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Abstract
Introduction  People 65 years and older represent the 
fastest growing segment of the surgical population. Older 
age is associated with doubling of risk when undergoing 
emergency general surgery (EGS) procedures and often 
coexists with medical complexity and considerations 
of end-of-life care, creating prognostic and decisional 
uncertainty. Combined with the time-sensitive nature 
of EGS, it is challenging to gauge perioperative risk and 
ensure that clinical decisions are aligned with the patient 
values. Current preoperative risk prediction models for 
older EGS patients have major limitations regarding 
derivation and validation, and do not address the specific 
risk profile of older patients. Accurate and externally 
validated models specific to older patients are needed to 
inform care and decision making.
Methods and analysis  We will derive, internally and 
externally validate a multivariable model to predict 
30-day mortality in EGS patients >65 years old. Our 
derivation sample will be individuals enrolled in the 
National Surgical Quality Improvement Program (NSQIP) 
database between 2012 and 2016 having 1 of 7 core 
EGS procedures. Postulated predictor variables have 
been identified based on previous research, clinical and 
epidemiological knowledge. Our model will be derived 
using logistic regression penalised with elastic net 
regularisation and ensembled using bootstrap aggregation. 
The resulting model will be internally validated using k-
fold cross-validation and bootstrap validation techniques 
and externally validated using population-based health 
administrative data. Discrimination and calibration will be 
reported at each step.
Ethics and dissemination  Ethics for NSQIP data use was 
obtained from the Ottawa Hospital Research Ethics Board; 
external validation will use routinely collected anonymised 
data legally exempt from research ethics review. The final 
risk score will be published in a peer-reviewed journal. 
We plan to further disseminate the model as an online 
calculator or application for clinical use. Future research 

will be required to test the clinical application of the final 
model.

Introduction
Approximately 15% of people in Western 
countries are age 65 or older, yet this age 
group represents over 30% of the 550 000 
people who require emergency general 
surgery (EGS) each year in North America.1–3 
Thirty-day morbidity (40%) and mortality 
(10%) rates in this population are twofold 
to fivefold higher compared with people 
younger than 65.4–7

Strengths and limitations of this study

►► The predictor variables will be selected based on 
pre-existing research, clinical and epidemiological 
knowledge, and will include novel and strong pre-
dictors such as frailty.

►► By combining elastic net regularisation and ensem-
ble model building techniques, our analytical ap-
proach should minimise overfitting.

►► The model will undergo internal validation (to quan-
tify model optimism) as well as external validation 
(to assess whether it will maintain accuracy in dif-
ferent settings and future use).

►► The derivation data will not include physiological 
variables and hospital indicators; future research 
will be needed to determine if such variables im-
prove predictive accuracy.

►► The model will be derived and validated using a 
large number of unselected, representative patients 
from a broad assortment of regions and hospitals in 
North America.
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Older people considering EGS often need to quickly 
make complex clinical decisions in the face of poten-
tially poor expected outcomes. Accurate risk stratifi-
cation for older EGS patients is a key component of 
informed consent and patient decision making. There-
fore, supporting patients and families to make health 
decisions that are congruent with their values and goals 
of care is a key consideration.8 9 Prognostic uncertainty 
has been highlighted as a key barrier to communica-
tion and providing goal-concordant care in older EGS 
patients,10 11 and the best practice guidelines emerging 
from the National Emergency Laparotomy Audit (NELA) 
recommend preoperative documentation of risk for all 
EGS patients, as well as specific processes of care based 
on risk assessment.12

