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Graphical Abstract

1. The structure, distribution, interaction and function of voltage-gated ion
channels (VGICs)maintains a physiological balance of the ionic currents, nor-
mal action potential (AP), excitation-contraction coupling, and synchroniza-
tion in cardiomyocytes.

2. Various genetic mutations and molecular dysregulation of the VGICs could
result in ionic imbalance, abnormal AP waveform, and even cardiac arrhyth-
mia.
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Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating car-
diac electrophysiological signals, such as action potentials, to maintain normal
heart excitability and contraction. Inherited or acquired alterations in the struc-
ture, expression, or function of VGICs, as well as VGIC-related side effects of
pharmaceutical drug delivery can result in abnormal cellular electrophysiolog-
ical processes that induce life-threatening cardiac arrhythmias or even sudden
cardiac death. Hence, to reduce possible heart-related risks, VGICs must be
acknowledged as important targets in drug discovery and safety studies related to
cardiac disease. In this review, we first summarize the development and applica-
tion of electrophysiological techniques that are employed in cardiacVGIC studies
alone or in combination with other techniques such as cryoelectron microscopy,
optical imaging and optogenetics. Subsequently, we describe the characteristics,
structure, mechanisms, and functions of various well-studied VGICs in ventric-
ular myocytes and analyze their roles in and contributions to both physiological
cardiac excitability and inherited cardiac diseases. Finally, we address the impli-
cations of the structure and function of ventricular VGICs for drug safety evalua-
tion. In summary, multidisciplinary studies on VGICs help researchers discover
potential targets of VGICs and novel VGICs in heart, enrich their knowledge of
the properties and functions, determine the operation mechanisms of pathologi-
cal VGICs, and introduce groundbreaking trends in drug therapy strategies, and
drug safety evaluation.

KEYWORDS
action potentials, cardiac voltage-gated ion channel, cardiovascular safety evaluation, electro-
physiological techniques
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1 INTRODUCTION

The cardiac cycle begins when an action potential (APs) is
spontaneously generated in the sinoatrial node (SAN), the
primary pacemaker in the heart. The coordinated propa-
gation of synchronized electrical impulses relies on effec-
tive cooperation among various components in the heart
system to maintain cardiac rhythm.1 Specifically, the AP
from the SAN passes sequentially through the atria, the
atrioventricular node (AVN), and His-Purkinje conduct-
ing tissue before ultimately reaching the ventricles.1 APs,
which are generated and modulated by the opening and
closing of ion channels in the plasma membrane, are the
fundamental electrical excitation signals responsible for
the beating of cardiomyocytes and are distinct among var-
ious components in the heart due to various expression
of ion channels.1 Among the voltage-gated ion channels
(VGICs) involved in ventricular APs, sodium (Na+), potas-
sium (K+), and calcium (Ca2+) channels (Nav, Kv, and
Cav channels, respectively) predominate.2 The functions
of VGICs, the mechanisms underlying cardiac physiology
and pathology, and appropriate diagnostic and treatment
strategies have been explored for decades through elec-
trophysiological techniques. Moreover, these techniques
have been developed and expanded over time; from labori-
ous, low-throughput methods limited to whole-cell exper-
iments, they have been refined into automated, high-
throughput methods. These developments have dramat-
ically augmented the ability of researchers to further
explore VGICs. In the real world, aside from genetic muta-
tions affecting VGICs, many drugs can bind to these
channels, block ion flow and disrupt the regulation of
APs, potentially leading to drug-induced arrhythmia, or
“proarrhythmia.”3,4 It is necessary to evaluate the risks of
potential drug candidates by using the different techniques
mentioned above,5,6 according to the US Food and Drug
Administration (FDA) guidelines. In this respect, enhanc-
ing the quality of preclinical safety screening is particu-
larly important for validating the safety of therapies to
avoid potential adverse effects on ion channels and prevent
billions of dollars in losses because of late-stage premar-
ket drug withdrawals in the development process of drug
development before marketing.

2 METHODS FOR DETECTING
CARDIAC VGICS

2.1 Electrophysiological techniques

The manual patch clamp (MPC) technique (Table S1)
is the gold standard for analyzing electrophysiological

characteristics (APs and specific ion channel currents)
in cardiac myocyte research studies under physiologi-
cal/pathological conditions or in response to drug appli-
cation. Three main cell models are used: 1) freshly iso-
lated ventricular myocytes from wild-type (WT), diseased
or genetically modified animal models; 2) heterologous
expression systems specifically expressing the human ion
channels of interest; and 3) human induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs) from
healthy individuals and patients.2,7 In addition, cardiac
ion channels can be examined by single-channel MPC
recording (Table S1); for example, this technique can
be applied to a potential new channel with a putative
pore-containing structure,8 or channels that cannot be
expressed or trafficked on the cell membrane in heterol-
ogous expression systems,9 or channels that are poten-
tially altered in the diseased heart.9 The main limitation of
MPC is its low throughput. Therefore, the automated patch
clamp (APC) (Table S1) enables much higher-throughput
experiments while nevertheless achieving high-quality
seals, thereby facilitating the use of the MPC and is
now routinely used in cardiac drug discovery and safety
testing.10–12
In addition, microelectrode arrays (MEAs) (Table S1)

offer an alternative noninvasive that enables noninva-
sive, high-throughput assays evaluating extracellular
field potential (EFP) of excitable cells13; MEAs have
also been increasingly used in cardiology to test the
safety of drug candidates.13,14 Furthermore, impedance
techniques (Table S1) have recently been combined
with EFP recording on the same platform to provide a
noninvasive, high-throughput and long-term measure-
ment strategy for assessing the synchronous beating of
monolayer cardiomyocytes, the duration of EFPs, and the
proarrhythmogenic capacity of drug candidates without
altering cellular physiology15; this combined approach
offers a more comprehensive analysis of excitation-
contraction (EC) coupling than either component
alone.
Generally, low-throughput MPC is a critical tool for

examining the electrophysiological characteristics of car-
diac cells and the biophysical properties and functions
of ion channels. APC and MEAs have developed into
an indispensable platform for pharmaceutical companies
and academic laboratories to conduct potential drug tar-
get discovery, drug screening, and cardiac safety with
high efficiency and accuracy. hiPSC-CM-based APC,16
MEA,17 and impedance15 screening assays are increasingly
used to evaluate antiarrhythmic effects, adverse effects
or interindividual variations in patients or healthy indi-
viduals and to acquire more comprehensive validation
data.
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2.2 Joint techniques

Cryoelectron microscopy (cryo-EM) (Table S2), which
can resolve the structure of macromolecular complexes at
the atomic conformation level, has provided researchers
with a more in-depth molecular picture of ion selec-
tivity, voltage gating, and intersubunit interactions
in channel complexes and thereby provides insights
into important biological phenomena, such as electro-
physiological feature variations among different VGIC
isoforms,18,19 feature changes after the application of
various compounds,20 and the mechanisms of mutation-
related arrhythmia.18 Hundreds of disease-associated
missense mutations have been mapped onto all major
domains in the structure of many VGICs.18,21 Cryo-EM
structure analysis could provide novel insights into
both VGIC-drug interactions and the mechanisms of
action of such drugs.20,22 Moreover, electrophysiological
techniques can help evaluate whether the functional
properties of truncated or mutated VGICs purified for
cryo-EM analysis are similar to those of WT full-length
VGICs.18,19
Optical imaging methods (Table S2) using voltage-

or Ca2+-sensitive dyes are less invasive than MPC and
are able to measure changes in the MPs, intracellular
calcium concentrations, electrical activity and EC cou-
pling of cardiac cells.23 However, some sensitive dyes are
limited by cytotoxicity and short half-lives. Genetically
encoded fluorescent Ca2+ indicators, such as ArcLight
and GCaMP, were developed and applied to cardiac
research to monitor functional changes in hiPSC-CMs in
a long-term, noninvasive, high-throughput manner.24,25
The combination of optical imaging and electrophysio-
logical techniques allows simultaneous recording of opti-
cal AP signals and calcium transient signals and per-
mits both high spatial resolution and accurate functional
evaluation.
Optogenetics approaches (Table S2), using light to

control the perturbation of membrane voltage through
the opening of optogenetic channels have been used
to modulate cardiomyocyte excitability and heart rate
with high precision and to explore the mechanisms of
arrhythmia generation.26,27,28 Optogenetic channels can
also be used to study the relationship between cardiac
myocytes and nonmyocyte cells and provide a feasible way
to explore direct evidence of electrical coupling between
these cells in normal or injured regions of the heart.29
Automated frequency-dependent cardiotoxicity screening
can be conducted by applying optogenetic stimulation
similar to physiological heart rates in hiPSC-derived
cardiomyocytes.30

3 AP GENERATION AND EC
COUPLING OF CARDIOMYOCYTES

3.1 Normal electrophysiology of AP and
EC coupling

A typical ventricular AP consists of five phases (P0-P4)
that are mediated by different depolarizing and repolariz-
ing ionic currents (Figure 1A).2 The initial phase (Phase
0) of a cardiac AP occurs after the resting state (Phase IV)
of the previous AP and arises from a very large inward
INa current mediated by Nav channels. Then, Kv chan-
nels are activated to mediate transient outward potassium
currents Ito, leading to partial repolarization in Phase I.
During Phase II, L-type Cav channels (LTCCs) are acti-
vated, generating an inward ICaL current. In addition, the
Na+/Ca2+-exchanger (NCX) opens in forward mode and
mediates an inward INCX current by exchanging an influx
of 3Na+ for an efflux of 1Ca2+. On the other hand, the
voltage-gated delayed rectifier potassium channels open
andmediate outward rectifier currents (IKr and IKs). Mem-
brane potential (MP) changes extraordinarily little due to
the nearly equal inward and outward currents during this
phase, which is also known as the plateau phase. In the
late plateau phase, LTCCs are inactivated, and the dom-
inant outward currents, IKr and IKs, result in repolariza-
tion in Phase III. Toward the end of Phase III, IKr and IKs
decline, and the inwardly rectifying potassium channels
Kir2.x mediate the IK1 current to drive repolarization and
maintain a resting MP (Phase IV).
The beating of the heart relies on EC coupling (Figure

