solov‘yov, A.V. Random walk approximation for the radial dose dependence. Eur. Phys. J. D 2012, 66, 245.

[CrossRef]
100. Bug, M.U.; Surdutovich, E.; Rabus, H.; Rosenfeld, A.B.; Solov‘yov, A.V. Nanoscale characterization of ion tracks: MC simulations

versus analytical approach. Eur. Phys. J. D 2012, 66, 1–6. [CrossRef]

http://doi.org/10.1016/j.radphyschem.2016.09.027
http://doi.org/10.1667/RR3281
http://www.ncbi.nlm.nih.gov/pubmed/15606313
http://doi.org/10.1016/S0969-806X(02)00504-2
http://doi.org/10.1063/1.4950808
http://doi.org/10.3109/09553002.2011.588061
http://www.ncbi.nlm.nih.gov/pubmed/21756061
http://doi.org/10.1016/j.radphyschem.2016.05.005
http://doi.org/10.1667/RR3399
http://www.ncbi.nlm.nih.gov/pubmed/16038591
http://doi.org/10.1002/sia.5878
http://doi.org/10.1667/RR14705.1
http://doi.org/10.1063/1.4706604
http://doi.org/10.1063/1.2913169
http://doi.org/10.1007/978-94-007-2564-5_1
http://doi.org/10.1667/RR3521.1
http://www.ncbi.nlm.nih.gov/pubmed/16579658
http://doi.org/10.1080/095530097143798
http://doi.org/10.1093/nar/gkt556
http://www.ncbi.nlm.nih.gov/pubmed/23804754
http://doi.org/10.1021/ja029527x
http://doi.org/10.1140/epjd/e2012-30180-7
http://doi.org/10.1146/annurev-genet-110410-132435
http://doi.org/10.1016/j.molcel.2012.07.029
http://www.ncbi.nlm.nih.gov/pubmed/22920291
http://doi.org/10.1038/emboj.2009.276
http://doi.org/10.1186/2041-9414-3-9
http://doi.org/10.1038/cr.2007.111
http://doi.org/10.1038/nature08467
http://doi.org/10.1093/mutage/15.4.289
http://doi.org/10.1007/3-540-30592-0_2
http://doi.org/10.1140/epjd/e2012-30213-3
http://doi.org/10.1140/epjd/e2012-30183-4


Molecules 2021, 26, 840 29 of 30

101. Brahme, A. 9.04-Modeling of Radiation Effects in Cells and Tissues. In Comprehensive Biomedical Physics; Brahme, A. Elsevier:
Oxford, UK, 2014; pp. 105–142. [CrossRef]

102. Baak, J.P.; Gudlaugsson, E.; Skaland, I.; Guo, L.H.; Klos, J.; Lende, T.H.; Søiland, H.; Janssen, E.A.; Zur Hausen, A. Proliferation
is the strongest prognosticator in node-negative breast cancer: Significance, error sources, alternatives and comparison with
molecular prognostic markers. Breast Cancer Res. Treat. 2009, 115, 241–254. [CrossRef] [PubMed]

103. Fischer, E.G. Nuclear Morphology and the Biology of Cancer Cells. Acta Cytol. 2020, 64, 511–519. [CrossRef]
104. Friedrich, T.; Scholz, U.; Elsässer, T.; Durante, M.; Scholz, M. Systematic analysis of RBE and related quantities using a database of

cell survival experiments with ion beam irradiation. J. Radiat. Res. 2013, 54, 494–514. [CrossRef] [PubMed]
105. Nikjoo, H.; Bolton, C.E.; Watanabe, R.; Terrissol, M.; O’Neill, P.; Goodhead, D.T. Modelling of DNA damage induced by energetic

electrons (100 eV to 100 keV). Radiat Prot. Dosim. 2002, 99, 77–80. [CrossRef] [PubMed]
106. Milligan, J.R.; Aguilera, J.A.; Ward, J.F. Variation of single-strand break yield with scavenger concentration for plasmid DNA

irradiated in aqueous solution. Radiat. Res. 1993, 133, 151–157. [CrossRef]
107. Van Rijn, K.; Mayer, T.; Blok, J.; Verberne, J.B.; Loman, H. Reaction Rate of OH Radicals with φX174 DNA: Influence of Salt and

Scavenger. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1985, 47, 309–317. [CrossRef]
108. Smyth, M.; Kohanoff, J. Excess electron interactions with solvated DNA nucleotides: Strand breaks possible at room temperature.