Unfortunately, current risk prediction models are inad-
equate for risk prediction in older EGS patients. Several 
multivariable models have been derived and tested 
to predict risk across all EGS patients, and at least two 
systematic reviews of such tools have been published.13 14 
However, both content and methodological issues substan-
tially limit the applicability of existing risk models when 
applied to older EGS patients. Existing prediction models 
that are not specific to EGS are driven primarily by proce-
dure type, procedure urgency and age.13 14 When applied 
to an older EGS population, these models are less likely 
to discriminate well.15 16 In addition, models specifically 
derived for EGS patients suffer from at least three signifi-
cant limitations. First, none have been derived or validated 
specifically in older EGS patients. This has resulted in age 
acting as a significant driver of risk, which could lead to 
decreased discrimination when prediction is limited to 
older people. Second, geriatric-specific risk factors, and in 
particular frailty, have not been considered as predictors. 
This is a significant limitation because frailty is a strong 
and consistent predictor of outcomes in EGS patients 
that has been shown to out-perform the National Surgical 
Quality Improvement Program (NSQIP) Universal Risk 
Calculator among older EGS patients.17 Finally, existing 
EGS-specific models have been developed with signif-
icant methodological limitations. One recommended 
model, the Emergency Surgery Acuity Score (ESAS),18 
was derived using univariate screening and stepwise vari-
able selection, two techniques that can introduce signif-
icant bias and data overfitting.19 The ESAS tool was also 
derived without clear consideration of calibration, a key 
aspect of predictive accuracy when a model is intended 
to support clinical decision making.20 Another recently 
developed tool, the NELA risk model, was derived and 
internally validated using recommended methodology, 
but combined preintraoperative and intraoperative vari-
ables, making it unsuitable for preoperative decision 
making.12 Furthermore, it includes NELA-specific covari-
ates (such as NELA audit year), which would not be avail-
able for non-NELA patients. Finally, neither of the ESAS 
or NELA tools have been externally validated.

Therefore, the creation of an accurate risk predic-
tion tool that can be applied in a timely manner, which 

contains risk factors specific to older patients, is urgently 
required to address the prognostic uncertainty that 
challenges decision making for older EGS patients. The 
proposed project will address current limitations in risk 
models for older EGS patients using the best practice 
methodologies. It will use frameworks that have been 
proposed, which focus on discrimination (how well can 
a model differentiate a high-risk from a low-risk indi-
vidual), calibration (do predicted outcome probabilities 
closely align with observed outcome rates) and overall 
accuracy (the difference between predicted and observed 
risk).21 This prediction model will also be derived and 
undergo validation testing to evaluate whether future 
predictions in different settings will maintain the same 
accuracy.19 The model will be derived using methods to 
ensure inclusion of all variables that add predictive value 
while avoiding overfitting. These include: (1) variable 
selection based on previous research and pre-existing 
knowledge,19 (2) penalised regression techniques that 
will shrink regression coefficients to avoid poor gener-
alisation,22 23 (3) ensemble modelling to simulate varia-
tion across data patient populations,24 (4) robust internal 
validation that considers trade-offs between bias and vari-
ance19 24 and (5) external validation to support gener-
alisability.19 We believe that these steps will support our 
objective of producing a robust, generalisable and clini-
cally applicable model to predict mortality risk in older 
people considering EGS.

Methods and analysis
Design and data sources
This will be a retrospective observational study using 
data from a multicentred prospective surgical registry 
to derive and validate a mortality risk prediction model. 
Derivation and internal validation data will come from 
the NSQIP Participant Use File (PUF) between 2012 
and 2016. The PUF is a prospectively collected dataset 
from all participating NSQIP hospitals in North America. 
Data are collected in each hospital by trained nurse 
abstractors, using standardised methods and definitions. 
The NSQIP PUF contains rich preoperative variables 
pertaining to patient comorbidities, surgical urgency and 
outcomes (including vital status), collected up to 30 days 
after surgery. External validation data will be from ICES 
(formerly known as the Institue of Clinical Evaluative 
Sciences; from the years 2017–2019 to avoid overlap with 
the NSQIP population). ICES is an independent health 
research institute that houses the health administrative 
data for the province of Ontario, Canada, which has a 
universal health insurance programme that provides all 
residents with coverage for physician and hospital care. 
ICES data are collected from all hospitals (>80 acute care 
centres) using standardised methods and formats, and 
are de-identified, cleaned and labelled using standardised 
central practices. Linkage across data sets is accomplished 
using deterministic techniques based on an anonymised 
unique identifier. Results will be reported according to 
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Table 1  Inclusion and exclusion criteria for NSQIP PUF 
data set

Inclusion Exclusion

Enrolment in NSQIP PUF No receipt of a surgical 
procedure

Age 65 or greater  �

Appendectomy, cholecystectomy, 
laparotomy, lysis of adhesions, 
peptic ulcer repair, bowel resection 
performed on a non-elective basis

 �

NSQIP PUF, National Surgical Quality Improvement Program 
Participant Use File.

the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis statement.25

Patient and public involvement
Patients and the public will not be involved in the design, 
conduct, reporting or dissemination of this research.

