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Sequencing ancient DNA to high coverage is often limited by sample quality and cost.
Imputing missing genotypes can potentially increase information content and quality of
ancient data, but requires different computational approaches than modern DNA
imputation. Ancient imputation beyond humans has not been investigated. In this
study we report results of a systematic evaluation of imputation of three whole
genome ancient Sus scrofa samples from the Early and Late Neolithic
(~7,100–4,500 BP), to test the utility of imputation. We show how issues like genetic
architecture and, reference panel divergence, composition and size affect imputation
accuracy. We evaluate a variety of imputation methods, including Beagle5, GLIMPSE, and
Impute5 with varying filters, pipelines, and variant calling methods. We achieved genotype
concordance in most cases reaching above 90%; with the highest being 98% with
~2,000,000 variants recovered using GLIMPSE. Despite this high concordance the
sources of diversity present in the genotypes called in the original high coverage
genomes were not equally imputed leading to biases in downstream analyses; a trend
toward genotypes most common in the reference panel is observed. This demonstrates
that the current reference panel does not possess the full diversity needed for accurate
imputation of ancient Sus, due to missing variations from Near Eastern and Mesolithic wild
boar. Imputation of ancient Sus scrofa holds potential but should be approached with
caution due to these biases, and suggests that there is no universal approach for
imputation of non-human ancient species.
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1 INTRODUCTION

Recent advances in sequencing techniques led to a dramatic increase in the amount of retrievable
ancient DNA (aDNA) from archaeological remains (Kircher, 2012), providing new insights into
recent evolutionary history (Slatkin and Recimo, 2016; MacHugh et al., 2017; Brunson and Reich,
2019; McHugo et al., 2019). Poor preservation and contamination of exogenous DNA restricts
sequence quality, reliability, and coverage of aDNA from archaeological bones (Pääbo et al., 2004;
Prüfer et al., 2010). Furthermore, the damaged nature of aDNA poses computational challenges and
introduces biases to the analysis of aDNA (Höss et al., 1996; Brotherton et al., 2007; Briggs et al.,
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2009; Prüfer et al., 2010; Ginolhac et al., 2011; Sánchez-Quinto
et al., 2012; Parks and Lambert, 2015; Kistler et al., 2017). One
way to counter these problems is imputation, which is a powerful
way to improve the quality of data and can potentially maximize
the power of analysis that require dense genotypes such as runs of
homozygosity (ROH), in depth admixture and trait association
analyses (Gamba et al., 2014; Martiniano et al., 2017). Imputation
is widely employed in studies of modern data (Van den Berg et al.,
2019; Ye, et al., 2019), targeting allele frequencies from a set of
reference individuals to infer allele frequencies at unknown or
missing sites (Browning and Browning, 2007; Ausmees, 2019).

In aDNA studies, imputation has been applied on human
genomes and achieved high levels of concordance between
imputed genotypes and their high-quality (HQ) counterparts
(>99%) (Gamba et al., 2014; Martiniano et al., 2017; Ausmees
et al., 2021). Imputation of aDNA beyond humans is lacking;
livestock aDNA is critical to understand pivotal moments in
recent evolution such as domestication and pose an excellent case
study. A number of factors are known to influence imputation
ranging from reference panel characteristics to demographic
history; assessing the potential and limitations of imputation
of species beyondmodel species like humans is valuable to aid our
understanding of not only imputation performance but also
recent evolutionary events.

This paper assesses the power of imputation to increase the
quality and information potential of low coverage aDNA samples,
using Sus scrofa as a case study. This species is an intensively
studied livestock species in terms of aDNA, particularly in the
context of expansion of animal husbandry into Europe and
significantly enhancing our understanding of how farming
started in Europe (Larson et al., 2007; Ottoni et al., 2013;
Frantz et al., 2019). Investigations have indicated that ancient
Near Eastern domestic pigs lost their Near Eastern genomic
signatures after their introduction to Europe (Larson et al.,
2007; Frantz et al., 2019). Obtaining HQ samples to pinpoint
the pace and nature of this turnover in different regions and
shorter timescales in relation to larger societal and economic
developments is necessary, but it remains a challenge due to poor
preservation and contamination. To address this challenge, a
systematic evaluation of different imputation methods was
performed on whole genome ancient Sus scrofa DNA using
data from a recent study consisting of ancient whole genomes
of pigs sequenced to an appropriate depth for imputation (Frantz
et al., 2019). Imputation achieved high genotype concordance but
this is paired with biases toward a fraction of the reference panel.
These biases might be related to the size and diversity of the
reference panel, the reference genome, or the genetic architecture
of pigs, and they impose limitations on the interpretive power of
imputed data in terms of the proposed genomic turnover of this
species in particular and in general the evolution of animal
husbandry in Neolithic Europe.

2 MATERIALS AND METHODS

Evaluating imputation of Sus scrofa aDNA by comparing three
tools, two pipelines, and three variant calling methods.

