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Abstract

Background: An important process for plant survival is the immune system. The
induced systemic resistance (ISR) triggered by beneficial microbes is an important
cost-effective defense mechanism by which plants are primed to an eventual
pathogen attack. Defense mechanisms such as ISR depend on an accurate and
context-specific regulation of gene expression. Interactions between genes and their
products give rise to complex circuits known as gene regulatory networks (GRNs). Here,
we explore the regulatory mechanism of the ISR defense response triggered by the
beneficial bacterium Paraburkholderia phytofirmans PsJN in Arabidopsis thaliana plants
infected with Pseudomonas syringae DC3000. To achieve this, a GRN underlying the ISR
response was inferred using gene expression time-series data of certain
defense-related genes, differential evolution, and threshold Boolean networks.
Results: One thousand threshold Boolean networks were inferred that met the
restriction of the desired dynamics. From these networks, a consensus network was
obtained that helped to find plausible interactions between the genes. A
representative network was selected from the consensus network and biological
restrictions were applied to it. The dynamics of the selected network showed that the
largest attractor, a limit cycle of length 3, represents the final stage of the defense
response (12, 18, and 24 h). Also, the structural robustness of the GRN was studied
through the networks’ attractors.
Conclusions: A computational intelligence approach was designed to reconstruct a
GRN underlying the ISR defense response in plants using gene expression time-series
data of A. thaliana colonized by P. phytofirmans PsJN and subsequently infected with P.
syringae DC3000. Using differential evolution, 1000 GRNs from time-series data were
successfully inferred. Through the study of the network dynamics of the selected GRN,
it can be concluded that it is structurally robust since three mutations were necessary
to completely disarm the Boolean trajectory that represents the biological data. The
proposed method to reconstruct GRNs is general and can be used to infer other
biologically relevant networks to formulate new biological hypotheses.
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Background
Issues in crop production

Pathogenic microorganisms affecting plant health are a major and chronic threat to sus-
tainable agriculture and ecosystem stability worldwide. In 2004, more than 800 million
people did not have adequate food to support an active life and at least 10% of the world
food production was lost due to diseased crops [1]. Pest and pathogens are a constant and
important threat to crops, which translates into losses of more than 450 billions euros
worldwide [2]. On the other hand, the chemical fertilizers and pesticides used in agricul-
ture to increase yields, kill pathogens, pests, and weeds, have a big harmful impact on
the ecosystems [3, 4]. Because of current public concerns about the side effects of agro-
chemicals, there is an increasing interest in improving the understanding of cooperative
activities among plants and rhizosphere microbial populations [5]. The use of beneficial
bacteria has become a good alternative to solve this problem. Over the last years, they
have been used to increase soil fertility, plant growth, and to control phytopathogens as
an environmentally sustainable alternative in agriculture [6].

Use of beneficial bacteria

To use more efficiently formulations of beneficial bacteria as biopesticides, discovering
how plant defense works has becomemore andmore important; in particular, the defense
response triggered by beneficial microorganisms called induced systemic resistance (ISR).
The ISR response can improve plant health by priming the entire plant to increase the
defense against various pathogens and insect herbivores [7]. The positive effect of some
beneficial bacterial strains on plants infected by bacteria, viruses, fungi, and insects is well
reported [8–11], however, the molecular mechanisms and the main signaling pathways
involved have not been well characterized yet and also vary from one beneficial bacterial
species to another.

The fate of a cell

Gene expression is a vital task of a cell and an organism as whole to adapt to environmen-
tal changes and ensure its survival. Gene regulatory networks (GRNs) coordinates the
transcription of genes when is required. A GRN captures dependencies among molecular
entities that are part of a system. GRNs are usually represented as graphs where nodes rep-
resent molecular entities (i.e., genes, proteins, metabolites) and directed edges represent
functional relationships between them (i.e., protein-DNA interactions, protein-protein
interactions, microRNA: target interactions, co-expression). The complexity of studying
a GRN increases significantly as the number of nodes/genes and connections increases.
To tackle this issue several mathematical models have been used. For example, using a
mathematical model (Boolean networks) the inference of the GRN underlying the floral
transition in plants was successfully achieved [12]. The inferred GRN allowed to point
out probable gaps in the biological knowledge of the developmental program and to sug-
gest novel regulatory interactions absent from the starting GRN, built with empirical data
without mathematical models.