J. Am. Chem. Soc. 2012, 134, 9122–9125. [CrossRef]
109. Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018,

15, 366–381. [CrossRef]
110. Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell

2012, 21, 309–322. [CrossRef]
111. Yu, Y.; Cui, J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol. Lett. 2018,

16, 4105–4113. [CrossRef]
112. Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [CrossRef]

[PubMed]
113. Good, J.S.; Harrington, K.J. The hallmarks of cancer and the radiation oncologist: Updating the 5Rs of radiobiology. Clin. Oncol.

(R. Coll. Radiol.) 2013, 25, 569–577. [CrossRef] [PubMed]
114. Shevtsov, M.; Sato, H.; Multhoff, G.; Shibata, A. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Front.

Oncol. 2019, 9, 156. [CrossRef]
115. Rückert, M.; Deloch, L.; Fietkau, R.; Frey, B.; Hecht, M.; Gaipl, U.S. Immune modulatory effects of radiotherapy as basis for

well-reasoned radioimmunotherapies. Strahlenther. Und Onkol. 2018, 194, 509–519. [CrossRef]
116. Peters, L.J.; Withers, H.R.; Thames, H.D., Jr. Radiobiological Bases for Multiple Daily Fractionation; Raven Press: White River Junction,

VT, USA, 1982.
117. Paganetti, H.; Blakely, E.; Carabe-Fernandez, A.; Carlson, D.J.; Das, I.J.; Dong, L.; Grosshans, D.; Held, K.D.; Mohan, R.;

Moiseenko, V.; et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy.
Med. Phys. 2019, 46, e53–e78. [CrossRef]

118. Iliakis, G.; Mladenov, E.; Mladenova, V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic
Instability and Cancer. Cancers (Basel) 2019, 11, 1671. [CrossRef]

119. Azzam, E.I.; Jay-Gerin, J.-P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett.
2012, 327, 48–60. [CrossRef]

120. Yakes, F.M.; Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in
human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 1997, 94, 514–519. [CrossRef]

121. Rodemann, H.P.; Blaese, M.A. Responses of normal cells to ionizing radiation. Semin. Radiat. Oncol. 2007, 17, 81–88. [CrossRef]
122. Somosy, Z. Radiation response of cell organelles. Micron 2000, 31, 165–181. [CrossRef]
123. Singh, G.; Hauswirth, W.; Ross, W.; Neims, A. A method for assessing damage to mitochondrial DNA caused by radiation and

epichlorohydrin. Mol. Pharm. 1985, 27, 167–170.
124. Leach, J.K.; Van Tuyle, G.; Lin, P.-S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent

generation of reactive oxygen/nitrogen. Cancer Res. 2001, 61, 3894–3901. [PubMed]
125. Tulard, A.; Hoffschir, F.; de Boisferon, F.H.; Luccioni, C.; Bravard, A. Persistent oxidative stress after ionizing radiation is involved

in inherited radiosensitivity. Free Radic. Biol. Med. 2003, 35, 68–77. [CrossRef]
126. Rajendran, S.; Harrison, S.H.; Thomas, R.A.; Tucker, J.D. The role of mitochondria in the radiation-induced bystander effect in

human lymphoblastoid cells. Radiat. Res. 2011, 175, 159–171. [CrossRef]
127. Little, J.B. Radiation carcinogenesis. Carcinogenesis 2000, 21, 397–404. [CrossRef] [PubMed]
128. Morgan, W.F.; Bair, W.J. Issues in low dose radiation biology: The controversy continues. A perspective. Radiat. Res. 2013,

179, 501–510. [CrossRef]
129. Prise, K.M.; O‘sullivan, J.M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 2009, 9, 351–360.