2.1 Data Description and Preparation
2.1.1 Ancient Samples
Seven archaeological samples with high-coverage data and four
archaeological samples with moderate coverage from Frantz et al.
(2019) were used (Table 1; Supplementary Table S1). Raw
FASTQ reads were downloaded from the ENA (accession
numbers see Supplementary Table S1). Raw reads were
trimmed using cutadapt v2.10 (Martin, 2011) for quality
(<20), length (<20) and adapters used in the library
preparation (Meyer and Kircher, 2010). FastQC v0.11.9 quality
reports were made for the raw and trimmed data (Andrews,
2010). The trimmed reads were aligned applying the Burrows-
Wheeler algorithm (BWA) aln v0.7.17 (Li and Durbin, 2009) to
the Sus scrofa 11.1 reference genome (Warr et al., 2020), with
default parameters apart from disabling the seed option (−l 1024),
increasing the maximum number of gap opens (−o 2) and
changing the maximum edit distance (−n 0.01). Duplicates
were removed with Picard MarkDuplicates v2.18.17 (http://
broadinstitute.github.io/picard) and BAM files from different
sequencing lanes were merged using SAMtools merge v0.1.19
(Li et al., 2009). Duplicates were removed with
FilterUniqueSamCons.py for the merged BAM files (Kircher,
2012). Indels were realigned with GATK 3.8
RealignerTargetCreator and IndelRealigner with default
parameters (Van der Auwera et al., 2013). Depth of coverage
and quality were computed using Qualimap v2.2.1
(Okonechnikov et al., 2015). Molecular damage was assessed
using MapDamage2.0 using default parameters (Jónsson et al.,
2013).

Contamination from prokaryotes and humans was assessed by
calculating percent identity score and coverage per read with
BLAST + Blastn Megablast v2.10.1 on prokaryotes, human and
Sus scrofa databases (Camacho et al., 2008). Reads were
considered contaminants if the percent identity (E-value) and
coverage of the contaminants (prokaryotes and humans) was
higher than the percent identity and coverage of Sus scrofa.
Contaminated reads were removed from the BAM file with a
custom-made python script.

Imputation was assessed by comparing imputed genotypes to
their corresponding HQ genotypes, similar to previous studies
(Gamba et al., 2014; Martiniano et al., 2017; Ausmees et al., 2021).
Three of the seven samples with high-coverage data (KD033,
KD037, and VEM185) were downsampled with Picard v2.18.17
(http://broadinstitute.github.io/picard), to create low coverage
samples for imputation ranging from 0.5 to 2× with steps of 0.
5×. Three methods were used to assess the accuracy of
imputation: Method 1, imputation with variant sites; Method
2, imputation with all confident sites; and Method 3, added to
achieve higher genotype concordance which called only
genotypes present in the reference panel. HQ genotypes were
created from the high-coverage samples to create a golden
standard. Genotype likelihoods were called with the Genome
Analysis Toolkit (GATK) UnifiedGenotyper v3.8.0 (Van der
Auwera et al., 2013) using either each alignment data of the
ancient samples individually or by joined SNP calling. Genotype
likelihoods were called with a minimum quality of 25, with output
mode EMIT_VARIANTS_ONLY for Method 1, EMIT_ALL_
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CONFIDENT_SITES for Method 2 and output mode EMIT_
ALL_SITES and genotyping mode GENOTYPE_GIVEN_
ALLELES for Method 3, with -alleles genotypes from the
reference panel. Variants were filtered to keep only autosomal,
biallelic SNPs, and a minimum quality of 30. In order to avoid
introducing a possible bias from nucleotide misincorporations
due to post-mortem damage, the generated VCF (Variant Call
Format) files were filtered to exclude all sites where themost likely
genotype could have been inferred from a deaminated allele with
a custom-made python script. For C→T deaminations, C↔T
SNPs were excluded from further analyses if the most likely
genotype contained a T allele, and for G→A deaminations, G↔A
SNPs were excluded from further analyses if the most likely
genotype contained an A allele. Genotypes were not filtered in
Method 3 when using GLIMPSE, because this software only
imputes genotypes present in the target VCF, they were
instead kept as no calls (./.).

2.1.2 Reference Panel
The reference material used for imputation consisted of the wild
boar and pig breeds collection ofWageningen University and two
Iberian samples from Ramírez et al. (2015) (Supplementary
Table S1). Pig breeds that have no known introgression with
Asian breeds were selected to avoid potential bias. Genotype
likelihoods were called with the Genome Analysis Toolkit (GATK)
UnifiedGenotyper v3.8.0 (Van der Auwera et al., 2013), with a
minimum quality of 15, calling SNPs, with the mode
EMIT_VARIANTS_ONLY for Method 1 and
EMIT_ALL_CONFIDENT_SITES for Method 2. The reference
panel was filtered to only include autosomal biallelic SNPs, a
minimum quality of 30, and a minimum depth of 4, a call rate of
0.8, and removal of repetitive elements. In order to evaluate the

effect of the reference composition on the imputation, multiple
reference panels were considered. The main reference panel
consists of modern pig breeds, European wild boar, and Near
Eastern wild boar (51 individuals, 12,737,362 variants—Table 2;
Supplementary Table S2). To deduce the effect of ancient
samples on imputation, eight ancient individuals were added
to the main reference panel, consisting of two Near Eastern
samples, three ancient Near Eastern, and three ancient
European samples (59 individuals, 10,823,257
variants—Table 2, Supplementary Table S2), called Main +
ancient reference. Moreover, the main reference panel was
divided into several subsets to pinpoint the effect of reference
bias on imputation (See Supplementary Material-Subsets of
reference panel). Additionally, to deduce the effect of Asian
haplotypes on imputation, Asian wild boars, Asian domestic
pigs and South-East Asian Sus were added to the reference
panel (See Supplementary Material-Including Asian samples).
Different filters and combinations of filters were used on the
reference panel to optimize the imputation workflow and deduce
the effects of these filters on imputation. These filters consisted of
removing 1) transversions, 2) transitions, 3) filtering for minor
allele frequency (MAF) bins {<0.05, 0.05–0.1, 0.1–0.3, >0.05, >0.3,
No MAF}, and their various combinations. Results of all
combinations can be found in Supplementary Table S2. The
reference panels were phased with Beagle5 (Browning et al.,
2018), using default parameters apart from changing the
effective population size (Ne) to 20,000 (Groenen et al., 2012).