GRN inference

The construction of GRNs models from data is typically referred to as a reverse engineer-
ing problem [13, 14]. Building GRNs is a difficult task given the large space of possible
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GRNmodels that might fit the data and the need to search that space in a reasonable time
to derive useful solutions. Several approaches using evolutionary computation (EC) have
been proposed to aid in this search.

Boolean networks

Stuart Kauffman introduced in 1969 [15] a deterministic model called Boolean networks
(BNs) which have been widely used to describe and analyze the behavior of a GRN, given
a good notion of its qualitative dynamics. The dynamics is represented by the tempo-
ral evolution of the gene or protein states. For this reason, they are a good mathematical
model for research where little or insufficient knowledge exists (molecular data, espe-
cially quantitative data), allowing to carry out exploratory studies in processes scarcely
studied in model organisms, or even in processes well studied in model organisms, but
not studied in other species. In a BN, the nodes represent genes or proteins, which can
either be active (value 1) or inactive (value 0) and the edges represent regulatory relations
amongst the genes. Each node updates its value accordingly to a local Boolean func-
tion that depends only on the values of the parent nodes of the node been updated, and
an updating scheme (synchronous, asynchronous, block-sequential, etc.). For a network
with n nodes, there are 2n possible configurations (or states), therefore, any updates of
the network will remain within the possible configurations. The network has two types
of steady states or attractors. A state that remains the same after the network is updated
is known as a fixed point, whereas a sequence of state vectors that loop is known as a
limit cycle.

Three approaches to reconstruction

There are three common approaches for BN reconstruction: (1) based on transcriptional
time-series data of wild-type organisms [16], (2) based on transcriptional analysis of a set
of knockouts or mutants [17], or (3) prior knowledge of the process that wants to be mod-
eled (regulatory relations identified in previous works) [18]. When the data for inference
comes from empirical data, the construction of the topology of a BN involves two key
steps: first, the experimental data (protein concentration or gene expression) must be dis-
cretized into binary values and second, the binary profiles are used to build the BN that
best captures the Boolean trajectories.

EC algorithms

The use of computational intelligence becomes very valuable for the reconstruction
of BNs. Especially when it comes to network reconstruction with topological and (or)
dynamical constraint. EC algorithms are a family of population-based trial and error
problem solvers with a metaheuristic or stochastic optimization character. Following this
line of research, the Bees Algorithm has been used to infer BNs with predefined attrac-
tors [19] as well as networks for biotechnological applications [20]. Additionally, a genetic
algorithmwas used to find the network’s parameters from time-series data of gene expres-
sion, to infer a GRN related to salt stress response in Arabidopsis thaliana [21]. Finally,
the study performed by [12] uses genetic programming to construct Boolean networks
representing the GRN that controls the shoot apical meristem during the floral tran-
sition in plants. These BNs were constructed using a defined network topology based
on gene expression data from in situ hybridization. The inferred GRN complements
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the original topology with new regulatory edges confirmed by independent laboratory
work [12].

Wildtype networks

In cases where there exists a base network model, sometimes called the wildtype
network, several inference frameworks have being proposed to generate alternative
network structures that share the same functionality (for example, a set of specific
attractors) as the wildtype. An inference framework is proposed that uses Markov
Chain Monte Carlo to sample the network space to search for BNs with 10 pre-
defined attractors [22]. Another work develops a set of procedures to predict puta-
tive missing interactions in the A. thaliana root stem cell niche network model
[23]. The set of procedures consisted of adding all the possible missing interactions
one-by-one to the model without contradicting the experimental data and measur-
ing the effect of these additional interactions in the set of the attractors. The search
of the network space with functionally equivalent networks is also known as the
neutral space.