1B). During AP generation, the LTCC-mediated increase
in the cytosolic Ca2+ concentration instantaneously trig-
gers the opening of the ryanodine receptor 2 (RyR2) chan-
nel, a Ca2+ channel in the sarcoplasmic reticulum (SR),
which causes Ca2+ release from the SR, and thereby fur-
ther increases the cytosolic Ca2+ concentration. This Ca2+-
induced Ca2+-release (CICR) prompts Ca2+-sensing pro-
tein troponin C to initiate contraction (systole). Cytosolic
calcium levels are reduced via the Ca2+-ATPase type-2a
(SERCA2)-mediated influx of Ca2+ back into the SR and
the NCX-mediated efflux of Ca2+ back to the extracellular
space, resulting in the dissociation of calciumand troponin
and then muscle relaxation (diastole).2,31,32

3.2 Abnormal electrophysiology as a
trigger of arrhythmias

Disruption of the normal generation and duration of Aps
is associated with arrhythmias in the heart.1,31 Two types
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F IGURE 1 Normal AP generation and EC coupling of cardiomyocytes; abnormal electrophysiology as a trigger of arrhythmias. (A) A
typical ventricular action potential (AP) and the depolarizing and repolarizing ionic currents underlying its different phases (P0-P4). (B)
Voltage-gated ion channel (VGIC) distribution and contribution to AP excitation-contraction coupling in cardiomyocytes. Na+, Ca2+, and K+
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of afterdepolarizations, early afterdepolarizations (EADs)
and delayed afterdepolarizations (DADs), could induce
premature APs and contribute to arrhythmias. EADs
occurs during Phase II or III (Figure 1C). Prolongation of
action potential duration (APD) due to the reduction of
repolarization currents (eg, IKr and IKs) or the increase in
INa,L current could give rise to abnormal recovery from
the inactivation of LTCC channels and further depolar-
ize the membrane due to the reactivation of inward cur-
rents ICaL.1,2 DADs can result from depolarization after the
end of AP repolarization (Figure 1C), potentially due to
Ca2+ overload caused by enhanced SR Ca2+ release and
the inappropriate activation of the reverse mode of NCX,
which mediates outward INCX current by exchanging an
influx of 1Ca2+ for an efflux of 3Na+.1,2
Under physiological conditions, Nav channel activity is

regulated by cytosolic Ca2+ levels, such as elevation of
cytosolic Ca2+ levels resulting in destabilization of inacti-
vation and increase of the amount of available channels to
open for the next AP.33–35 And Na+ influx, in turn, affects
the modulation of cytosolic Ca2+ levels.32 However, under
pathological conditions, an abnormal increase in Na+ dur-
ing diastole can result in inappropriate timing of reverse
flow through the NCX channel (3Na+ efflux and 1Ca2+
influx), further increasing the cytosolic Ca2+ concentra-
tion and altering normal EC coupling (Figure 1D).32

4 VENTRICULAR AP-RELATED ION
CHANNELS: CLASSIFICATION,
STRUCTURE, FUNCTION, REGULATION,
AND DISEASE RELEVANCE

4.1 Nav channels

Cardiac voltage-gated Nav channels initiate AP in elec-
trically excitable cells. The specificities among isoforms
(Table 1) are attributed to the distinctα-subunit encoded by
the corresponding gene and the different combinations of β
subunits.36 β subunits regulate channel surface expression,
voltage dependence and gating kinetics.36 SCN5A-encoded
Nav1.5 is the most abundantly expressed Nav channel in
ventricle and atrium (Table 1) and is responsible for the
generation of APs and the conduction of cardiac impulses
in cardiomyocytes.18,34,37,38 Additional evidence has shown
that other isoforms are also expressed in the ventricular
myocytes (Table 1).32,39–48

4.1.1 Nav1.5

In ventricle cardiomyocytes, Nav1.5 channels are known
to be located in lateral membrane, transverse tubules (T-
tubules), and intercalated discs, ensuring propagation of

are represented by red, yellow, and blue dots, respectively. The cardiac VGICs Nav1.5, Kv7.1, and Kv11.1 are primarily localized in intercalated
discs (IDs), T-tubules and lateral membranes. TTX-sensitive Nav channels are primarily localized in T-tubules and colocalized with the
Na/Ca exchanger (NCX). The sarcoplasmic reticulum (SR) channel ryanodine receptor 2 (RyR2) is located near most L-type Ca2+ channels,
and Cav1.2 is located in T-tubules. RyR2 is regulated by type 2 calsequestrin (CASQ2). A novel TRIC-A channel can also directly interact with
RyR2 and act as a counterion channel to modulate Ca2+ release from the SR. The potassium channel Kir2.1 interacts with Nav1.5 in T-tubules.
Kir2.1-mediated outward K+ drives repolarization, while the rapid increase in membrane potential (MP) depolarization and the MP
overshoots during Phase I are driven by the influx of Na+, which is mediated by Nav1.5. Then, Kv4.3- and Kv1.4-mediated fast and slow
transient outward K+ currents (Ito, fast and Ito, slow) are activated to mediate partial repolarization in Phase I. During the plateau phase (Phase
II), nearly equal inward currents are mediated by Cav1.2 (Ca2+ in) and the NCX in forward mode (3 Na+ in, 1 Ca2+ out), while outward
currents (K+ out) are mediated by the voltage-gated delayed rectifier potassium channels Kv7.1 and Kv11.1. In addition, Ca2+ influx mediated
by Cav1.2 activates RyR2 channels to open, thereby releasing additional Ca2+ into the cytosol via a process known as Ca2+-induced
Ca2+release (CICR). This process induces the Ca2+ sensing protein troponin C on myofilaments to begin to contract. During late Phase II and
Phase III, Kv7.1- and Kv11.1-mediated outward currents (K+ out) become dominant, resulting in repolarization, until they are again surpassed
by Kir2.1 activity, resulting in the maintenance of repolarization at the resting MP during Phase IV. Cytosolic Ca2+ flows back into the SR via
Ca2+-ATPase type-2a (SERCA2) and back to the extracellular space via the NCX. Contraction is terminated when cytosolic Ca2+ levels fall
below the level required for the Ca2+-troponin association (resulting in dissociation). (C) Abnormal ventricular APs. A prolonged AP duration
(APD, in gray) due to an abnormal increase in the inward current (INa,L and ICaL) and a decrease in the outward current (IK) can develop into
an arrhythmia trigger called early afterdepolarizations (EADs) (in brown) during the plateau phase (upper). Another arrhythmia trigger
called delayed afterdepolarizations (DADs) (in red) occurs due to cytosolic Ca2+ overload during the diastole period (lower). (D) An abnormal
increase in the Na+ current (represented by red sparkling dots) mediated by Nav1.5 and other Nav channels then induce further depolarizing
plateau currents by reactivating the inward ICaL (represented by yellow sparkling dots), and an abnormal decrease in K+ out results in a
prolonged plateau phase. This abnormal Na+ accumulation switches the NCX to reverse mode, in which it pumps 3Na+ out of the cell while
transferring Ca2+ into the cytosol. A further increase in the Ca2+ concentration prolongs repolarization and enhances excitation-contraction
coupling. During the diastole period, abnormal release of Ca2+ via the reopening of RyR2 and influx of Ca2+ via reverse-mode NCX activity
give rise to Ca2+ overload in the cytosol, resulting in DADs
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TABLE 1 Cardiac voltage-gated Na+ channels subtypes

Subtypes

Encoding
α subunits
Gene

Auxiliary
subunits

Main
location

Subcellular
localization in
cardiac tissue
(V/A/SAN) and
region37,38,43,233

Cryo-EM
structure

TTX
sensitivity

Principal
physiological
functions in
human ventricle
myocytes

Nav1.1 SCN1A β4 encoded by
SCN4B

CNS,
Heart

V≈A≈SAN;
T-tubules

Human
Nav1.1-β4
channel21

Sensitive Cardiac
pacemaking and
promotes Ca2+

dynamics
Nav1.2 SCN2A β2 encoded by

SCN2B
CNS,
Heart

V≈A<SAN
T-tubules

Human
Nav1.2-β2
subunit52

Sensitive Contributes small
portion to
cardiac sodium
current

Nav1.3 SCN3A NR CNS,
Heart

V≈A<SAN
T-tubules

NR Sensitive Contributes small
portion to
cardiac sodium
current

Nav1.4 SCN4A β1 encoded by
SCN1B

Skeletal
muscle,
Heart

V≈A≧SAN
T-tubules

Electric
eel,234

human53

Nav1.4-β1
subunit

Sensitive Contributes small
portion to
cardiac sodium
current

Nav1.5 SCN5A β1, β2 encoded
by SCN1B
and SCN2B,
respectively

Heart V≈A≧SAN;
IDs, lateral
membrane,
T-tubules

Rabbit
Nav1.5 α -
β1, β2
subunits18

Resisitant Mediates the entry
of Na+, and
triggers
overshooting of
AP

Nav1.6 SCN8A β1 encoded by
SCN1B

CNS, PNS,
Heart

V≈A
T-tubules

NR Sensitive Contributes small
portion to
cardiac sodium
current; Promote
Ca2+ dynamics