2.2 Genetic Map
A genetic map was created using the recombination frequencies
that Johnsson et al. (2020) estimated based on nine genotyped
pedigrees on the Sus scrofa 11.1 reference genome. These

TABLE 1 | Sample information. ID, origin, period and ancestry taken from Frantz et al. (2019).

ID Origin Period Ancestry Genome coverage

KD033 Germany-Herxheim Neolithic ~46% European, ~54% Near Eastern 6.9
KD037 Germany-Herxheim Neolithic ~91% European, ~9 Near Eastern 21.6
VEM185 England-Durrington Walls Neolithic/Bronze Transition ~90% European, ~10 Near Eastern 21.7

TABLE 2 | Reference panels with their respective number of individuals/population.

Reference panel Number of individuals

Main references

Dutch wild boar-European wild boar (EUW) 12
Italian wild boar-European wild boar (EUW) 6
French wild boar-European wild boar (EUW) 1
Pig breeds-European Domestic (EUD) 25
Greek wild boar (BLW) 4
Near Eastern + Turkish wild boar- Near Eastern wild boar (NEW) 3
Total 51

Main + ancient references

Main reference 51
Near Eastern-Ancients (ANC) 5
European-Ancients (ANC) 3
Total 59
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recombination frequencies were converted to cM using the
Haldane formula (Haldane’s Mapping Function, 2008).
Genetic maps were made for each chromosome in the plink
format with bins of 1 MB (Supplementary Table S3).

2.3 Imputation
For Methods 1–3 imputation was performed using Impute5 and
Beagle5, using default parameters, with a phased reference panel
(Supplementary Table S2), with a Ne of 20,000 and, --div-select
and –out-gp-field parameters for Impute5 (Rubinacci et al., 2020)
and window = 40, overlap = 4 and gp = true parameters for
Beagle5 (Browning et al., 2018). Imputation was performed for
chromosome 1–18, individually and using sliding windows (See
Supplementary Material—Chromosomal imputation). The
effect of including multiple ancient samples on imputation was
evaluated by imputing joint ancient samples and was compared to
individual imputation (Supplementary Material—Joined
Imputation). The focus was on individual imputation.
Imputation was performed using two different imputation
pipelines: 1) the original one-step pipeline used in Ausmees
et al. (2021) and 2) the two-step pipeline used for low
coverage samples in Hui et al. (2020). The two-step pipeline
adds another filtering step prior to imputation that accounts for
genotype probability. Beagle 4.1 was used to calculate genotype
probabilities for the target downsampled VCF using default
parameters, with the same phased reference panel that was
used for imputation (Supplementary Table S2), with a Ne of
20,000 and gprobs = true parameters. Variants with a genotype
probability (GP) < 0.99 were removed from the target
downsampled VCF, leaving only confident genotype calls. The
imputed genotypes were filtered for an imputation score of 1
(highest imputation accuracy). For Method 3, GLIMPSE v1.1.1
(Rubinacci, et al., 2021) was also used with similar settings as
applied in ancient human imputation and the pipeline proposed
by Rubinacci, et al. (2021), with default parameters, and a phased
reference panel (Supplementary Table S2). Variants with an
imputation score of <1 were removed from the target
downsampled VCF, leaving only confident imputed genotype
calls. GLIMPSE v1.1.1 was only tested with Method 3 because of
the incompatibility with the other two methods/pipelines.

2.4 Genotype Concordance
Imputation accuracy was assessed by genotype concordance
defined as the fraction of genotypes that were imputed
correctly. This was measured by dividing the incorrectly
imputed SNPs with all imputed SNPs and was measured
separately for each sample. The correctly and incorrectly
imputed SNPs were derived from comparing the imputed
SNPs to their HQ counterpart similar to the approach of
Picard GenotypeConcordance. The HQ genotypes used are
pre-deamination filtered, to keep confident transitions
(transitions that also occurred in the reference panel), and
not transitions arising from deamination. The incorrectly
imputed SNPs were classified into incorrect positions
(positions not occurring in HQ) and incorrect genotypes
(genotypes different from HQ genotypes). Information
content, that is, the amount of gained genotypes, was

calculated by dividing the amount of imputed genotypes to
the total amount of HQ genotypes.