Neutral space

An example of a neutral space analysis appears in [24], using the Schizosaccharomyces
pombe (fission yeast) cell-cycle network as the wildtype network and an evolution strategy
to find functionally equivalent BNs that had the same cell-cycle dynamics as the wildtype
network. While all of these inference frameworks have shown to be effective, all of them
require as the starting point an existing BN (wildtype) and its respective dynamics, and
therefore, its attractors. In this work, we do not have a wildtype network or base model to
use for inference, therefore we can not use the methodologies described in the previous
works.

Paraburkholderia phytofirmans

We recently described that the beneficial bacterium Paraburkholderia phytofirmans PsJN
triggers ISR in A. thaliana plants, protecting them from the bacterial pathogen Pseu-
domonas syringae DC3000 [25]. Additionally, in a recent study, the temporal changes in
the transcriptome of PsJN-inoculated plants before and after Pst DC3000 infection was
revealed [26]. To get a better understanding of the fine-tuning regulation which helps
explain this ISR phenomenon at a molecular level, we inferred an underlying GRN with
eight key genes. For this, we used an EC approach, specifically, differential evolution (DE),
and gene expression time-series data of eight specific genes known to play a role in plant
responses to biotic stress.

Genes in the defense backbone

We used WRKY70, WRKY54, WRKY33, PR1, ERF1, MYC2, PDF1.2 and LOX2, which
are key genes and transcription factors for the hormonal modulation of plant immunity,
involving the cross-talk between salicylic acid (SA), jasmonic acid (JA), and ethylene (ET)
signaling pathways [27–29]. These genes have been well studied over the years, mainly in
the model plant A. thaliana. For this reason, these genes should be considered part of the
backbone of any GRN involved in a defense response such as ISR. Additionally, most of
the genes of this group have shown significant changes in their expression in Arabidopsis
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plants inoculated with strain PsJN and infected with P. syringae DC3000 in comparison
to non-inoculated plants [25].
With this transcriptional data, we generated a threshold Boolean regulatory network

that underlies this defense response sparsely studied at themolecular level, with the objec-
tive to predict novel gene regulatory relationships that may help to formulate further
hypotheses for future research.

Results and discussion
Hormonal crosstalk in plant defense

Phytohormone crosstalk is crucial for plant defense against pathogens and insects, in
which SA, JA, and ET hormones play key roles [27, 30]. Therefore, the expression of eight
defense-related genes of A. thaliana, representing the SA, JA and ET hormonal pathways,
was analyzed. The PATHOGENESIS-RELATED GENE 1 (PR1; AT2G14610) belonging
to a group of genes that code for proteins with antimicrobial activity [31], is the best-
characterized andmost commonmarker for the SA-signaling pathway [32] and its expres-
sion is induced in response to a variety of pathogens. The transcription factors WRKY54
(AT2G40750) andWRKY70 (AT3G56400) are induced by SA and can regulate the expres-
sion of SA-responsive genes, such as PR1 [33, 34]. The transcription factor WRKY33
(AT2G38470) has a role as a negative regulator of SA-dependent defense responses and
appears to directly control the expression of ORA59 during the later stages of pathogen
infection [35, 36]. The transcription factor MYC2 (AT1G32640) differentially regulates
two different classes of JA-responsive genes: MYC2 functions as a positive regulator of
JA-responsive genes such as VSP2 and LOX2 (MYC branch); whereas it acts as a negative
regulator of JA/ET-responsive genes, such as PDF1.2, which are activated by the tran-
scription factors ETHYLENE RESPONSE FACTOR1 (ERF1; AT3G23240) and ORA59
(ERF branch) [37–40]. LIPOXYGENASE2 (LOX2; AT3G45140) encodes a key enzyme in
the octadecanoid pathway leading to JA biosynthesis [41] and the PLANT DEFENSIN 1.2
(PDF1.2; AT5G44420) encodes a plant defensin with antimicrobial properties [42].