Nav1.8 SCN10A β2 encoded by
SCN2B

PNS, Heart V<A
T-tubules

NR Resisitant Cardiac
contraction and
conduction

CNS, central nervous system; PNS, peripheral nervous system; IDs, intercalated discs; T-tubules, transverse tubules; Cryo-EM, cryoelectron microscopy; TTX,
tetrodotoxin; V, ventricle; A, atrium; SAN, sinoatrial Node; NA: not available; NR, not reported.

electrical impulse in longitudinal, transverse directions
of cardiomyocytes, and between adjacent ones, respec-
tively (Figure 1B).49 Nav1.5 channels are closed at the rest-
ing MP (Phase IV). In response to membrane depolariza-
tion, Nav1.5 could be activated. Within 200-300 μs, a large
inward peak INa (INa,P) is formed to trigger overshooting
of AP in Phase 0. At the end of this phase, most Nav1.5
channels are rapidly inactivated within 2-5 ms, rendering
the channel refractory until repolarization is completed in
Phase III. During Phase IV, after recovering from inactiva-
tion, the channels are closed and can again be reopened by
membrane depolarization (Figure 2A). In Phase II or III,
a small population of total Nav1.5 channels could be reac-
tivated before complete inactivation and then generate a
relatively small, persistent sodium cardiac inward current
called late INa (INa,L).50,51 Under physiological conditions,

INa,P but not INa,L plays a central role in ventricularAP gen-
eration,while under pathological conditions, INa,L can play
an important role.50,51 Abnormal increases in INa,L prolong
the duration of the AP plateau, triggering EADs or fur-
ther elevating intracellular Ca2+ levels by driving the NCX
exchanger to function in reverse mode, thereby inducing
DADs and contributing to arrhythmogenesis.51
To date, some high-resolution structures of Nav

channels,21,52,53 including rNav1.5C,18 have been eluci-
dated (Table 1). In general, key structural features of
Nav1.5, the structural basis for its physiological function
and its dysfunction in cardiac arrhythmias could be
learned from the revealed Nav1.5 structures. Unlike other
Nav α subunits, in Nav1.5, the regulatory interface with
auxiliary β1 and β2 subunits, encoded by SCN1B and
SCN2B respectively, is not as strong due to the substitution
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F IGURE 2 Cardiac voltage-gated sodium channel (Nav1.5) structure, accessory proteins and signaling. (A) The contribution of INa,P
(upper) mediated by Nav1.5 to action potential (AP) Phase 0 (lower). (B) The cardiac voltage-gated sodium channel Nav1.5 comprises one α
subunit and one or two auxiliary β subunits. The α subunit consists of four homologous but nonidentical repeats (DI-DIV) connected by
cytoplasmic linkers (ICLI-II, ICLII-III, and ICLIII-IV) and is responsible for voltage dependence, pore formation, and surface expression. Each
domain contains S1-S6 subunits that are connected by loops located intra- and extracellularly. The carboxyl-terminal domain (CTD) of S1 and
the amino-terminal domain (NTD) of S6 are located in DI and DIV, respectively. The S4 subunit of each domain contains the voltage sensor.
S5 and S6 of each repeat form the pore domain, and the connecting P-loops between the S5 and S6 regions curve back into the pore to form the
extracellular selectivity filter (SF), which is responsible for Na+ selectivity. ICLIII-IV serves as an inactivation gate (IG), which closes the pore
within 1-2 ms after opening. The β subunit, consisting of an extracellular domain, an intracellular domain, and a single transmembrane helix,
plays an important role in modulating the surface expression, kinetics, and functions of Nav channels. The β1 and β2 subunits do not stably
associate with the Nav1.5 α subunit. Y304 in the Nav1.7 α subunit, which is connected to E48 in the β1subunit by a hydrogen bond, is
substitute at L316 at the equivalent position in Nav1.5. Similarly, C895, which forms a disulfide bond with the β2 subunit, is substituted at
L869. Several accessory proteins interact with Nav1.5 channels to form macromolecular complexes that regulate ion trafficking,
posttranslational modifications and gating. Nav1.5 activity is driven by Ca2+ levels via its interactions with CaM and CaMKII. Nav1.5 can be
activated in response to β adrenergic stimulation via the activation of CaMKII. CaM binds not only to an IQ motif in the CTD of Nav1.5 but
also to its IG. The CaMKII inhibitor KN93 was recently reported to alter the kinetics of Nav1.5 inactivation by interrupting the CaM-IG
interaction but did not suppress CaMKII function.64

of residues for β subunit interactions.18 Recent studies
suggest β1 subunit may differentially control expression
and function of α-subunit via acute and chronic feedback
mechanisms.54 β2 is pivotal for the correct localization
of NaV1.5.55 Nav1.5 is insensitive to the inhibition of
tetrodotoxin (TTX), a selective sodium channel blocker
nonprotein toxin, due to the substitution of binding
residues at the outer mouth of the Nav1.5 selectivity
filter (SF).18 Nav1.5 is blocked by the class Ic antiarrhyth-
mic drug flecainide with comparatively high affinity
and slow binding kinetics compared to class IA and IB
antiarrhythmic drugs due to the larger hydrophobic ring
structure of flecainide interacting with the central cavity
of Nav1.5.18 In addition, the structural template of Nav1.5
for arrhythmia mutations provides a better understanding

of the mechanism of various SCN5A variants in different
positions.18 The traditional view is that a single α-subunit
of Nav1.5 functions as a monomer, while increasing
evidence has shown that the α-subunit of Nav1.5 could
be oligomerized into dimers within the first intracellular
loop and results in coupled gating properties with the
accessory protein14-3-3 interaction.56 Inhibition of 14-3-3
could abolish the dominant negative (DN) effect and the
biophysical coupling between α-subunits.56
In addition, several accessory proteins have been

demonstrated to interact directly with the α subunit of
Nav1.5 channels (Figure 2B) to formmacromolecular com-
plexes with Nav1.5 and modulate the expression, traffick-
ing and biophysical function ofNav1.5 (Table 2).49 Calmod-
ulin (CaM), a ubiquitously expressed calcium-binding
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protein, and CaM-dependent protein kinase II (CaMKII),
an adrenergically activated kinase, serve as important
components affecting channel function.34 CaM binds with
IQ motif of Nav1.5 carboxyl-terminal domain (CTD) in
Ca2+-free forms and Ca2+-bound forms at the basal levels
of intracellular Ca2+ concentration.33–35 While this CaM-
Nav1.5 interaction is altered when the elevation of intra-
cellular Ca2+ concentration, therefore changing the rate
of Nav1.5 inactivation.33–35 Increasing evidence has shown
that at the high level of intracellular Ca2+ concentration,
CaM also directly binds to the inactivation gate (IG) of
Nav1.5 to destabilize the IG and promote faster recovery
from inactivation.57–61 CaMKII not only phosphorylates
Nav1.5 at key site S57162 but also directly interacts with
Nav1.5 to regulate the expression and function of Nav1.5.63
On the other hand, protein phosphatase 2A (PP2A)
was recently found to interact with the Nav1.5/ankyrin-
G/CaMKII/Βiv-spectrin macromolecular complex and
balance CaMKII-dependent phosphorylation.62 The
CaMKII inhibitor KN93 but not autocamtide-2-related
inhibitory peptide (AIP) could interrupt the CaM-IG
interaction by forming the ternary complex CaM-IG-
KN93 and then inhibit Nav1.5 recovery from inactivation
without altering the kinetics of inactivation.64 Therefore,
determining the effects of accessory proteins and signaling
pathways on modulating Nav1.5 provides us with a more
comprehensive understanding of Nav1.5 roles in cardiac
tissues in both health and disease states and is benefi-
cial for the discovery of potential drug targets. Future
investigations of the kinetics of CaM-Nav complexes and
the effects of structure-guided mutations on the roles of
Nav1.5 in the absence/presence of Ca2+ transients will
provide us with a more comprehensive understanding of
the mechanisms and significance of Ca2+-dependent Nav
roles in cardiac tissues in both healthy and disease states.
Mutations in SCN5A (Table 3) are associated with inher-

ited life-threatening arrhythmias, such as long QT syn-
drome type 3 (LQTS3), and Brugada’s syndrome (BrS).18,65
Slower channel inactivation and thus conducting an
increase in INa,L are responsible for the gain-of-function
(GOF)-associated LQTS3.66,67 On the other side, reduc-
tion of membrane expression of functional channel due
to synthesis deficiency68 or trafficking defects,69 impair-
ment of gating (such as slower activation or faster
inactivation)56,59,70–72 or permeation disruption73,74 cause
SCN5A loss-of-function (LOF)-associated BrS.65 The α-
subunit of Nav1.5 oligomerization also explains the exis-
tence of several BrS variants displaying DN effects, pro-
viding new therapeutic targets for BrS caused by SCN5A
LOF variants.56 Moreover, LOF mutations in SCN1B and
SCN2B are also implicated in BrS.54,55,75,76 In addition to
most isolated GOF or LOF variants of SCN5A which are
typically associated with a distinct clinical and electrocar-

diographic phenotype, variants could also lead to overlap-
ping syndromes77,78 or inherited arrhythmia syndrome dif-
ferent from BrS and LQT3.79 There is also a category of
benign (atypical) SCN5A mutations which shows normal
function alone but leads to a reduction in sodium currents
when coexpressed with WT in vitro as typical SCN5A BrS
mutations do.80
Moreover, missense variants in CAV3-encoded caveolin-