2.5 Downstream Analysis
Downstream analyses were performed to investigate the
difference and/or similarity between imputed and HQ
genotypes. Data were pruned with PLINK 1.9 (Purcell et al.,
2007) with the parameters—geno 0.10. A principal component
analysis (PCA) was performed on diploid genotypes consisting of
the reference panel, the HQ samples and the imputed samples
using PLINK 1.9 pca on autosomes only. Eigenvalues and vectors
were plotted with the use of Mathplotlib (Hunter, 2007) and
Seaborn (https://zenodo.org/record/883859#.XSdFFugza01). An
admixture analysis was performed using the same dataset as the
PCA analysis, however separately for downsampled, imputed and
HQ genotypes. ADMIXTURE v1.3.0 (David et al., 2009) was used
with standard parameters and K ranging from 2 till 5.
Furthermore, bootstrapping was performed using the
parameter -B. Identical By Descent (IBD) analysis was
conducted on the same dataset as the admixture analysis.
IBDseq v2.0 with standard parameters was used to calculate
IBD segments between samples (Browning and Browning,
2013). A regions of homozygosity analysis was performed
using the same dataset as the admixture analysis using plink
–homozyg with the parameters –homozyg-kb 10, --homozyg-gap
10, --homozyg-snp 100, --homozyg-window-het 2, --homozyg-
window-snp 100 --homozyg-window-missing 1. DetectRUNS
(https://cran.r-project.org/package=detectRUNS) was used to
visualize and calculate ROH statistics.

2.6 Reference Affinity
Correct and incorrect imputed genotypes were compared to their
HQ counterpart to assess whether imputed genotypes show a
systematic bias toward the reference genome. Reference bias was
measured as the presence/absence of different ancestral/origin
groups between the correct and incorrect imputed genotypes and
their HQ counterpart.

3 RESULTS

Genotype concordance was calculated for three imputation tools,
two pipelines and three variant calling methods to test the best
method to approach imputation in Sus scrofa. Downstream
analyses were performed to assess the accuracy and power of
imputation.

3.1 Genotype Concordance
3.1.1 Tools: Beagle5 Versus Impute5
Genotype concordance was higher for Beagle5 compared to
Impute5 for KD037 and VEM185 but lower for KD033
(Figure 1). For both tools, KD037 and VEM185 performed
better than KD033, this being more pronounced for Beagle5.
The amount of correctly imputed variants differed greatly
between the tools, with Beagle5 being systematically lower
(Figures 1IC,D). Impute5 imputed 25%–34% of the total
amount of HQ genotypes, while Beagle5 imputed around 5%.
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Beagle5 achieved the highest genotype concordances in KD037
and VEM185, but produced less correctly imputed variants.
Impute5, on the other hand, achieved the highest genotype
concordance in KD033 and produced more correctly imputed
variants. Furthermore, genotype concordance between
chromosomes was more uniform in Beagle5 compared to
Impute5 (Supplementary Table S4). These results are based
on the default one-step pipeline. The main one-step pipeline
was extended to the two-step pipeline to test various settings for

both tools that could influence imputation accuracy changing one
element at a time.

3.1.2 Pipeline: One-Step Versus Two-Step
Genotype concordance in the two-step pipeline was higher compared
to the one-step pipeline for both tools (Figures 1IA,B). The amount of
correctly imputed variants increased for Beagle5whereas the amount of
correctly imputed variants for Impute5 stagnated (Figures 1IC,D).
Genotype concordance between chromosomes was more uniform in

FIGURE 1 | Genotype concordance and fraction of high-quality (HQ) genotypes (portrayed in decimals, total HQ genotypes: VEM185: 4,701,683, KD037:
4,531,126, KD033: 3,887,848) using different imputation tools and reference panels. Imputed from 1× downsampled coverage genomes of VEM185, KD037, and
KD033. I) Genotype concordance for Impute 5 (A), Beagle5 (B), Fractions of HQ genotypes covered by imputation in Impute5 (C), and Beagle5 (D). II) Genotype
concordance and Fraction of HQ genotypes of various MAF bins of Main + 2-step + Anc + all reference panel. Genotype concordance for Impute 5 (A), Beagle5, (B)
Fractions of HQ genotypes covered by imputation in Impute5 (C), Beagle5 (D) and, Genotype concordance of only heterozygotic variants of various MAF bins imputed
with Impute5 (E). III) Filters on target downsampled vcf. Genotype concordance for Impute 5 (A), Beagle5 (B), Fractions of HQ genotypes covered by imputation in
Impute5, (C)Beagle5 (D). IV) Genotype concordance (A) and fraction of HQ genotypes (B) fromGLIMPSE, Impute5 and Beagle5 for Method 3. * Genotype concordance
of Method 3 was done on all sites and cannot be directly compared to the other methods. Main, original one-step pipeline on main reference panel; 2-step, two-step
pipeline with an extra filtering step; Anc, Ancient samples included in the reference panel; TV, transversions.
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FIGURE 2 | Principal component analysis comparing high-quality, imputed genotypes and downsampled data together with samples from the reference panel.
IMP1 (A), IMP4 (B), and IMP5 (C).
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the two-step pipeline compared to the one-step pipeline
(Supplementary Table S4) (variation of filter combinations used
for the comparisons can be found in Supplementary Table S2).

3.1.3 Reference Panel: With and Without Ancient
Samples
Genotype concordance was ~5% higher in the two-step pipeline
when using the reference panel including ancient samples for
Impute5, whereas the inclusion of ancient samples only provided
a 0.5% different genotype concordance for Beagle5 (Figures
1IA,B; Supplementary Table S4). Similarly, genotype
concordance between chromosomes showed more uniformity
with ancient samples than without ancient samples for
Impute5, but not for Beagle5 (Supplementary Table S4). The
amount of correctly imputed variants with respect to the
inclusion of ancient samples had no effect for Impute5 but
decreased for Beagle5 (Figures 1IC,D).