Time-series data

For each time point, the expression values in the strain PsJN-inoculated plants were nor-
malized with respect to the expression values of the non-inoculated plants (control).
Then, if a gene shows an expression greater than zero, it means that strain PsJN is activat-
ing it. On the contrary, if a gene shows an expression below zero, it means that strain PsJN
is repressing it. The expression patterns of PR1, PDF1.2, WRKY70, WRKY54, WRKY33,
MYC2, ERF1, and LOX2 genes are shown in Fig. 1.
These expression values were binarized following the rules explained in the “Meth-

ods” section and the resulting matrix is shown in Table 1. This matrix was the input
and the objective function for the DE used to infer the GRN that would explain the
ISR response triggered by P. phytofirmans PsJN in A. thaliana plants infected with the
phytopathogenic strain Pst DC3000.

Networks found by DE

Using computer simulation, 1000 solutions (networks) were found. The distribution of the
number of edges of the 1000 networks is shown in Fig. 2.We found that the most frequent
number of edges is 49, the maximum number of edges found for a network is 58, and
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Fig. 1 Expression patterns of Arabidopsis thaliana defense-related genes in response to Paraburkholderia
phytofirmans PsJN before the infection with Pseudomonas syringae DC3000 (0 h) and after 0.5, 1, 3, 6, 9, 12, 18
and 24 h of the infection. Data are means of three to five biological replicates per treatment, each
considering tissue from four plants and two technical replicates. Normalization was performed with the
housekeeping SAND family gene (AT2G28390)

the minimum number of edges is 36. Given that many networks satisfy the reconstruc-
tion restrictions (temporal evolution of state vectors), a consensus network approach was
used to identify regulations among the genes that are more plausible (Fig. 3). The cutting
threshold for the edges used in the consensus network was 80%, which means that when
the edge appeared in more than 80% of the inferred networks, it was considered for the
consensus network. Additionally, the labels of the edges (positive or negative) represent
the percentage of how many times the edge appeared within the 1000 inferred networks.

Table 1 Temporal evolution of the state vectors of the eight genes used to reconstruct gene
regulatory networks using differential evolution

Time(h) PR1 PDF1.2 WRKY70 WRKY54 WRKY33 MYC2 ERF1 LOX2

0 1 1 0 0 1 0 0 1

0.5 1 0 1 1 1 1 1 1

1 1 1 0 1 1 0 0 1

3 0 1 0 0 1 1 0 1

6 0 1 0 0 0 1 1 1

9 1 1 1 0 1 0 1 0

12 1 1 1 1 1 0 1 1

18 1 0 1 1 0 0 0 0

24 1 0 0 0 1 1 1 1



Timmermann et al. BMC Bioinformatics          (2020) 21:142 Page 7 of 16

Fig. 2 Frequency distribution of the total number of edges of the resulting 1000 threshold Boolean
networks. The networks were found by differential evolution that contained the desired Boolean trajectory

Dynamics of a candidate solution: network 707

To study the dynamics of a GRN represented as a BN, a single network was selected within
the 1000 inferred networks (Fig. 4). The network No 707, henceforth 707, was the most
similar to the consensus network in terms of the topology. Therefore, this network was
used to study the global dynamical behavior of a GRN involved in the ISR response in
plants. The BN considered has eight nodes therefore there are 256 (28) possible config-
urations. Given the deterministic nature of this model, the network converges to steady
states, also known as attractors (fixed points and limit cycles).
After a parallel updating scheme, the dynamics of the network 707 converged to two

limit cycles, one of length 7 and other of length 5, red and green paths, respectively, in
Fig. 5. The limit cycle, which attracted 60% of the states, (red path; basin size: 155) rep-
resents the plant status one hour (1 h) after the infection with the pathogen until 24
hours (24 h) after the infection, being part of the limit cycle all other times that are con-
templated in this time frame (3, 6, 9, 12 and 18 h). The other limit cycle has a basin
of attraction of 101 states and it does not represent any of the plant states studied in
this work.