[CrossRef]
130. Nikjoo, H.; Liamsuwan, T. 9.03-Biophysical Basis of Ionizing Radiation. In Comprehensive Biomedical Physics; Brahme, A., Ed.;

Elsevier: Oxford, UK, 2014; pp. 65–104. [CrossRef]

http://doi.org/10.1016/B978-0-444-53632-7.00906-0
http://doi.org/10.1007/s10549-008-0126-y
http://www.ncbi.nlm.nih.gov/pubmed/18665447
http://doi.org/10.1159/000508780
http://doi.org/10.1093/jrr/rrs114
http://www.ncbi.nlm.nih.gov/pubmed/23266948
http://doi.org/10.1093/oxfordjournals.rpd.a006843
http://www.ncbi.nlm.nih.gov/pubmed/12194365
http://doi.org/10.2307/3578350
http://doi.org/10.1080/09553008514550451
http://doi.org/10.1021/ja303776r
http://doi.org/10.1038/s41571-018-0007-1
http://doi.org/10.1016/j.ccr.2012.02.022
http://doi.org/10.3892/ol.2018.9219
http://doi.org/10.1038/nature21349
http://www.ncbi.nlm.nih.gov/pubmed/28102259
http://doi.org/10.1016/j.clon.2013.06.009
http://www.ncbi.nlm.nih.gov/pubmed/23850153
http://doi.org/10.3389/fonc.2019.00156
http://doi.org/10.1007/s00066-018-1287-1
http://doi.org/10.1002/mp.13390
http://doi.org/10.3390/cancers11111671
http://doi.org/10.1016/j.canlet.2011.12.012
http://doi.org/10.1073/pnas.94.2.514
http://doi.org/10.1016/j.semradonc.2006.11.005
http://doi.org/10.1016/S0968-4328(99)00083-9
http://www.ncbi.nlm.nih.gov/pubmed/11358802
http://doi.org/10.1016/S0891-5849(03)00243-0
http://doi.org/10.1667/RR2296.1
http://doi.org/10.1093/carcin/21.3.397
http://www.ncbi.nlm.nih.gov/pubmed/10688860
http://doi.org/10.1667/RR3306.1
http://doi.org/10.1038/nrc2603
http://doi.org/10.1016/B978-0-444-53632-7.00921-7


Molecules 2021, 26, 840 30 of 30

131. Olivieri, G.; Bodycote, J.; Wolff, S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine.
Science 1984, 223, 594. [CrossRef] [PubMed]

132. Wolff, S.; Afzal, V.; Wiencke, J.K.; Olivieri, G.; Michaeli, A. Human lymphocytes exposed to low doses of ionizing radiations
become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int. J.
Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1988, 53, 39–47. [CrossRef]

133. Vijayalaxmi; Burkart, W. Resistance and cross-resistance to chromosome damage in human blood lymphocytes adapted to
bleomycin. Mutat. Res. 1989, 211, 1–5. [CrossRef]

134. Wolff, S. The adaptive response in radiobiology: Evolving insights and implications. Environ. Health Perspect 1998, 106
(Suppl. S1), 277–283. [CrossRef]

135. Sankaranarayanan, K.; Duyn, A.v.; Loos, M.J.; Natarajan, A.T. Adaptive response of human lymphocytes to low-level radiation
from radioisotopes or X-rays. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1989, 211, 7–12. [CrossRef]

136. Siede, W.; Eckardt, F. Indications for an inducible component of error-prone DNA repair in yeast. Br. J. Cancer 1984, 6, 103–106.
137. Eckardt-Schupp, F.; Klaus, C. Radiation inducible DNA repair processes in eukaryotes. Biochimie 1999, 81, 161–171. [CrossRef]
138. Ojima, M.; Eto, H.; Ban, N.; Kai, M. Radiation-induced bystander effects induce radioadaptive response by low-dose radiation.

Radiat Prot. Dosim. 2011, 146, 276–279. [CrossRef] [PubMed]
139. Lindhard, J. On the properties of a gas of charged particles. Dan. Vid. Selsk Mat.-Fys. Medd. 1954, 28, 8.
140. Emfietzoglou, D.; Nikjoo, H. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV

range based on an improved dielectric description of the Bethe surface. Radiat. Res. 2007, 167, 110–120. [CrossRef]
141. Tan, Z.; Xia, Y.; Zhao, M.; Liu, X. Electron stopping power and inelastic mean free path in amino acids and protein over the energy

range of 20–20,000 eV. Radiat. Environ. Biophys. 2006, 45, 135–143. [CrossRef]
142. Kyriakou, I.; Incerti, S.; Francis, Z. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy

electron transport in liquid water. Med. Phys. 2015, 42, 3870–3876. [CrossRef]
143. Ritchie, R.H.; Howie, A. Electron excitation and the optical potential in electron microscopy. Philos. Mag. A J. Theor. Exp. Appl.