3.1.4 Reference Panel: Variant Sites Versus All
Confident Sites Category (All)
Using the all confident sites category, method 2, slightly increased
genotype concordance for both tools (Supplementary Figures
S1A,B). The amount of correctly imputed variants was larger in
the all confident sites category compared to the variant sites
category, method 1, for both tools (Supplementary Figures
S1C,D). The uniformity of genotype concordance between
chromosomes was more equal in the all confident sites
category compared to the variant sites category for Beagle5,
except for KD037 (Supplementary Table S4).

3.1.5 Reference Panel: Pre-Imputation Filters Versus
Standard
Reference panels filtered for transversions and transitions showed
similar genotype concordance, with transversions only having the
lowest genotype concordance (Supplementary Figures 2A,B).
The amount of correctly imputed variants decreased drastically
for only transitions and only transversions with roughly 50%, in
both tools (Supplementary Figures 2C,D). The uniformity of
concordance between chromosomes was equal for all filters
(Supplementary Table S4).

Reference panels filtered for MAF showed variation in genotype
concordance, whereMAF bins<0.05 and 0.05–0.10 had the highest
and MAF >0.3 the lowest genotype concordance for Impute5
(Figure 1IIA). This contrasted with Beagle5, where MAF <0.05
had the lowest genotype concordance and MAF >0.3 the highest
(Figure 2B). Filtering for MAF (Beside the common variant >0.05
filter) drastically decreased the amount of correctly imputed
variants in both tools (Figures 1IIC,D). Genotype concordance
of heterozygotes did not show the same trend as all variant
genotype concordance for Impute5 (Figure 1IIE), ~30% of the
total imputed genotypes were heterozygotes (Supplementary
Table S4). Genotype concordance of MAF bin <0.05 decreased
drastically, while the other MAF bins decreased more modestly.

3.1.6 Target VCF: Filters Versus No Filters
The target VCF was filtered pre- and post-imputation to deduce
the effect on genotype concordance. The reference panels used for

this analysis were IMP1 and IMP2. Filtering for transitions pre-
imputation, thus only keeping transversions, had the most
favorable effect on genotype concordance. The highest
genotype concordance for Beagle5 was filtering for transitions
pre- and post-imputation, whereas the highest genotype
concordance for Impute5 was filtering for transitions pre-
imputation (Figures 1IIIA,B). The amount of correctly
imputed variants of the pre- and post-imputation filters
decreased drastically compared to using no filter on the target
VCF for both tools (Figures 1IIIC,D). The imputed variants were
further filtered for well-known positions, namely the 50 k porcine
SNP-Chip (Yang et al., 2017), the transversions only, and main
SNP-sets from the study of Frantz et al. (2019). These filters did
not improve genotype concordance and decreased the amount of
correctly imputed variants (Supplementary Figure S3
— Methods Known genomic positions).

3.1.7 Target VCF: All Sites (Sites Present in Reference
Panel)
A method that has been shown to achieve high genotype
concordance in ancient human imputation (Martiniano et al.,
2017; Hui, et al., 2020; Method 3) was also applied. This method
was tested on three imputation tools, Beagle5, Impute5, and
GLIMPSE. GLIMPSE achieved the highest genotype
concordance, reaching 98% in KD037 and VEM185 and 96%
in KD033 (Figure 1IVA). Genotype concordance for Beagle5
stayed constant for VEM185 and KD037 but increased for KD033
compared to the two-step pipeline. Genotype concordance for
Impute5 decreased for all samples compared to the two-step
pipeline. The amount of correctly imputed variants increased for
all samples and all tools, reaching roughly 50% (Figure 1IVB).
Furthermore, the genotype concordance between chromosomes
was more constant for this method compared to the two-step
pipeline (Supplementary Table S4).

3.2 Downstream Analysis
Downstream analyses were performed on the imputed genotypes
IMP1, 2, 3, 4, and 5 (Full descriptions found inTable 3). PCA were
performed to pinpoint and compare the genetic affinities of
imputed, HQ and downsampled samples. Variation captured by
the first two principal components of IMP1 shows that the imputed
genotypes of KD033, KD037, and VEM185 cluster closer to their
HQ counterparts in the first principal component (PC1, 9.5%
variation) but tend to have a bias toward European wild boar in the
second principal component (PC2, 4.1% variation) (Figure 2A).
This bias is greater for KD033 compared to KD037 and VEM185.
PCA of IMP2 shows that the downsampled genotypes and the HQ

TABLE 3 | Reference panel abbreviations.