3, which forms macromolecules with Nav1.5 and serves as
a negative regulator for INa,L, could result in INa,L increase
and thus cause LQTS9, providing new therapeutic strate-
gies to correct INa,L.81 Drugs that inhibit INa,L50 could
shorten theAP duration or QT interval and could therefore
be considered a potential treatments for INa,L-associated
diseases.82 Thus, abnormal changes in INa,L could be con-
sidered as a target for drug development and safety evalu-
ation.
High-throughput assays of cardiac Nav1.5 INa,P have

been widely used in cardiac safety screening, but screen-
ing studies do not routinely measure INa,L.83 However, it is
important for potential therapeutic candidates that could
minimize INa,L without affecting INa,P to be selected.51
The variety of different protocols and measurement strate-
gies applied in the use of these drugs have contributed to
remarkable variations in the reported data on INa,L and
screening results for inhibitory compounds.84,85 INa,L is
small, and studies have had difficulty generating repro-
ducible data; thus, the best choice for an INa,L enhancer
should increase INa,L with no obvious effect on INa,P.85
In addition, it is necessary to double check the median
inhibitory concentration (IC50) of potential drugs in the
absence of enhancers, eliminating the modification effect
of enhancers on the activity of compounds,85 and to eval-
uate the IC50 of drugs in different stimulation states with
regard to variations in the effects on INa,P and INa,L in dif-
ferent stimulation states.18

4.1.2 Other Nav channels in the heart

TTX-sensitive Nav channels including neuronal Nav
(eg, SCN1A-encoding Nav1.1, SCN2A-encoding Nav1.2,
SCN3A-encoding Nav1.3, SCN8A-encoding Nav1.6), which
were first identified in neurons, and skeletal muscle Nav
(eg, SCN4A-encoding Nav1.4), which was first identified
in skeletal muscle, have been unexpectedly found in T-
tubules of ventricle myocytes (Table 1), contributing a
small portion to the total sodium current under physiolog-
ical conditions due to their much lower expression level
than Nav1.5.39–41,45–47 While, in inherited forms of cardiac
arrhythmia, augmentation of TTX-sensitive Nav channels
phosphorylated by β-AR stimulation/CaMKII stimulation,
contributes to abnormal increases in INa,L and arrhyth-
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mogenic Ca2+ release.32,41 Compared with other TTX-
sensitive Nav channels, the location of Nav1.6 (Table 1) is
the closest channel to RyR2 (< 100 nm)41,86 indicating that
Nav1.6 is capable of impacting Ca2+ cycling proteins and
Ca2+ dynamics in both health and disease.86 GOF vari-
ants of SCN8A-encoding Nav1.6 (Table 3) potentially leads
to sudden unexpected death in epilepsy (SUDEP) due to
arrhythmia of the brain and the heart.87 The GOF vari-
ant of SCN8A (N1768D) causes hyperexcitability of ventri-
clemyocytes by increasing calcium transient duration, pro-
longing the early phase of APD, and increasing the inci-
dence of DADs but not by compensatory changes in Nav1.5
expression.87 Selective pharmacological blockade ofNav1.6
and silencing of Nav1.6 indicate that Nav1.6 can poten-
tially contribute to β-AR stimulation-induced INa,L and
arrhythmias.41 This explains why catecholaminergic poly-
morphic ventricular tachycardia (CPVT) models respond
to treatment with some Na+ channel blockers.41 Besides
SCN8A, the possible roles of SCN1A, or SCN4Amutations
in pathophysiology of cardiac congenital syndrome were
also investigated (Table 3).
In addition, TTX-insensitive SCN10A-encoding Nav1.8

(Table 1) channels, which are mainly expressed in
the peripheral nervous system, are also found in the
heart42–44,48 at a higher level in the atrial myocardium
than in the ventricular myocardium,43 exhibiting a more
depolarized voltage dependence of inactivation and slower
inactivation kinetics than other faster sodium channels
like Nav1.5.44 Nav1.8 contributes to abnormal increases
in INa,L and consequently prolongs the APD and ele-
vates proarrhythmogenic diastolic SR Ca2+ in cardiac
disease.42 Genetic deletion of Nav1.8 produces a smaller
INa,L increase than in WT cardiomyocytes during β-AR
stimulation.42 LOF and GOF variants in SCN10A (Table 3)
are associated with BrS88 and SUDEP,89 respectively. Gat-
ing dysfunction with enhanced of inactivation results in
LOF of Nav1.8.88 In contrast, dysfunctionwith slower inac-
tivation could result in GOF of Nav1.8 and then allowmore
Na current entry.89 Thus, Nav1.8 also plays a significant
role in the initiation of proarrhythmic triggers via INa,L-
induced SR Ca2+ leakage.

4.2 Ca channels

In response to membrane depolarization, voltage-gated
calcium (Cav) channels activate and mediate extracel-
lular Ca2+ influx into the cytosol, which serves as the
second messenger of electrical signaling, initiating many
physiological processes, such as excitability, contraction
and cell death.90 The Cav1 and Cav3 groups mediate L-
type and T-type currents, respectively, and are involved
in cardiac function. Cav1 is more highly expressed than

Cav3 in ventricular myocytes, while Cav3 is mainly
expressed in SAN cells (Table 4).90 Ryanodine recep-
tors (RyRs), intracellular Ca2+ channels in the sarcoplas-
mic/endoplasmic reticulum (SR/ER), control the rapid
release of Ca2+ from SR/ER into the cytoplasm to initiate
CICR, a key event that triggers skeletal and cardiac mus-
cle contraction.91,92 Among three mammalian isoforms
(RyR1, RyR2, and RyR3), RyR2 is primarily expressed in
cardiacmuscles, 91–93 and higher expressed in the ventricle
(Table 4).37,38

4.2.1 Cav1.2

Cav1.2 channels, located in T-tubules of ventricular
myocytes (Figure 1A), are assumed to be themajor subtype
of Cav1 channels that mediate the entry of Ca2+, which is
required for the AP plateau (Figure 3A), and EC coupling,
triggering activation of RyR2 and initiating CICR (Figure
1A).90
The Cav1.2 complex consists of one pore-forming sub-

unit α1c and the auxilary subunits α2δ and intracellular β
(Figure 3B).94,95,96–98 The full-length cryo-EM structure of
cardiac Cav1.2 has not been revealed, while skeletal Cav1.1
was the first Cav channel to have its full-length cryo-EM
structure reported with an overall resolution of 4.2 and 3.6
Å.99,100 The structure of Cav1.1 provides a structural tem-
plate for the Cav1 family and comparisons for molecular
interpretations of the functions and disease mechanisms
between eukaryotic Cav and Nav channels.99,100 Because
the α1 subunits from Cav1.1 and Cav1.2 are highly homolo-
gous, Cav1.2 modeling could be based on the Cav1.1 struc-
ture for analyzing the molecular determinants of open-
ing and closure of Cav1.2.94 Voltage-independent upward
movement or voltage-dependent movement of S4 seg-
ments maintain the opening or closure of the gating,
respectively.94 The voltage sensor S4-S5 are coupled with
pore S6 segments by directly interacting with a ring of
small residues, which are regarded as interesting sites
for studying electromechanical coupling.94 In addition,
in complex with channel-selective agonists/antagonists,
structural analysis helps to elucidate their specific bind-
ing sites and reveal the structural reasons why similar
types of molecules (such as nifedipine and Bay K8644)
exert opposite antagonist and agonist effects on Cav1.1
channels.20 The auxiliary subunits α2δ and β generally
modulate the surface expression and biophysical kinetics
of α1c.97,98 Recent studies have raised a new function for
β subunits in hearts: β subunit binding to α1c might be
dispensable for Cav1.2 trafficking at normal physiological
conditions but is essential for the augmentation of Ca2+
current and cardiac contractile response to β-adrenergic
stimulation.96
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F IGURE 3 Cardiac voltage-gated L-type calcium channel (Cav1.2) and Ryr2 structure, accessory proteins and signaling. (A) The
contribution of inward current ICaL (upper) mediated by Cav1.2 to action potential (AP) Phase II (lower). (B) The L-type calcium channel
Cav1.2 is formed by the interaction of the pore-forming α1 core subunit with auxiliary subunits, including α2δ and intracellular β. The α1
subunit consists of four homologous domains with a voltage sensor S4 and pore-forming S5 and S6 in each domain and connected by
cytoplasmic linkers (ICLI-II, ICLII-III, and ICLIII-IV). The β subunit is localized exclusively at the cytosolic face of the channel and its GK domain
interacts with the α-interaction domain (AID) of the α1 subunit I-II loop to mediate Cav1.2 trafficking by antagonizing ER retention signals.
The α2δ subunit binds to extracellular regions, including domain III of the α1c subunit. δ is linked with a larger α2 polypeptide via a disulfide
bridge. The α1 subunit interacts with several proteins, receptors and subunits of other channels. The amino-terminal domain NTD, ICLI-II and
carboxyl-terminal domain (CTD; LZ motif) of Cav1.2 interact with AKAP. PKA and β2-AR CTD also bind to AKAP. PP2A binds to site next to
S1928 in the CTD. CaM binds to the IQ motif. KChIP2, an accessory subunit of Kv4.3, directly interacts with the inhibitory module at the NTD
of the Cav1.2 α1 subunit. The Cav1.2 β subunit interacts with the AID of the α1 subunit I-II loop. The β-AR/cAMP/PKA, β1-AR/CaMKII, TrkB
R/CaMKII signaling pathways are involved in modulating the expression and function of Cav1.2 in the heart. PKA-related phosphorylation
pathway (red arrows) and CaMKII-related phosphorylation pathway (purple arrows). (C) RyR2 is a large, square, homotetramer in the
configuration of a four-leaf clover. Each subunit of the homotetramer consists of a large cytosolic domain (called the foot structure), which is
responsible for interaction with protein modulators, and CTTD. Four identical carboxyl-terminal transmembrane domains (CTTDs) are
responsible for forming the central ion-conducting pore. RyR2 is located beneath Cav1.2 in T-tubules and is connected with α1 subunit of
Cav1.2 by sorcin. In addition, CaM and FKBP12/12.6 also interact with the cytosolic foot structure. Kinase (PKA, CaMKII) and phosphatase
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In addition, several accessory proteins interact with
the α1c subunit of Cav1.2 and regulate Cav1.2 expres-
sion and function (Table 6). Cav1.2 is involved in the
β-AR/cAMP/PKA signaling pathway95 (Figure 3B). β1-
AR/cAMP signaling is diffusive and global, while β2-
AR/cAMP is relatively localized.95 The CTD of β2-AR not
only binds to A-kinase anchoring protein (AKAP) but
also directly binds to Cav1.2 to mediate local signaling via
the cAMP-dependent PKA pathway and facilitate local-
ized cAMP signaling.95 The PKA-dependent phosphory-
lation of amino acids in the CTD of the α1c subunit has
been demonstrated to be decisive for the β-AR-mediated
upregulation of cardiac ICaL.95,101 In addition, some amino
acids in the CTD of the α1c subunit are targets of the β1-
AR/CaMKII signaling pathway.95 In parallel with the roles
of the β-AR system, BDNF-TrkB binding regulatesmyocar-
dial Ca2+ cycling and EC coupling by triggering CaMKII-
dependent signaling.102
GOF variants in CACAN1C (Table 5) cause timothy syn-