Study population
The study will include patients 65 years or older under-
going EGS procedures, based on a core set of surgeries 
as specified by Scott et al.1 This core set of EGS proce-
dures comprises seven specific surgeries (appendectomy, 
cholecystectomy, laparotomy, lysis of adhesions, large 
bowel resection, small bowel resection and peptic ulcer 
repairs) that account for approximately 80% of all proce-
dures, mortality, complications and costs related to EGS 
in the USA (table 1).1 These procedures will be identified 
using Current Procedural Terminology (CPT) codes in 
the NSQIP. These CPT codes have already been trans-
lated into Canadian Classification of Intervention codes 
(a Canada-specific modification to International Classi-
fication of Diseases, 10th Edition procedure codes that 
are used in Canadian administrative data),3 which will 
support external validation at ICES.3

Sample size
Our sample size was based on inclusion of all older 
people having target EGS procedures between 2012 and 
2016 in the NSQIP. We anticipate that this sample will be 
more than adequately powered to derive our prediction 
model. Based on previous research, we anticipate iden-
tification of approximately 15 000 cases per year, which 
should provide approximately 60 000 cases overall.18 With 
an anticipated 30-day mortality rate of 10%, this would 
provide approximately 6000 outcomes.18 Finally, with 
52 variables prespecified for inclusion, we should have 
greater than 100 events per variable. In the external 
validation data source, we anticipate identifying 6000 
cases per year, and over 3 years should therefore iden-
tify approximately 18 000 cases with approximately 1800 
outcomes.3

Outcomes
The outcome of interest is all cause 30-day mortality 
following the index surgical procedure. This will be iden-
tified from the NSQIP using the ‘Days from Operation 
to Death’ variable and from vital statistics data at ICES, 
which captures the death date of all residents of Ontario.

Predictor variables
After reviewing existing generic and EGS-specific risk 
models, as well as considering data fields available in the 
NSQIP PUF and at ICES, we prespecified a list of preop-
erative predictors (online supplementary appendix A). 
These include demographic variables (age, sex), comor-
bidities (disseminated cancer, diabetes, hypertension, 
heart failure, chronic obstructive pulmonary disease, 
dyspnoea, smoking, dialysis, ascites, steroid use for a 
chronic condition, history of weight loss), functional 
health status, preoperative place of residence (nursing 
home vs community), frailty (based on the Risk Analysis 
Index for the NSQIP data and the preoperative Frailty 
Index at ICES, both previously validated frailty instru-
ments26–28), American Society of Anesthesiologists classi-
fication, indicators of acute illness (acute renal failure, 
sepsis, preoperative ventilation29), minimally invasive vs 
open surgery and the specific surgical procedure. Dichot-
omisation of continuous variables will be avoided to mini-
mise loss of information.21 All continuous variables will 
be centred at the mean and standardised using the SD, 
followed by evaluation of fractional polynomial transfor-
mations (within an unpenalised logistic regression frame-
work) to identify the optimal continuous format.30 We 
will also include prespecified interaction terms between 
frailty and procedure,3 12 procedure and minimally inva-
sive versus open approach, and sex and procedure.31

Descriptive statistics
Descriptive statistics for the NSQIP and ICES datasets will 
be computed based on outcomes status (ie, for partici-
pants who die within 30 days of surgery compared with 
those who do not). Continuous variables will be described 
using means and SDs (prior to centring and standardi-
sation), binary or categorical variables will be described 
using proportions. Estimation of differences between 
outcome groups will be performed using absolute stan-
dardised differences.32 Descriptive comparisons will not 
be used to guide variable selection.

Derivation of the prediction model
We will derive an ensemble multivariable prediction model 
via bootstrap aggregation (also known as ‘bagging’24) 
using logistic regression that is penalised with elastic net 
regularisation.24 Simulation studies demonstrate that 
penalised (or shrunken) regression coefficients reduce 
data overfitting and resultant model optimism.22 Elastic 
net regularisation is a variable selection technique that 
combines ridge regression and least absolute shrinkage 
and selection operator (lasso) regression.33 34 Elastic net 
regularisation is appropriate for our modelling scenario 

https://dx.doi.org/10.1136/bmjopen-2019-034060
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because we have numerous predictor variables, many of 
which that are likely to be collinear. In this scenario, ridge 
regression in isolation tends to shrink collinear coeffi-
cients to a common value, whereas lasso in isolation can 
indiscriminately eliminate certain strong predictors that 
demonstrate collinearity.24 Therefore, elastic net regular-
isation should yield a model that maintains important, 
but correlated, predictors while supporting parsimony 
through the elimination of weakly predictive variables. 
Bootstrap aggregation is a machine learning technique 
in the ensemble model family that averages regression 
coefficients across all bootstrap samples to account for 
variability in the underlying data.34 This should further 
reduce data overfitting in our prediction model, trans-
lating into better performance in internal and external 
validation.