ID Reference panel

IMP1 Main + 2-step + Ancients + All confident sites, Impute5
IMP2 Main + 2-step + Ancients + All confident sites, Beagle5
IMP3 Main + 2-step + Ancients + All confident sites + MAF<0.05, Impute5
IMP4 Main + 2-step + Ancients + All confident sites + MAF>0.3, Beagle5
IMP5 Main + 2-step + Ancients + All, GLIMPSE
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genotypes cluster closer to each other than to the imputed
genotypes, the latter showing a bias toward the domestic pigs in
the first principal component (PC1, 9% variation) (Supplementary
Figure S4). PCA of IMP3 shows that rare alleles have a bias toward
the domestic cluster in the first principal component (PC1, 9%
variation) and a domestic and European wild boar bias in the
second principal component (PC2, 3.8% variation)
(Supplementary Figure S5). The PCA for IMP4 has the same
trend as IMP2, where the downsampled genotypes and the HQ
genotypes cluster closer to each other than to the imputed
genotypes. However, the imputed genotypes of KD037 and
VEM185 show a decreased bias toward the domestic pigs on
the second principal component (PC2, 4.2% variation)
(Figure 2B). The PCA for IMP5 shows a bias toward the
European wild boar cluster for KD033 and VEM185 in both
principal components, where the imputed genotypes of
VEM185 cluster closer with the HQ genotypes than the
downsampled genotypes (Figure 2C). This trend is not
observed in KD033. The imputed genotypes of KD037 cluster
closely toward the HQ counterpart, showing a slight bias on PC2
toward the European wild boar cluster. However, there seems to be
a slight bias introduced in the HQ and downsampled genotypes,
which ismore evident for KD037 andVEM185. They are clustering
more toward the European domestic cluster than in their previous
PCA (IMP1–4). Beagle5 showed a similar trend as GLIMPSE but
with an elevated bias toward the downsampled genotypes
(Supplementary Figure 6SA). Impute5 showed an increased
amount of bias toward the European wild boar cluster
(Supplementary Figure 6SB).

Admixture analysis of three ancestral groups (K = 3) shows the
genetic ancestry of reference panel and HQ samples and indicates
a presence of all three ancestral groups in KD037 and VEM185,

and two ancestral groups in KD033. The ancestral groups of
KD037 and VEM185 are similar, with VEM185 having a slightly
larger “European domestic pig” component, whereas KD033
consists of a larger Near Eastern and smaller European
component. Admixture analysis of IMP1 shows an increase in
the European component, and a decrease of the other
components of all imputed samples, highlighting a bias toward
European samples. Admixture analysis of IMP2 shows a decrease
of the European component in KD037 and VEM185 and an
increase in KD033. The most noticeable difference between IMP2
and HQ is the increased component of “European domestic pigs”
in all three imputed samples, again highlighting a potential bias
toward “European domestic pigs.” KD033 showed most bias
losing almost half of its Near Eastern component and
increasement of both European wild boar and domestic pig’s
components. Admixture analysis of IMP3 shows only one
ancestral component, namely, the Near Eastern component
(Figure 3). This potential bias toward the Near Eastern
component could have arisen from a low amount of variants
present in the imputed genotypes. Admixture analysis of IMP4 is
similar to IMP2, with a slight decrease in Near Eastern ancestral
component and an increase in European ancestral component,
showing a bias toward the “European domestic pigs” component
in all samples and a bias toward the European wild boar
component in KD033. Admixture analysis for Method 3
shows a deviation between the two HQ, where the HQ in
Method 3 shows a decrease in Near Eastern components and
an increase in European wild and domestic components.
Therefore, IMP5 was compared to the HQ of Method 3.
Admixture analysis of IMP5 shows an increase in the
European wild boar component in all samples and a decrease
of “European domestic pig” and Near Eastern component in

FIGURE 3 | Admixture analysis with K = 3, comparing high-quality and imputed data from IMP1-5 together with samples from the reference panel. NE, Near East;
EU, European. The colors represent the three ancestral groups, where blue is European domestic pig, red is European wild boar, and yellow is Near Eastern.
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KD037 and VEM185, whereas KD033 only has a decrease in the
Near Eastern component.

Identity-By-Descent (IBD) analysis shows that the imputed
genotypes of IMP1 share large IBD segments with each other,
covering whole chromosomes. These IBD segments are not
present in their HQ or downsampled counterparts. IMP2
showed more variation with the imputed genotypes resulting
in more fragmented IBD segments when compared to IMP1.
However, most of the IBD segments do not overlap with the HQ

IBD segments. IMP3 and 4 did not have enough depth to perform
a proper IBD analysis. ROH analysis shows a similar but less
drastic trend. The amount of ROHs was smaller in the imputed
samples but they consisted of longer stretches (Table 4). The
imputed samples had considerably larger ROHs, some larger than
1 MB, while the HQ samples had smaller fragmented ROHs. The
elongated ROH stretches in the imputed samples attributed to a
higher Froh compared to the HQ samples (Table 4). However,
the ROHs in the imputed samples overlap with the HQ samples

TABLE 4 | ROH statistics of the IMP1 reference panel for all autosomes shown per class of 0–0.5 mb, 0.5–1 mb, and >1 mb.

0–0.5 0.5–1 >1

Count Sum kb Froh Count Sum kb Froh Count Sum kb Froh

KD033_HQ 4,496 232,157 0.1025 1 516 0.0002 NA NA NA
KD033_Imp1 3,287 343,670 0.1517 17 13,152 0.0058 2 2,377 0.0010
KD037_HQ 4,434 193,928 0.0856 NA NA NA NA NA NA
KD037_Imp1 2,743 285,325 0.1259 12 8,626 0.0038 1 1404 0.0006
VEM185_HQ 3,071 124,173 0.0548 NA NA NA NA NA NA
VEM185_Imp1 2,585 266,071 0.1174 14 9,909 0.0044 1 1600 0.0007

Each class has three statistics, ROH count, total sum of kb and Froh.

FIGURE 4 |Genotype concordance and fraction of high-quality (HQ) genotypes (total HQ genotypes: VEM185:4,701,683, KD037: 4,531,126, KD033, 3,887,848)
of imputed samples for different levels of coverage for Impute5 and Beagle5. Imputation was performed using IMP1 and IMP2. Bars are standard errors. Genotype
concordance (A), Fraction of HQ genotypes (B).
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but consists of longer stretches (Supplementary Appendix
ROH). The ROH analysis was only performed for IMP1,
because Beagle5 had a low amount of variants.