drome (TS), which is a multisystemic disorder includ-
ing LQTS8, autism, and dysmorphic features.103 Com-
plete loss of inactivation kinetics leading to a prolonged
calcium influx during action potentials,103 or left shift
in the activation curve leading to increase in window
currents104 could result inGOFof theCav1.2 channel. Vari-
ant E1496K slowed inactivation, causing isolated LQTS8
without TS.105 On the other side, LOF variants (Table 5)
which disruption of protein trafficking,106,107 gating,108 or
Ca2+ permeation108,109 account for genotyped BrS cases.
These results implicated the importance of the Cav1.2-
mediated calcium signaling in human physiology and
heart disease.

4.2.2 Ryr2

The near-atomic-resolution cryo-EM structure of RyR2
from porcine hearts has been recently revealed in both
the open and closed states,110 or with key modulators,111,112
offering the opportunity to characterize the roles of the
structural elements and modulators during gating shifts.
Each subunit of the homotetrameric RyR2 consists of a
large cytosolic domain,which is responsible for interaction
with protein modulators, linking gap between the SR and
transverse tubule (T-tubule) membranes, and carboxyl-
terminal transmembrane domain (CTTD), four identical
of which are responsible for forming the central ion-
conducting pore (Figure 3C).110 The cryo-EM structures of

the RyR2 complex and the abovementioned Cav1.1 estab-
lish a solid foundation for future revealing the Cav1.2 com-
plex, the complex formation betweenCav1.2 andRyR2, and
excitation-contraction coupling.
Several proteins (Table 6) interact with the cytosolic

region of Ryr2 to regulate its open probability. For exam-
ple, CaM91 inactivates Ryr2 during diastolic cytosolic cal-
cium elevation, thus playing an important role in Ca2+
alternans.113 The CaM binding sites on cytosolic sites of
Ryr2 will be shifted and dependent on Ca2+ concentration
binding to CaM.112 Enhancement of CaM function pro-
motes, whereas impairment of CaM function suppresses
Ca2+ alternans.113 Several enzymes, such as PKA, CaMKII,
PP1, and PP2A, interact with Ryr2 and exert phosphoryla-
tion/dephosphorylation effects on Ryr2.114 The hyperphos-
phorylation of RyR2 by PKA114 and/or byCaMKII115 causes
abnormal Ca2+ leakage from the SR. RyR2 is also cou-
pled to proteins at the luminal SR surface, such as type
2 calsequestrin (CASQ2),116,117 which increases the open
probability and facilitates high rates of Ca2+ efflux during
systole.116
Moreover, RyR2 also interact with other channels. RyR2

is located beneath most Cav1.2 (within ∼12 nm) in T-
tubules and is connected with the α1 subunit of Cav1.2
by sorcin, which is a Ca2+-binding protein reducing the
open probability of Ryr2, bridging the gap between SR and
the sarcolemma for interchannel cross-talk.118 In addition,
trimeric intracellular cation (TRIC) channels represent
a recently discovered class of cation channels that were
first identified in rabbit skeletal muscle in 2007.119 TRIC-
A is a subtype that is abundantly expressed in excitable
cells, having slightly higher permeability for K+ than Na+
and mediating counterion movements by releasing Ca2+
from the SR.120 The cryo-EM structure of the symmetri-
cal trimer TRIC-A has been reported.8 Moreover, TRIC-
A also directly interacts with the cytosolic region of RyR2
via its carboxyl-terminal tail domains (Figure 3C) to mod-
ulate intracellular Ca2+ homeostasis and thereby facili-
tates Ca2+ release from the SR.121 The open probability and
current amplitude of TRIC-A are increased by a positive
shift in the MP8 but are blocked by exposure to a high-
concentration Ca2+ bath on the luminal side during the
resting state.8,121 TRIC-A gene deletion decreases the sen-
sitivity of individual RyR channels to β-AR/PKA stimu-
lation, eventually resulting in Ca2+ release impairment122
and irregular ECG.121 These studies indicate that TRIC-A
promotes the release of Ca2+ from the SR via RyR2 and
maintains RyR2 function at low Ca2+ to neutralize the

(PP1 and PP2A) exert phosphorylation/dephosphorylation effects on Ryr2. Type 2 calsequestrin (CASQ2) interacts with the luminal surface of
Ryr2 to increase the open probability. In addition, class A of trimeric intracellular cation (TRIC-A) channels on the SR membrane directly
interact with the cytosolic region of RyR2 (Figure 1B) via its carboxyl-terminal tail domains to facilitate Ca2+ release from the SR
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TABLE 5 Mutations in cardiac Ca2+ channels subtypes associated with congenital syndromes

Subtypes

Encoding
subunits
gene

Congenital
syndrome

Gain or
Loss of
function

Mechanisms
underlies the
phenotype Examples of variants

Cav1.2 CACNA1C TS GOF Gating
dysfunction

G406R103: leads to a prolonged
calcium influx during action
potentials caused by complete loss
of voltage-dependent channel
inactivation.

G419R104: displays a 4-fold increase in
the peak current density and a left
shift in the activation curve
resulting in increase in window
currents.

Isolated LQT8
without causing
TS

GOF Gating
dysfunction

E1496K105: slows inactivation and thus
might contribute to prolonged
action potential duration.

BrS3 LOF Trafficking
defects

A39V,106T320M/Q428E107

Gating defects V2014I108: significantly reduces
conductance of the calcium
channel at potentials between 0
and +30 mV during activation,
shifts half-inactivation voltage to
more negative potentials.

Permeation
disruption

E1115K108,109: destroys the calcium
selectivity, and instead converts the
mutant channel into a channel with
a marked increase in
sodium-mediated inward currents
and potassium-mediated outward
currents.

Cav1.3 CACNA1D SANDD LOF Gating defects 403_404insGly254

Cav3.1 CACNA1G Bradycardia,
atrioventricular
conduction
block

LOF NR NR

RYR2 RYR2 CPVT GOF Gating defects R176Q125: increases probability of
channel opening, increases
incidence of spontaneous Ca2+

oscillations thus causing
susceptibility to CPVT.

Channel
instability

S2246L124: disrupts the interdomain
interactions after channel
activation and increases channel
opening.

CRDS which could
cause SCD
without CPVT

LOF Gating defects D4646A126: impairs the cytosolic Ca2+

activation and diminishes the
luminal Ca2+ activation of single
RyR2 channels; suppresses
catecholamine-induced SR Ca2+

release and produces systolic
arrhythmogenic abnormalities
without affecting expression.

TS, Timothy syndrome; SANDD, sinoatrial node dysfunction and deafness syndrome; LQTS, long QT syndrome; CPVT, catecholamine-induced ventricular
arrhythmias; SCD, sudden cardiac death; CICR, Ca2+-induced Ca2+-release; CRDS, Ca2+ release deficiency syndrome; GOF, gain-of-function; LOF, loss-of- func-
tion.
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transient luminal negative charge caused by Ca2+ release
in cardiomyocytes.
GOF variants in RyR2 (Table 5) are implicated in ven-

tricular tachyarrhythmias, including type 1 of CPVT type
(CPVT1), which is characterized by stress-induced ventric-
ular tachycardia in the absence of a structurally abnor-
mal heart.123 GOF variants could induce channel instabil-
ity by disrupting the interdomain interactions after chan-
nel activation,124 or increase the open probability of RyR2
and pathological SR Ca2+ release,115,125 and thus caus-
ing susceptibility to CPVT. On the other hand, RyR2
LOF variants have been identified among survivors of
cardiac arrest without exhibiting the CPVT phenotype
and further regarded as RyR2 Ca2+ release deficiency
syndrome (CRDS) via an EAD-mediated mechanism.126
Ito, ICaL, and INCX were alternatively increased, although
catecholamine-induced SR Ca2+ release was suppressed in
LOF variantD4646A, thus causingAPwaveform alteration
and finally enhancing the propensity for arrhythmogenic
EADs.126
In CPVT cardiomyocytes with the RyR2 variant R176Q, a

viral vector containing a CaMKII inhibitor (autocamtide-
2-related inhibitory peptide, AAV9-GFP-AIP) completely
suppressed the abnormal increase in spontaneous Ca2+
transients, suggesting that CaMKII suppression represents
a potential therapy for CPVT.127 AKN93-mediated increase
in RyR2 Ca2+ release in cardiomyocytes was found to be
due to disruption of the CaM-RyR2 interaction rather than
inhibition of CaMKII.64 Gene transfer of CaM, exhibiting
a slower Ca2+ dissociation rate and longer RyR2 refrac-
toriness, alleviated arrhythmias in a CASQ2-associated
CPVT mouse model.128 Previous studies have illustrated
that flecainide prevents ventricular tachyarrhythmia in
patients with CPVT by blocking of the TTX-sensitive Nav
channel.41 Recent research has shown that the antiar-
rhythmic effect of flecainide mainly relies on blocking
RyR2 channels but not TTX-sensitive Nav channels.129 The
secondary amine on the piperidine ring in flecainide is nec-
essary for its activity in RyR2 channels.129 In general, the
regulation of RyR2 modulators (RyR2-CaM interaction)
represents an important therapeutic target for regulating
cardiac alternans in cardiac ventricular arrhythmia.