To derive the model, the NSQIP PUF data will first be 
used to tune the parameters of the elastic net model (ie, 
λ (the amount of shrinkage applied) and α (the mixture 
of lasso and ridge techniques applied, where a value of 0 
would be entirely ridge and a value of 1 entirely lasso)) via 
10-fold cross-validation to identify values that minimise the 
explained deviance. We will then generate 5000 bootstrap 
samples, using 1:1 sampling with replacement. Logistic 
regression models, penalised with elastic net regularisa-
tion, will then be run in each training bootstrap sample 
and will consider each of our prespecified predictor vari-
ables. The ensemble model will be constructed using 
the median value from the bootstrap distribution of the 
regression coefficient for each predictor variable that was 
selected in at least 95% of bootstrap samples. The percen-
tile method will be used to estimate 95% CIs around each 
regression coefficient.

Once derived, predictive performance in the deriva-
tion set will then be estimated in keeping with recom-
mended best practices.20 Model discrimination (ie, 
the extent to which people who die will be assigned a 
higher predicted risk of death than people who do not 
die) will be measured using the area under the curve 
(AUC) statistic, where values closer to 1 (maximum 
value) denote higher discrimination and values close to 
0.5 (minimum value) suggest negligible discrimination. 
While no irrefutable cutoffs exist, models with an AUC 
<0.7 may not be suitable to support decision making, 
while values >0.8 provide strong discrimination.35 Cali-
bration (ie, the extent that predicted outcome proba-
bilities match observed outcomes rates) will be assessed 
using visual inspection of Loess-smoothed plots of 
observed outcome rates versus expected probabilities.36 
Austin and Steyerberg have shown that this technique is 
suitable in large samples, whereas the Hosmer-Lemeshow 
goodness-of-fit test p values are biased downward due 
to the test’s reliance on the sample size-dependent χ2 
distribution.36 37 This technique also allows assessment of 
calibration across the range of predicted probabilities. 
Overall accuracy of the model will be evaluated with the 
max-rescaled Brier score, which measures the squared 
differences between observed and predicted outcomes 

(for the max-rescaled score, values approaching 1 signify 
a perfect model and smaller values denote worse perfor-
mance).20 38

Internal validation of the prediction model
To estimate possible optimism and overfitting, we will 
perform two internal validation steps. First, we will use 
10-fold cross-validation by splitting the data into 10 equal 
parts. The model will be retrained on 9/10th of the data 
and accuracy statistics will be subsequently validated on 
the remaining 1/10th. This will be repeated 10 times 
using each subset of the data. This technique provides an 
average estimate of overfitting, and k=10 has been shown 
to balance the concerns of variance and bias in internal 
validation.24 39 We will also perform a bootstrap internal 
validation across 5000 samples drawn 1:1 with replace-
ment, which tends to provide an estimate of optimism 
with lower variance compared with cross-validation.19 The 
range of AUCs will be reported for k-fold cross validation 
and a 95% CI for the bootstrap internal validation.

External validation of the prediction model
The model will be externally validated in a separate set of 
electronic health data at ICES collected from 2017–2019. 
The ICES external validation set will be created using 
linked clinical and administrative datasets for Ontario 
patients using encrypted patient-specific identifiers. 
The specific datasets used and the mapping of NSQIP 
to ICES data elements is provided in online supplemen-
tary appendix A. To conduct the external validation, 
the regression coefficients from the internally derived 
model will be imported to ICES and will be used to score 
the external validation set. This will allow prediction of 
expected outcome probabilities, which in combination 
with observed outcomes, will allow for measurement of 
discrimination, calibration, and max-rescaled Brier score 
in the external data set.

Missing data
Outcome data will be complete for all participants. 
Missing predictor data will be handled using complete 
case analysis where <1% of the values for a given predictor 
are missing (a threshold below some rule of thumb 
recommendations of 5%).40 Predictors missing >1% 
data will not be considered for the main analysis. While 
multiple imputation is the preferred method to incorpo-
rate cases with missing data in a prediction model, to our 
knowledge there are no available techniques to apply and 
pool elastic net penalisation to multiply imputed datasets. 
However, to estimate the possible impact and causes of 
missing data, we will assess and report measured charac-
teristics between people with missing and non-missing 
data. Furthermore, we will perform unpenalised logistic 
regression with complete-case analysis and using multiple 
imputed missing values to explore whether missing values 
may substantially impact the predictive performance of 
our model.

https://dx.doi.org/10.1136/bmjopen-2019-034060
https://dx.doi.org/10.1136/bmjopen-2019-034060
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Exploratory analyses
Because laboratory data are not available for all records 
at ICES, our primary approach will be to construct our 
model without laboratory data. However, we will perform 
an exploratory analysis in the derivation data with 
internal validation where lab values (online supplemen-
tary appendix B) are considered in model building. We 
will then assess the relative change in the AUC, calibra-
tion and max-rescaled Brier score with inclusion of labo-
ratory data compared with the primary model without 
laboratory data.