3.3 Effects of Coverage on Imputation
Coverage levels vary in genotype concordance, reaching 0.94 for
KD037 and VEM185, and 0.75 for KD033 using Beagle5, where
2× reached the highest genotype concordance (Figure 4A). This
trend is opposite for Impute5, which reached a genotype
concordance of 0.92 for KD037, 0.91 for VEM185, and 0.88
for KD033, with the lowest coverage 0.5×. Imputed genotypes
increased with increasing coverage (Figure 4B)

3.4 Effects of Reference Bias
The HQ genotypes were considered a baseline of the true
genotypes that overlap with the groups in the reference panel
(Supplementary Figure S7). For Impute5, the correctly imputed
genotypes showed a bias toward the genotype that is most
common in the reference panel and occurs across all groups
(Ancients, EUW, EUD, and NEW), while the incorrectly imputed
genotypes showed a bias toward the EUD; EUW and EUW
groups (Supplementary Figures S8,9). For Beagle5, the
correctly imputed genotypes showed a bias toward ANC;
EUD; EUW, EUD; EUW, EUD; EUW; NEW, and, ANC;
EUD, which is similar to the bias shown in the incorrectly
imputed genotypes (Supplementary Figures S10,11). The
incorrectly imputed genotypes were randomly divided
throughout the chromosomes (Supplementary Figure S12).

4 DISCUSSION

The analyses revealed that for imputation of Sus scrofa aDNA data:
1) genotype concordance is relatively high, similar to modern
imputation, with a minor increase in information content (fraction
of gained genotypes in relation to HQ) in imputed genotypes and
2) imputation performance showed inaccuracies in downstream
analyses. These results have a variety of implications for our
understanding of the potency of imputation of non-human
ancient DNA in terms of its performance and limitations.

4.1 Imputation Performance
The relatively high genotype concordance of 0.95 for Beagle5, 0.925
for Impute5, and 0.98 for GLIMPSE at 1× coverage on ancients is
along the lines of genotype concordance in imputation of modern
breeds (see Song et al., 2019; Ye et al., 2019; Wang et al., 2021). The
higher genotype concordance in KD037 and VEM185 compared to
KD033might be explained by their difference in ancestry. Frantz et al.
(2019) have shown that KD033 possessed ~54% Near Eastern
ancestry, while KD037 and VEM185 possessed only ~10% Near
Eastern ancestry (Frantz et al., 2019). The larger component of Near
Eastern ancestry in KD033 may have caused the lower performance
due to the reference panel being skewed toward European
individuals. Another explanation could be the difference in
coverage between the samples, KD037 and VEM185 both have
coverages >20×, whereas KD033 has a coverage of ~7x. However,
KD037 and VEM185 had the same genotype concordance when

downsampled to a similar coverage, excluding this possibility
(Supplementary Methods- Downsampling KD037 and VEM185).
Moreover, KD033 showed most deviation when downsampled
multiple times, showing that the ancestry components of this
sample seem to be a factor in the level of accuracy in imputation.

All tools achieved high genotype concordance but differed in
amount of information gained. Moreover, Beagle5 showed less
variation in imputation of repeated downsampled VCFs
compared to Impute5, showing that Beagle5 might be less
affected by the randomness of downsampling. Genotype
concordance increased with the two-step imputation pipeline.
This was specifically designed for genomes with low coverage
(Hui et al., 2020). Our results indicate that non-model species
and species without an extensive reference panel could also
benefit from this approach. Furthermore, genotype concordance
increased when ancient samples were added to the reference panel,
adding to the number and diversity of individuals. Finally, genotype
concordance and number of correctly imputed genotypes increased
when using all confident sites but this increased computational time
and memory significantly. GLIMPSE achieved the highest genotype
concordance with Method 3, that consisted of reference panel called
genotypes in the three target downsampled samples. However, this
method did not improve the genotype concordance for Impute5 and
Beagle5, but did improve amount of genotypes recovered in all tools.

When only looking at genotype concordance the imputation
performance of imputation of Sus scrofa aDNA could be deemed
sufficient. However, there are potential shortcomings. High
genotype concordance obtained in the imputed genotypes does
not result in an equal representation of genotypes from the original
high coverage genome and consists of only a subset, covering
roughly 5%–50%. Moreover, imputed genotypes showed greater
affinity with populations that are overrepresented in the reference
panel as seen in downstream analyses (e.g., PCA, Admixture). One
example of the unequal representation of genotypes from the
original HQ genome is apparent from genotype concordances
on differentMAF bins. Genotype concordance in rare alleles (MAF
< 0.05) reached 97% but resulted in a bias toward main
components in the reference panel in downstream analyses.
This is potentially due to the representation of only ~5% of the
original HQ genotypes in the imputed genotypes It is therefore
essential to look beyond genotype concordance and focus on
multiple aspects like fraction of HQ genotypes obtained by
imputation and potential biases in downstream analysis.