Phys. 1977, 36, 463–481. [CrossRef]
144. Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Nikjoo, H. Inelastic Cross Sections for Low-Energy Electrons in Liquid

Water: Exchange and Correlation Effects. Radiat. Res. 2013, 180, 499–513. [CrossRef]
145. Barkas, W.H. Techniques and theory. In Nuclear Research Emulsions; Academic Press: New York, NY, USA, 1963; Volume 1.
146. Tung, C.J.; Chao, T.C.; Hsieh, H.W.; Chan, W.T. Low-energy electron interactions with liquid water and energy depositions in

nanometric volumes. Nucl. Instrum. Methods Phys. Res. B 2007, 262, 231–239. [CrossRef]
147. Nikjoo, H.; Uehara, S.; Wilson, W.E.; Hoshi, M.; Goodhead, D.T. Track structure in radiation biology: Theory and applications. Int.

J. Radiat. Biol. 1998, 73, 355–364. [CrossRef] [PubMed]
148. Georgakilas, A.G.; O‘Neill, P.; Stewart, R.D. Induction and repair of clustered DNA lesions: What do we know so far? Radiat. Res.

2013, 180, 100–109. [CrossRef] [PubMed]
149. Hill, M.A. Radiation Track Structure: How the Spatial Distribution of Energy Deposition Drives Biological Response. Clin. Oncol.

(R. Coll. Radiol.) 2020, 32, 75–83. [CrossRef] [PubMed]
150. International Commission on Radiation Units and Measurements. Key Data For Ionizing-Radiation Dosimetry: Measurement

Standards And Applications (Report 90). J. Int. Comm. Radiat. Units Meas. 2014, 14, 79–80.
151. Bimbot, R.; Geissel, H.; Paul, H.; Shinner, A.; Sigmund, P. Stopping of Ions Heavier than Helium ICRU Report 73; Oxford University

Press: Oxford, UK, 2005.
152. Zeigler, J.; Ziegler, M.; Biersack, J. SRIM 2008. 04 Software Package. 2008. Available online: http://www.srim.org (accessed on 9

September 2020).
153. Cooper, G.M.; Hausman, R.E. The Cell: A Molecular Approach, 7th ed.; Oxford University Press: Oxford, UK, 2018.
154. Von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor & Francis: London, UK, 1987.
155. Roots, R.; Smith, K.C. On the Nature of the Oxygen Effect on X-ray-induced DNA Single-strand Breaks in Mammalian Cells. Int.

J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1974, 26, 467–480. [CrossRef] [PubMed]

http://doi.org/10.1126/science.6695170
http://www.ncbi.nlm.nih.gov/pubmed/6695170
http://doi.org/10.1080/09553008814550401
http://doi.org/10.1016/0027-5107(89)90100-0
http://doi.org/10.1289/ehp.98106s1277
http://doi.org/10.1016/0027-5107(89)90101-2
http://doi.org/10.1016/S0300-9084(99)80049-2
http://doi.org/10.1093/rpd/ncr169
http://www.ncbi.nlm.nih.gov/pubmed/21561936
http://doi.org/10.1667/RR0551.1
http://doi.org/10.1007/s00411-006-0049-0
http://doi.org/10.1118/1.4921613
http://doi.org/10.1080/14786437708244948
http://doi.org/10.1667/RR13362.1
http://doi.org/10.1016/j.nimb.2007.05.023
http://doi.org/10.1080/095530098142176
http://www.ncbi.nlm.nih.gov/pubmed/9587072
http://doi.org/10.1667/RR3041.1
http://www.ncbi.nlm.nih.gov/pubmed/23682596
http://doi.org/10.1016/j.clon.2019.08.006
http://www.ncbi.nlm.nih.gov/pubmed/31511190
http://www.srim.org
http://doi.org/10.1080/09553007414551491
http://www.ncbi.nlm.nih.gov/pubmed/4548418

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Conclusions 
	References