Pruning network 707

Because the inference of BNs from time-series data of gene expression is a mathematical
problem and not a biological one, the set of networks that satisfy the objective function
(desired Boolean trajectory of Table 1), in some cases may be very extensive. Many of
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Fig. 3 Consensus network constructed with 1000 threshold Boolean networks. The percentage represents
how many times the edge appeared within the 1000 inferred networks. The consensus network shows only
the edges that appear in more than 80% of the inferred networks. The green edges represent positive
weights (activations, +1) and the red edges represent negative weights (inhibitions, -1)

these networks have connections between genes (edges) that have no biological mean-
ing. Therefore, to obtain a more reliable GRN, biological restrictions were applied to the
topology of the network 707. Twelve regulations (edges) were removed based on empiri-
cal data reported in the literature, for example, the positive edge from MYC2 (node 6) to
ERF1 (node 7) is incorrect since MYC2 and ERF1 are antagonistic transcription factors.
This new network was called 707-BR (Fig. 6) and is composed of 28 edges instead of 40
that had the original network 707.
After a parallel updating scheme, the dynamics of the network 707-BR converged to

three limit cycles of length 4, 3 and 2 (Fig. 7). The limit cycle of length 3 that attracted
most states (red path in Fig. 7; basin size: 104) represents the plant status 12,18, and 24 h
after the infection with the pathogen. The Boolean trajectory represented in Table 1 was
attracted by this limit cycle, where once it falls inside, it continues to cycle continuously
between the 12, 18 and 24 h states. The limit cycle of length 4 has a basin of attraction of
67 states (green path in Fig. 7) and the limit cycle of length 2 has a basin of attraction of
85 states. Both of them do not represent any of the plant states studied in this work.

Structural robustness of network 707-BR

Singlemutation

To study the structural robustness of the network 707-BR, topological changes with bio-
logical support were carried out. These changes represented genetic mutations in fun-
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Fig. 4 Network No 707 is the most similar Gene Regulatory Network solution to the consensus network. The
threshold values for each node are �= (1; 1; 2; 0; -2; 0; -2; -1). The green edges represent positive weights
(activations, +1) and the red edges represent negative weights (inhibitions, -1)

damental genes to achieve, through the SA, JA or ET signaling pathways, a successful ISR
response triggered by strain PsJN, as was previously described in [25]. In the first net-
work, henceforth 707-BR.M1, the transcription factor WRKY70 (node 3) was removed,
this factor is directly involved in the SA signaling pathway activated by strain PsJN [43].
This topological change represents a single mutant Arabidopsis plant, i.e. the mutant line
wrky70-1, where the SA-induced expression of WRKY70 is completely blocked. A direct
consequence of this mutation is the non-activation of the defense gene PR1. To study the
robustness of the network 707-BR.M1 a parallel updating scheme was carried out. The
result of the dynamics was a single attractor as a limit cycle of length 5. Interestingly, the
dynamics follows the same trajectory as the wild type network (707-BR) until the vector
that represents the time point 12 h. The vector of this point and of the time point 18 h
changed, activating the JA/ET responsive-defense genes WRKY33 (node 5) and PDF1.2
(node 2), which is consistent with the biological process since the hormone signaling
pathways SA and JA/ET are mainly antagonistic [27, 44].

Doublemutation

To deepen the study of the structural robustness of the network, an additional mutation
to the network 707-BR.M1 was made. Then, the new network called 707-BR.M2 repre-
sented a double mutant Arabidopsis plant impaired in SA and ET signaling pathways.
The removed nodes wereWRKY70 (node 3) and ERF1 (node 7). After a parallel updating
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Fig. 5 State transition graph of the network No 707 using the parallel updating scheme. The attractors are
two limit cycles. One limit cycle (red path) represents the temporal evolution of the state vectors from time 1
h to time 24 h. The other limit cycle is denoted with a green path