4.3 Kv channels

Cardiac Kv channels play prominent roles in resting poten-
tial maintenance, AP repolarization, and the AP plateau
phase.130,131 For example, Kv1.4/Kv4.3, Kir2.1, Kv11.1, and
Kv7.1 are highly expressed in the ventricular myocytes
(Table 7).37,38 Kir2.1 contributes to the maintenance of the
resting potential in Phase IV, while Kv4.3 and Kv1.4 con-
tribute to repolarization, specifically the notch (the tran-

sient repolarization period) of the AP130,131. Of particu-
lar relevance to the AP plateau is the delayed rectifier
current (IK), which includes rapid (IKr) and slow (IKs)
components that are governed by distinct channel sub-
types Kv11.1 and Kv7.1, respectively.130,131 Dysfunction of
cardiac Kv channels can result in APD changes and the
subsequent development of LQTS, SQTS, or other related
life-threatening ventricular arrhythmias or sudden cardiac
death.1,132

4.3.1 Kv4.3

The rapidly activated and inactivated transient outward
potassium current (Ito) contributes to early ventricular AP
repolarization and underlies the initial “notch” before the
AP plateau phase in humans and other larger mammals
(Figure 4A).130 Ito, fast and Ito, slow are the two distinct com-
ponents of Ito, and aremediated byKv4.3 andKv1.4, respec-
tively, in humans and by Kv4.2/Kv4.3 and Kv1.4, respec-
tively, in rodents.1 Unlike in human andmammalianmod-
els, ventricular AP in rodent models exhibits fast repo-
larization without a plateau phase due to Ito rather than
IKr playing the major role in repolarizing currents.1,130,133
The significant prolongation of repolarization duration,
which is affected more by a reduction in Ito than a reduc-
tion in IKr, underlies the mechanism for heart failure with
preserved ejection fraction (HFpEF, typical heart failure
symptoms with a normal ejection fraction)-related ven-
tricular arrhythmias and sudden cardiac death in rodent
models.134 A rabbit ventricular APD could be shortened,
and its plateau could be lost whenmouse Ito currents were
integrated.1 Thus, differences in Ito densities in different
species contribute to variations in the waveforms of action
potentials.1,130
Kv4.3 is composed of one pore-forming α subunit and

K+ channel interacting protein 2 (KChIP2) β subunit130,133
and is regulated by several accessory protein interac-
tions (Figure 4B) (Table 8). A reduction in Kv4.3 expres-
sion and Ito, fast in heart disease, is associated with
β-AR/CaMKII-mediated activation133 and β-AR/NF-kB-
mediated activation.135 Moreover, an increasing number
of studies have speculated that Kv4.3 and Nav1.5 not only
regulate each other’s functions, but also have the abil-
ity to interact with each other.136,137 Nav1.5 and Kv4.3
reside is visualized in close proximity (<40 nm) at the
membrane.136 Overexpression of Kv4.3 protein signifi-
cantly decreased AP upstroke and Nav1.5 current density
without affecting Nav1.5 total protein expression and its
kinetic properties.137 In addition to auxiliary subunit of
KchIP2, Navβ1 subunit also associatedwithKv4.3138,139 and
regulated the INa/Ito balance by yielding an increase in INa
and a decrease in Ito136.
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F IGURE 4 Cardiac voltage-gated potassium channel structure, accessory proteins and signaling. (A) The contribution of the outward
current Ito (upper) mediated by Kv4.3 to action potential (AP) Phase I (lower). (B) Kv4.3 is formed by the α subunit and accessory protein K+

channel interacting protein 2 (KChIP2, β subunit). A tripartite complex including the anchoring protein SAP97 and kinase CaMKII is formed
at the Kv4.3 carboxyl-terminal domain (CTD) via a PDZ domain-binding motif Ser-Ala-Leu (SAL). The channel current is modulated by
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Mutations inKCND3-encoded Kv4.3 or SCN5A-encoded
Nav1.5 further showed the functional relationship between
Kv4.3 and Nav1.5.136 GOF and LOF mutations in KCND3
(Table 9) respectively decreased and increased the Nav1.5
current, respectively.136 On the other hand, SCN5A LOF
mutations increased Ito by facilitating Kv4.3 cell surface
expression or by slowing its steady-state inactivation.136
Thus, during the early phase of ventricular AP repolariza-
tion, a fine balance may exist between INa and Ito. GOF
mutations in theKCND3 contributes to increase of peak Ito
via efficient protein trafficking and gating, resulting in the
imbalance of those two currents, the accentuation of the
AP notch, and the development of BrS and/or early repo-
larization syndrome.136,140–142

4.3.2 Kv7.1

The slow delayed rectifier current, IKs, is mediated by
KCNQ1-encoding Kv7.1 and plays an important role in
regulating the repolarization phase that terminates car-
diac APs and thereby ends contraction (Figure 4C). In
the heart, the KCNE1, encoding the auxiliary β-subunit
KchIP2, interacts with Kv7.1 α chains and affects both
voltage-sensing S4 movement and the gate,143 making
the activation of the complex much slower than that of
Kv7.1 alone144 (Figure 4D). Cryo-EM analysis revealed
a unique feature of Kv7.1: pore opening requires lipid
phosphatidylinositol 4,5-bisphosphate (PIP2) binding dur-
ing membrane depolarization, thereby increasing cur-
rent and slowing inactivation.144 In addition, Kv7.1 is
regulated by accessory protein interactions (Table 8), β-
AR/PKA-mediated phosphorylation145 and PP1-mediated
dephosphorylation146 (Figure 4D).

Mutations in KCNQ1 (Table 9) are the leading cause
of several congenital cardiac diseases, including LQTS
and SQTS.147 LQT1, the most common genotype-positive
LQTS, is associated with LOF mutations in the KCNQ1-
encoded Kv7.1 α subunit and is often triggered by β-AR
stimulation.148 Trafficking defects,149 gating defects,150–152
or permeation disruption153 have been postulated to be the
mechanism of decreasing IKs or hindering IKs currents at
physiologically relevant membrane potentials but limiting
the upregulation of IKs by PKA activation.145 Because CaM
regulates channel gating by interacting with voltage sen-
sor domains, mutations impair CaM binding (located near
the IQmotif ofKCNQ1C-terminus) and alter both channel
assembly and gating, thus decreasing IKs current density
and contributing to LQT1.152 Thus, dysfunction of Kv7.1
caused by KCNQ or related accessory protein mutations
decreases IKs or limits the upregulation of IKs by PKA acti-
vation and then contributes to LQT1. IKs are more sensi-
tive to β-AR stimulation than IKr.132 Enhancement of IKs by
increasing Kv7.1 phosphorylation to shorten the APD dur-
ing rapid heart rates might represent an effective antiar-
rhythmic strategy. LOFmutations inKCNE1 are associated
with LQTS5.154,155 On the other hand, SQTS2 is associated
with GOF mutations in KCNQ, which could enhance IKs
via acceleration of the activation kinetics or prolongation
of deactivation time constant156,157

4.3.3 Kv11.1

IKr is mediated by Kv11.1, a VGIC encoded by the KCNH2
gene (also known as the human ether-a-go-go related gene,
hERG). In cardiac cells, IKr is rapidly activated during
Phase 0 of the AP, followed by rapid inactivation during