Downstream analyses can identify how imputed genotypes act
in comparison to their HQ counterpart. The PCA of IMP1
resulted in accurate clustering of imputed and HQ genotypes
with only a slight bias toward the European wild boar component.
This same analysis for Beagle5 resulted in a stronger bias toward
the European domestic pig component. This illustrated that a
high genotype concordance does not necessary lead to accurate
downstream analyses. The imputed genotypes are correct, but
introduce bias in subsequent downstream analyses because they
are from specific regions of the genome and are not informative
enough to detect genetic variation among samples. This trend is
also apparent in the admixture analysis, where imputed
genotypes have biases toward European wild boar and
domestic pig components. IMP3 is an exception that might be
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attributed to the high amount of missing genotypes pulling it
toward the Near Eastern component that featured missingness,
due to low coverage and ancient individuals. IMP5 achieved the
highest genotype concordance and resulted in the most accurate
clustering for KD037 in the PCA, suggesting that imputation of
ancient Sus is feasible. However, VEM185 had a similar genotype
concordance as KD037 but showed the most bias in downstream
analyses for this specific method, implying that high genotype
concordance does not preclude bias across samples.

The IBD analysis shows that imputed genotypes of different
samples from Impute5, share large IBD segments, sometimes
even stretching chromosome wide. This could be a result of: 1)
samples which lost their individual variation and became more
similar due to imputation and/or 2) imputed genotypes that did
not have enough depth for IBD analysis. The second explanation
is unlikely, as imputed genotypes for Beagle5, did not show these
large IBD segments. The ROH analysis shows that there are
longer homozygous stretches throughout the genome in imputed
genotypes compared to their HQ counterparts. Causes for this
could be that the imputed genotypes were predominantly
homozygous with little representation of heterozygotes,
contributing to long ROHs and that the imputed genotypes
have less markers than the HQ counterparts, resulting in an
unequal density of markers. Thus, interpretation of ROHs in
imputed ancient Sus should be taken with caution as it can be a
result of the increase in homozygosity for Impute5. Overall, these
downstream analyses highlight that there are biases and
limitations toward imputation of Sus scrofa aDNA.

4.2 Factors Limiting the Power of Imputation
of Sus scrofa aDNA
One of the limitations is size of the reference panel (59 individuals),
but more specifically diversity in the reference panel. Studies on both
humans and pigs showed that a larger and more diverse reference
panel increase imputation accuracy (Jostins et al., 2011; Pistis et al.,
2015; Van Den Berg et al., 2019; Ausmees et al., 2021; Wang et al.,
2021). Ancient human imputation studies had a minimum of ~250
individuals to perform successful imputation (Ausmees, 2019).
Adding individuals to the reference panel, that do not add genetic
diversity to target samples does not increase genotype concordance,
as seen from the results when adding Asian samples to the reference
panel. The current reference panel lacks diversity, as the main groups
in the reference panel consisted of European wild boar, European
domestic pigs and Near Eastern wild boar, with (Dutch) European
wild boar andEuropean domestic pig dominating. A study on ancient
human imputation observed a lower genotype concordance and
similarity in their PCA for hunter-gatherer genomes of which
ancestry is more or less absent in the reference panel (Ausmees
et al., 2021). This was also found in imputation of pig breeds where
rarer pig breeds had a lower genotype concordance and dosage score
than breeds that were common in the reference panel (Wang et al.,
2021). In this study genotype concordance improved when adding
five ancient samples with Near Eastern ancestry to the reference
panel. Improving andmitigating current biases of the reference panel
should aid imputation. This could be achieved by including
Mesolithic wild boar, Iberian, British, Scandinavian and East

European wild boar, Near Eastern wild boar and domestic pigs to
the reference panel.

Another potential limitation that is associated with the
reference panel is the available reference genome. The Sus
scrofa 11.1 reference genome, is from a Duroc individual, with
known Asian introgression. Moreover, the nature of the reference
genome could potentially increase the rate of false genotyping
leading to errors in haplotypes and LD structure, which could
result in decreasing imputation accuracy.

One final potential limitation is the genetic architecture of pigs.
Accuracy of imputation is dependent on LD, recombination,
genetic distance, and MAF (Stephens and Scheet, 2005;
Browning et al., 2018; Ye et al., 2019). These factors are different
in pigs compared to humans and even other livestock species, where
average heterozygosity is lower and, LD and genetic distance are
significantly greater (Zhang and Plastow, 2011). The recombination
rate used in this study was based on nine breeding lines, all having
introgression with Asian domestic pigs. This potentially introduced
inaccuracies but is mitigated as the recombination was divided into
bins of 1 MB, which might not be at a size resolution to introduce
inaccuracies between wild and domestic pigs.

5 CONCLUSION

The use of imputation of ancient low-coverage Sus scrofa data
resulted in relatively high genotype concordance and a moderate
increase in information content. However, the imputed genotypes
represented only a fraction, roughly 5%–50%, of all genotypes
called in the HQ ancient genomes and featured biases toward the
main population components in the reference panel. Our analysis
indicated that these can lead to misidentifications or
overrepresentation of ancestry components and selective traits
in imputed genotypes. This is especially significant considering
the weight archaeological debates place on ancestral relationships
and admixture patterns of domesticated animals to understand the
mechanisms of emergence and dispersal of early animal husbandry
throughout the Neolithic across Europe and the Near East. This
further highlights the measures needed to interpret the results and
biases introduced by imputation and difficulty of imputation of
admixed individuals. A more diverse reference panel is one of the
most important priorities in ancient Sus imputation and
particularly, introducing diversity present in ancient Sus could
elevate accuracy and limit bias.
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