scheme the dynamics showed two attractors, a fixed point (1 1 1 0 1 1 1 1) and a limit cycle
of length 2. Concerning the trajectory of the network 707-BR.M1 dynamics, this double
mutant added two changes that took it out of the initial trajectory, one in time 0.5 h where
the genes PR1 and WRKY54 were inactivated, and on the contrary, MYC2 gene was acti-
vated. These results are in agreement with empirical data of the SA, JA and ET crosstalk
where the absence of the transcription factor WRKY70 does not allow the activation of
PR1 [44]. On the other hand, as MYC2 is a negative regulator of ERF1 [45] the absence
of the node ERF1 leads to an activation of MYC2. Even with these changes, the Boolean
trajectory can return to the trajectory of the network 707-BR.M1, evidencing intrinsic
robustness of the original network (wild type network 707-BR).

Triplemutation

To challenge the robustness of the GRN, a triplemutant was carried out. The new network
called 707-BR.M3 has no incidence of nodes 3, 6 and 7, which representsWRKY70,MYC2
and ERF1 genes, respectively. In other words, this network is impaired in SA, JA, and ET
signaling pathways. As expected, the Boolean trajectory of the triple mutant network is
practically 100% different than the Boolean trajectory of the wild type network 707-BR.
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Fig. 6 Network No 707 with biological restrictions. The threshold values for each node are �= (2; 0; 0; 2; -2; 0;
-1; -2). The green edges represent positive weights (activations, +1) and the red edges represent negative
weights (inhibitions, -1)

The dynamics has only one attractor, a limit cycle of length 2. This result was expected
because defense systems in plants need at least one integral hormonal pathway to activate
defense-related genes. Additionally, these mathematical results are in agreement with the
biological response of a triple mutant plant impaired in SA, JA and ET signaling path-
ways infected with Pst DC3000, where strain PsJN was unable to protect this mutant
line [25].

On the use of DE for GRN inference

The use of experimental data usually leads to work with noise in the data. For this
reason, the inference of GRNs can become a difficult task. With the time-series data
of gene expression developed for this work, the classical algorithms to infer GRNs,
REVEAL [13] and Best Fit Extension [46] were unable to infer GRNs without error.
Because of this, an EC algorithm, the genetic algorithm previously used to infer
GRNs [21], was used. However, it was not possible to infer GRNs with zero error.
On the contrary, when the DE algorithm was applied, the inference of GRNs with
zero error was achieved. The use of prior knowledge of the biological process under
study is important when defining biological constraints to infer networks. With this
in mind, the reconstruction of a GRN can be as similar as possible to the cellular
reality.
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Fig. 7 State transition graph of the network No 707 with biological restrictions (707-BR) using the parallel
updating scheme. The attractors are three limit cycles. One limit cycle (red path) represents the temporal
evolution of sate vectors from time 12 h to time 24 h. The other limit cycles are denoted with a green path

Conclusions
A computational intelligence approach is presented to reconstruct a GRN underlying
the ISR defense response in plants using gene expression time-series data of A. thaliana
colonized by P. phytofirmans PsJN and subsequently infected with P. syringae DC3000.
With the DE, 1000 GRNs from time-series data were successfully inferred. Through the
study of the network’s dynamics of the selected GRN (707-BR), we showed that this net-
work is structurally robust since three mutations were necessary to completely disarm the
Boolean trajectory that represents the biological data. Also, this is in agreement with the
biological process under study, the immune system.
With the use of BN models, it is possible to make qualitative predictions and formu-

late new biological hypotheses. The combination of predictive modeling with systematic
experimental verification will be required to gain a deeper insight into biological pro-
cesses. For example, by knowing the GRN that coordinates the defense responsemediated
by a common beneficial bacterium, it will be possible to model and predict plant
responses to exogenous and endogenous changes that involve genes from the studied net-
work, allowing a more effective design of the use of beneficial bacteria to improve the
yield of important crops.
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Methods
Time-series data from gene expression