CaMKII and NF-kB activation, which are themselves mediated by β-AR stimulation. (C) The contribution of the outward current IKs (upper)
is mediated by the delayed rectifier potassium channel (Kv7.1) to AP Phase II and III (lower). (D) Kv7.1 is formed from the α1 subunit, which
consists of four homologous domains with avoltage sensing S4 segment and pore-forming S5 and S6 segments in each domain. Auxiliary
subunit KCNE1 interacts with residue V141 of S1 in KCNQ1 to allow the complex only open from a fully activated S4 conformation by altering
the VSD S4-to-gate coupling, and also interacts with F339 in KCNQ1 to reduce the open probability at negative voltages. PIP2 binds to the
S4-S5 linker during membrane depolarization. CaM binds at the Kv7.1 C-terminus, where it can compete with and replace PIP2. CaM also
interacts with the Kv7.1 voltage sensor domain. Kv7.1 is modulated by the β-AR/PKA pathway, which phosphorylates Kv7.1 at its
amino-terminal domain (NTD; S27). A-kinase anchoring protein 9 (AKAP9) interacts with the LZ motif in the Kv7.1 CTD and is anchored by
PKA and PP1. (E) The contribution of the outward current IKr (upper) mediated by the inwardly rectifying potassium channel (Kv11.1) to AP
Phase II and III (lower). (F) The α subunit of Kv11.1 contains six transmembrane helices, with S4 acting as the voltage sensor and S5-S6
forming the pore. The KCNE β subunits KCNE1 and KCNE2 interact with Kv11.1. The adaptor protein 14-3-3ℇ interacts with Kv11.1 in the NTD
and CTD. β1-AR competes with Kv11.1 for association with 14-3-3ℇ proteins. β-AR/PKA, α1-AR/PKC, and AT1/PKC are involved in Kv11.1
channel modulation. PKA and PKC phosphorylate the α1 subunit (red arrows). (G) The contribution of the strong inward rectifier potassium
current IK1 (upper) mediated by the Kir2.1 channel to AP Phase 0, III, and IV (lower). (H) Kir2.1 channels have two membrane-spanning
domains; a p-loop that forms the ion selectivity filter and intracellular N- and C-terminal domains. The CTD of Kir2.1 directly associates with
AP1, AKAP79, and SAP97. SAP97 also interacts with β1-AR and to modulates the effect of β1-AR on Kir2.1. AKAP79 can bind with SAP97 and
also anchor kinases (PKA, PKC), and phosphatase (PP2B) close to Kir2.1phosphorylation sites. The NTD of Kir2.1 directly interact with,
caveolin-3 which regulates Kir2.1 trafficking and surface expression. PIP2 binds to both the CTD and the NTD to modulate channel gating
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depolarization in Phase 0-II. Then, it quickly recovers from
inactivation and reopens during the initial Phase III repo-
larization, followed by slow deactivation that permits sus-
tained Phase III and early Phase IV of the AP (Figure
4E).158 Kv11.1 channels exhibit longer-lasting and higher-
amplitude tail currents than have been found for other out-
ward current channels that contribute to cardiac AP repo-
larization and duration.159
Kv11.1 is composed of one pore-forming α subunit and

two β subunits (MinK and MiRP1 encoded by KCNE1 and
KCNE2) (Figure 4F). The structure of the hERG chan-
nel with depolarized voltage sensors and open pores was
revealed using cryo-EM.19 A small central cavity includes
extended pockets, which is specific to Kv11.1, explaining
the notable susceptibility of this channel to a wide range of
drugs.19 This high-resolution structure of the hERG chan-
nel in the open state also provided the opportunity to inves-
tigate the potential mechanisms for the state-dependent
blockade of hERG by drugs.22
Kv11.1 is regulated by accessory protein interactions and

signaling pathways (Figure 4F) (Table 8). Phosphoryla-
tion of Kv11.1 could be induced by the stimulation of β-
AR/cAMP/PKA or G protein-coupled receptors (such as
angiotensin II receptor AT1 and the α-adrenoceptors)/PKC
signaling pathway, resulting in a decrease in IKr.158
LOF mutations in Kv11.1 (Table 9) are characterized

by reduced IKr and are associated with LQTS2, perhaps
due to the disruption of the α subunits responsible for
channel synthesis/translation, a reduction in intracellular
transport or the accessory protein interactions required for
channel trafficking on the membrane, or the impairment
of channel gating structure as well as permeation.160–162
Among those mechanisms, trafficking defects is the dom-
inant one, responsible for approximately 80-90% of LQT2
by decreasing the folding efficiency of Kv11.1 proteins
and increasing their retention in the endoplasmic retic-
ulum (ER).160–162 Comprehensive analysis of hundreds
LQT2-linked mutations in four Kv11.1 structural domains
and found that deficient protein trafficking is the domi-
nant mechanism for all domains except for the distal C-
terminus. Comprehensive and accurate analysis of muta-
tions between normal and abnormal trafficking across
multiple structural domains would aid in understanding
the deleterious nature of these mutations.162,163 Increas-
ing high-throughput assays are developing and as alterna-
tive to traditional western blot assay to collect functional
data.163 In addition, LOF mutation in KCNE2 is associ-
ated with LQTS6, a rare type of LQTS.155,164 The allosteric
modulation (Table 10) of Kv11.1 was investigated to explore
methods of alleviating channel dysfunction and increasing
IkKr current and may represent a useful new approach for
treating inherited and drug-induced LQTS2.165

SQTS1 is caused by GOF mutations (Table 9) in the
Kv11.1 channel and is the most prevalent SQTS subtype.
Mutations that impair the inactivation of Kv11.1166 might
explain the lack of efficacy ofmany class III antiarrhythmic
drugs (such as sotalol and ibutilide167) in some patients.
Interestingly, hydroquinidine, aclass I antiarrhythmic drug
inhibiting the Nav1.5 channel, could also block Kv11.1,
significantly intervene with ventricular tachyarrhythmia
induction167 and prolong the QT interval in SQTS patients
with Kv11.1 mutations.168 In addition, ivabradine, as a
class 0 antiarrhythmic drug inhibiting hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels, could
also block IKr currents by binding in the vicinity of the
lipid-facing surfaceM651 residue,which is directly coupled
to the conformational dynamics of residues in the pore
helices,22,169 and exert antiarrhythmic effects in SQTS1
hiPSC-CMs with the N588K mutation.170 This represents
one important method by which the efficacy of drugs used
for SQTS treatment can be evaluated in hiPSC-CMs with
mutant Kv11.1 or multiple ion channels to predict effects in
SQTS patients.171 It would be worthwhile to further exam-
ine the effects of traditional inhibitors and to develop novel
specific inhibitors to expand the clinical options available
for these patients.

4.3.4 Kir2.1

The strong inward rectifier potassium current IK1, primar-
ily mediated by isoforms of the Kir2.x family (KCNJ2-
encoding Kir2.1/KCNJ12-encoding Kir2.2), plays a critical
role in stabilizing the resting MP and maintaining the
duration of the terminal Phase III repolarization in human
ventricle myocytes.38 Kir2.1 is more dominant than Kir2.2
in human ventricle myocytes38 under resting conditions,
andKir2.1 is in an open state and is permeable toK+. Kir2.x
is abundantly expressed in ventricle and atrial myocytes,
but is absent in SAN cells, allowing a relatively depo-
larized MP and maintaining pacemaker activity in SAN
cells.37,172 In contrast to adult ventricular CMs, a substan-
tial lack of IK1 in hiPSC ventricular CM is regarded as one
mechanistic contributor to the immature electrophysiolog-
ical properties of spontaneous AP. Artificial expression of
Kir2.1 might overcome this limitation, render the electro-
physiological phenotype to be mature, and ablate proar-
rhythmic AP traits.173
The structure of Kir channels is relatively simple in com-

parison with Nav, Cav and the members of the voltage-
gated Kv channels. Each subunit of the Kir2.1 tetramer
has only twomembrane-spanning helices (S1-S2) but with-
out the four membrane helices that form the voltage
sensor in Kv channels.174 Kir2.1 is regulated by acces-
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sory protein interactions and signaling pathways (Figure
4F) (Table 8). Newly synthesized Kir2.1 could be sent to
specific membrane subdomains for functional expression
by Golgi according to a recognition site formed by the
residues in the CTD and amino-terminal domain (NTD)
and interaction with adaptor protein complex 1 (AP1).174
AKAP79 directly interacts withKir2.1 through the intracel-
lular N andC domains to promote anchoring other kinases
(PKA, PKC) and close to Kir2.1 phosphorylation sites.175
PIP2 is an essential cofactor for activating Kir2.1 chan-
nel function.176,177 In addition, Kir2.1 closely interacts with
Nav1.5 (Figure 1)178,179 and shares a coupled forward traf-
ficking process with Nav1.5.179 Normal trafficking of Kir2.1
could enhance the functional expression of Nav1.5 com-
pared to Nav1.5 alone, while trafficking-deficient variants
disrupt Kir2.1 functional expression at the membrane and
also exert a DN effect on Nav1.5 functional membrane
expression. Thus, in addition to controlling resting MP,
IK1 could also modify Nav1.5 function and cell excitabil-
ity. In turn, suppression of Nav1.5 by the CaMKII inhibitor
KN93178 or by trafficking-defective Nav1.5 variants could
trap Kir2.1 channels,180 thus decreasing IK1 in addition to
INa.
Most KCNJ2 LOF mutations (Table 9) are associated

with type 1 Andersen-Tawil syndrome (ATS), in which
LQTS7 is the primary cardiac manifestation.181,182 IK1
reduction could prolong the terminal phase of the car-
diac AP and contribute to the development of DAD and
ventricular arrhythmias in ATS.183 LOF mutations could
suppress IK1 via impairment of PIP2 gating,176,182 mem-
brane trafficking,174,179 or potassium conduction.184,185 On
the other hand, GOF mutations in KCNJ2 (Table 9) cause
SQT3.186,187

5 CARDIOVASCULAR SAFETY
EVALUATION

5.1 Drug-induced cardiovascular
arrhythmias

In addition to gene mutation-induced congenital arrhyth-
mias, drug therapy could exert side effects on cardiac
VGIC and increase the risk of life-threatening arrhythmias,
such as drug-induced LQTS (diLQTS) and torsades de
pointes (TdPs) that ismorphologically distinctive polymor-
phic ventricular tachycardias with short-long-short cycles
patten.3,4,188 LQT on the surface electrocardiogram corre-
lates with ventricular AP repolarization prolongation at
the cellular level.189 Drugs can induce AP repolarization
prolongation by inhibiting IKs, or, more frequently, IKr.
Due to the robustness of IKr, defective IKs by blockade of
Kv7.1 might produce little AP prolongation in humans and

other large mammals190 but might further prolong AP and
induce LQT1when challengedwith β-AR stimulation190 or
reduce repolarizing currents by drugs, especially IKr.191,192
Kv11.1 is recognized as a predominant target for diLQTS

and TdPs due to its intrinsic arrhythmogenic activity,
although it is one of the interests of the development of
antitachyarrhythmia drugs. The list of drugs that inhibit
Kv11.1 includes not only includes antiarrhythmics (such
as dofetilide) but also antipsychotics (such as Pimozide),
gastroprokinetic agents (such as cisapride), antihistamines
(such as astemizole), and other drug classes.19 Among all
potassium channels, Kv11.1 is unique in having a small
central cavity with extended pockets so that it is suscep-
tible to direct blockade by a wide range of drugs.19 In addi-
tion, some drugs could exert inhibitory effects on Kv11.1
trafficking193 or coexisting effects of channel blocking and
trafficking defects, thus causing diLQTS and TdPs.194
Due to the increasing attention that diLQTS has

attracted from clinics, drug developers, and pharmaceuti-
cal regulators,3 cardiovascular safety concerns are themost
common reasons for the withdrawal of approved drugs
from the market or the termination of potential drugs dur-
ing preclinical or clinical trials.3 For example, the noncar-
diovascular drug cisapride has been withdrawn from the
US market because it produces a modest increase in the
QT interval in children, causing TdP;195 the drug exerts
this effect by inhibiting Kv11.1.196 Since the outbreak of the
coronavirus disease 2019 (COVID-19), many repurposed
drugs are proposed as potential therapies for this disease;
their risks, causing LQTS or TdPs is being evaluated.197