Software
The regression analyses, model derivation, accuracy anal-
ysis, internal validation and subgroup analyses will be 
completed using R programming language and statistical 
software (V.3.5.2). External validation will be performed 
using SAS V.9.4.

Ethics and dissemination
As this study will use routinely collected patient data, 
individual patient is waived. Due to the anonymised and 
de-identified nature of the data required from ICES, the 
external validation phase is legally exempt from research 
ethics board review. The results and discussion of this 
work will be disseminated through peer-reviewed confer-
ences and journals. Future plans for dissemination and 
knowledge translation include development of an online 
or app-based electronic calculator that will allow direct 
entry of clinical data to derive personalised predictions 
for patient care. Future research will be required to assess 
the clinical impact of this risk model.

Limitations
Our derivation and internal validation data will be from 
the NSQIP database. Therefore, two forms of selection 
bias could be present. First, only hospitals participating in 
NSQIP will contribute cases, and these hospitals may have 
outcomes that differ from non-NSQIP hospitals. Second, 
all NSQIP participants will have undergone surgery, 
limiting the results of our findings to older individuals 
who will be having surgery (as opposed to those under-
going conservative management). External validation at 
ICES will address the former, but not the latter, limita-
tion. Additionally, both datasets are from North America, 
which may limit generalisability to other jurisdictions. 
Laboratory values will not be included in the primary 
model as they are not available for all cases at ICES. This 
will be addressed with an exploratory analysis to assess 
the possible impact of including laboratory values, but 
only internal validation of this exploratory model will 
be available. Physiological variables are not available in 
either the NSQIP or ICES data but would be expected to 
be strong predictive variables. While all chosen variables 
are available in NSQIP and ICES data at a conceptual 
level, specific definitions may vary. While we will make 
all possible efforts to directly align definitions (including 

diagnoses and timing), some specific definitions (such as 
frailty) will differ between datasets. In the NSQIP data, 
frailty will be evaluated using the Risk Analysis Index, 
while at ICES we will use the validated preoperative Frailty 
Index. While this could lead to a decrease in external vali-
dation accuracy, this will address a real-world challenge 
with model transportability, as well as issues of instrument 
heterogeneity in frailty assessment. Fortunately, head-
to-head comparisons of different frailty instruments in 
perioperative settings have demonstrated similar effect 
sizes between instruments across different outcomes.41 42

All prediction models are subject to data overfitting 
and optimism. While we will use variable prespecification 
and elastic net regularisation and ensemble modelling 
to reduce these risks, they cannot be entirely eliminated. 
We have specified mortality as our primary outcome, 
which is an outcome of primary importance for older 
people43 and is accurately measured in electronic data. 
Other outcomes, such as time spent in hospital, func-
tional recovery and independence, are also high-priority 
outcomes that will require attention in future predictive 
modelling studies. Furthermore, the NSQIP provides only 
30-day mortality data; longer-term mortality (eg, 90 days) 
may better reflect meaningful survival after surgery.44

Conclusions
Older patients are disproportionately represented in EGS 
populations and experience high rates of postoperative 
morbidity and mortality. These patients are often at the 
end of life, with many qualifying for palliative care. This 
results in routine occurrence of complex clinical decision 
making regarding whether to proceed with emergency 
surgery. Accurate risk stratification is a key component 
of informed decision making in these time-sensitive 
scenarios. However, there is currently a dearth of high-
quality risk assessment tools specific to older people 
considering EGS.

The planned study aims to fulfil the need for an accu-
rate and generalisable risk prediction tool for older 
people considering EGS. This project will use established 
frameworks to create and evaluate a tool that we hope 
will predict mortality risk. Through prespecified internal 
and external validation, these efforts should result in the 
creation of a robust, generalisable and clinically appli-
cable risk prediction model that can be used to inform 
clinical and patient decision making for older people 
considering EGS.
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