Infection assay

To construct the time-series data from gene expression an infection assay with P. syringae
(Pst) DC3000 (provided by the Faculty of Biological Sciences, Pontificia Universidad
Católica de Chile) in Arabidopsis plants (Arabidopsis seeds, Columbia 0 ecotype, from the
Arabidopsis Biological Resource Center (ABRC)) was carried out. Sterilized A. thaliana
seeds (Col-0) were sown in square Petri dishes with solid 50% Murashige & Skoog
medium (0.8% agar). Half of the Petri dishes were inoculated with P. phytofirmans PsJN
and the other half were not inoculated (control plants). Plates were located vertically in
a growth chamber at 22 °C with a photoperiod of 16/8 h (light/dark). King’s B medium
supplemented with 50 μg/ml of rifampicin and 50 μg/ml of kanamycin as selection
antibiotics was used to grow the virulent strain of the phytopathogenic bacterium P.
syringae pv. tomato DC3000, henceforth Pst DC3000. Thirteen days after sowing (13
DAS) A. thaliana plants with four visible leaves (LP.04 stage [47]) were sampled and
stored in 1.5 ml Eppendorf tubes containing RNAlaterTM (Ambion, Austin, TX, U.S.A.)
according to the manufacturer’s instructions. Treatment “0 h” in the qRT-PCR results
corresponds to this group of plants. After strain Pst DC3000 infection, four randomly
selected Pst-infected plants were sampled and stored in 1.5 ml Eppendorf tubes contain-
ing RNAlaterTM (Ambion), according to the manufacturer’s instructions. The sampling
times after infection were 0.5, 1, 3, 6, 9, 12, 18 and 24 h. Five pools with four plants
each were collected per treatment (non-inoculated plants/Pst and strain PsJN-inoculated
plants/Pst).

RNA extraction and cDNA synthesis

For RNA extraction and cDNA synthesis, the same methodology described in [25] was
used.

Gene expressionmeasurement

To quantify the gene expression a real-time RT-PCR was performed following the same
methodology described in [25]. Also, Supplementary Table S1 gives the sequences of all
primer pairs and their references (if applicable).

Data binarization

To visualize the effect of strain PsJN in a graph, for each time, the expression of the
non-inoculated plants (control) was subtracted to the expression of strain PsJN-treated
plants. Finally, these expression data were binarized according to the following rule: neg-
ative expression values (genes down-regulated by strain PsJN) took value “0” and positive
expression values (genes up-regulated by strain PsJN) took value “1”. Table 1 shows the
binarized expression data that represents the desired Boolean trajectory, which in turn is
the function that the inferred network must satisfy.

Network reconstruction using DE

To infer BN an EC approach was used. In particular, it was considered a threshold BN
with n nodes, where edges have weights and each node has a threshold value, then each
node xi (for i = 1, . . . , n) updates its value by a Heaviside function in the following way:



Timmermann et al. BMC Bioinformatics          (2020) 21:142 Page 14 of 16

xi(t + 1) = H
( ∑n

j=1 ωijxj(t) − θi

)
(1)

=
{
0 if

∑n
j=1 ωijxj(t) − θi < 0

1 if
∑n

j=1 ωijxj(t) − θi ≥ 0

where ωij is the weight of the edge coming from node j into node i, and θi is the activation
threshold of node i. The set of weights and thresholds of the network are the parameters
that must be inferred given a desired Boolean trajectory that the network must satisfy. For
this, DE was used [48], where the weight matrix and threshold vector of a threshold BN is
represented by a vector, which is built by concatenating the weight matrix’s rows and the
threshold vector. Starting from random values, candidate solutions (vectors) are evolved
through DE until the bit hit error between the desired Boolean trajectory and the Boolean
trajectory generated by the network is zero. The simulations were carried out using the
open-source R software environment for statistical computing running on a 2.8 GHz Intel
Core i7 and 8 GB-RAM computer. In particular, for DE, we used the function DEoptim
from [49]. A population of size 1000 was used, with a maximum iteration of 5000, and the
search range for the network values (weights and thresholds) was set to the real interval
[-2; 2]. Default values were considered for the rest of the user-defined parameters for DE
(information can be found using the help function in R for the DEoptim function). The
consensus network was built with 1000 solutions (networks).
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