5.2 Development of drug safety
evaluation guidelines

Since the guidelines, including the International Coun-
cil for Harmonisation (ICH) S7B (nonclinical) and E14
(clinical),198 were announced in 2005, Kv11.1 channel
safety screening data of new drug candidates before begin-
ning clinical trials has become a great need in the pharma-
ceutical industry.199 However, promising drug candidates
might be eliminated by the guidelines because variations
in the potency of Kv11.1 blocking could result from vary-
ing patch clamp protocols and a poor ability to statistically
quantify experimental variability.200 Moreover, promising
drugs might be Kv11.1 blockers but exceptions in terms of
causing TdPs or arrhythmia. Some also block other cardiac
currents201 (Table 11) necessary for TdPs development but
do not obviously prolong AP repolarization.202–204 Thus,
in early multichannel studies, a model named multiple
ion channel effects (MICE), based on the concentration-
dependent responses of Kv11.1, Nav1.5, and Cav1.2 cur-
rents to torsadogenic and nontorsadogenic drugs, was
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proposed to bemore effective than Kv11.1 assays in predict-
ing TdPs.205,206 Although the current paradigm has largely
kept potential torsadogenic drugs off the markets, but a
new cardiac safety paradigm with comprehensive model-
informed approach rather than exclusively by potency of
Kv11.1 block and byQTprolongation is urgent to adopted to
improve the deficiencies of current paradigm, more specif-
ically discern a real proarrhythmic risk of promising drugs,
and enhance the development of effective and safe prod-
ucts or therapeutics.6
In 2013, several organizations formed a team to develop

the Comprehensive In Vitro Proarrhythmia Assay (CiPA)
initiative,6 a new paradigm developed with the goal of
presenting a deeper understanding of the mechanism of
TdPs and improving the assessment of the proarrhyth-
mic effects of potential drugs. It is driven by mechanisti-
cally based in vitro assays of drug effects on multiple car-
diac channels coupled in silico reconstruction of cardiac
AP, and comparison of predicted and observed responses
in human-derived cardiac myocytes. Twenty-eight drugs
with well-characterized three torsadogenic risk groups
(Table S3) have been selected and considered as test cases
to build/calibrate model for testing and validation of in sil-
ico and stem cell CIPA models.207 Several working groups
are involved in developing the CiPA:

1. The ion channel group is developing voltage-clamp
protocols by MPC or APC for several key cardiac ion
channels. It is believed that at least six ion chan-
nels are involved in cardiac APs: Nav1.5, Kv4.3, Cav1.2,
Kv11.1, Kv7.1, and Kir2.1.208 A study evaluated the pre-
dictive ability of these six ion channels using APC
and showed that four ion channels provided good
predictions, whereas the analysis of three channels
wrongfully predicted one high-risk drug to be safe.209
Improved systematic approaches for accurately estimat-
ing the potency and safety margins are required.200
Increasing APC-based assays have been explored in
Kv11.1,200 Nav1.5,85 Cav1.2,210 Kir2.1,211,212 Kv7.1,212 and
Kv4.3212 to improve the evaluation strategies.

2. The in silico group is building computer models to
reconstruct electrophysiological activities and drug
effects on multiple human cardiac currents by inte-
grating experimental data within a heart cell and sub-
sequently outputting the net impact on the cellular
APDandQT interval for predicting drug-induced proar-
rhythmic risks.209 For example, by using an in silico
model, several proposed drugs against COVID-19 are
estimated to have a significant risk for LQTS; thus,
mandatory monitoring of the QT interval should be
performed among patients in use of drugs.197 In sil-
ico models are keeping updated to expand the index
for discriminating TdPs compounds213 and to satisfy a

series of general principles for the validation of proar-
rhythmia risk prediction.214 Those principles will help
shape the future important directions of more accu-
rate prediction models.214 For example, development of
better simulating models to capture the drug response
not only in normal humans but also in specific patient
populations.214 With the application of in silico mod-
eling, machine learning could identify cellular electro-
physiological phenotypes associated with patients who
has certain cardiac diseases and further predict which
patients face an elevated risk of ventricular arrhyth-
mias and sudden death.215 However, information such
as comparisons among drugs with similar chemical or
affinity profiles is not yet possible incorporated into in
an silicomodel.216 Thus, newer proarrhythmia risk pre-
diction models could be developed to aid in decision
making.216 For example, a computational pipeline was
recently developed to predict Kv11.1 blocker proarrhyth-
mic risk fromdrug chemistry and distinguish drugs that
have similar chemistry and effects on the AP and QT
interval but different proarrhythmic risk levels.216

3. The myocyte group used iPSC-CM assays to evaluate
the in vitro and in silico assay results.217 Native human
cardiomyocytes are ideal but with difficulties to obtain,
maintain in long-term culture.2 Native cardiomyocytes
from different species have variations in the waveforms
of APs and drug responses due to differences of potas-
sium currents densities.1,130 Rodent is not an appropri-
ate specie for modelling human repolarization due to
dominant Ito; dogs and rabbits are relative closely to
human due to the major role of IKr in repolarization.218
Thus, the need for proarrhythmia evaluation in pre-
clinical studies based on humanmodels is emphasized.
Currently, hiPSC-CMs have provided a perfect platform
for proarrhythmia evaluation and safety evaluation of
human cardiomyocytes in preclinical studies, and var-
ious AP parameters could be measured using high-
throughput systems.15–17,30,219

4. The clinical translation group will use clinical Phase I
ECGs to evaluate potential unanticipated effects.

In addition, evaluating the effect of compounds on the
overall APs rather than a single ion channel current has
been proposed to be a more appropriate approach.5,6 How-
ever, the more depolarized resting MP of hiPSC-CMs than
that of primary cardiomyocytes is the limitation and chal-
lenge of their use in safety evaluation. This is due to the dis-
tinct expression level of ion channels expression compared
to primary cardiomyocytes, especially the low expression
of the IK1 channel protein Kir2.1.173 Exogenous overex-
pression of the Kir2.1173,220 or electronic injection of an
IK1-like current by dynamic clamp into hiPSC-CMs221 to
compensate and thus achieve more stable AP facilitates
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clinical applications, drug discovery, and cardiotoxicity
screening. Although it is unclear when the CiPA project
will lead to new guidelines (as organizations are gener-
ally conservative when considering changes to effective
standard protocols), the CiPA initiative and other simi-
lar projects worldwide are promoting the development of
questions and answers (Q&As) to facilitate the application
of the ICH S7B and E14 guidelines.200 With the develop-
ment of these techniques, other cardiac safety liabilities,
such as dysfunction of EC coupling and contractile and
structural cardiotoxicity, may also be added to electrophys-
iological tests in the same platform to complement CiPA
for regulatory use.222,223
In general, with the development of medium- or high-

throughput test systems to produce efficient, reliable
result output and of basic knowledge of VGICs to update
the detection assay designs and analysis methods, drug
safety evaluation will receive more attention in preclinical
research. Evaluation will be conducted as early as possi-
ble to avoid further unnecessary investments in unusable
compounds during later stages of drug development.

6 CONCLUSION AND PERSPECTIVE

This review provides detailed descriptions of major ion
channels in ventricular myocytes, including their expres-
sion, structures, regulators, and contributions to normal
excitability and congenital pathology. It has been discussed
that the application basic and newly discovered knowledge
of cardiac ion channels and the continuous development
of techniques employed in studies of cardiac ion channels
can lead to more attentions to comprehensive proarrhyth-
mic risk assessment in human cardiomyocytes platform in
preclinical studies and promote development of cardiovas-
cular safety evaluation guidelines.
Recent research on potential targets of interest in car-

diomyocytes, such as TTX sensitive or TTX-insensitiveNav
and Ryr2 regulatory TRICA channels, has opened new
avenues for improving our understanding of themolecular
mechanisms of Ca2+ homoeostasis, EC coupling, and asso-
ciated cardiac disease pathogenesis. The development of a
Nav-selective inhibitor or a heart-specific Nav channel-KO
mouse model will be beneficial for further confirming the
pathological mechanism of specific Nav channels.41,43 The
selective inhibition of Nav channels may offer a potential
therapeutic target to alleviate arrhythmias during states of
Ca2+ overload.41,43 The development of hIPSC-CM, high-
throughput techniques for cellular phenotype detection
(such as Aps and contraction), computational simulation
models facilitate integration of multiple channels, achiev-
ing a comprehensive view of channelopathies as a global
phenomenon in human myocytes. Modeling of patient-

specific iPSC-CMs149,224 provides great benefit for the pre-
cision medicine treatment of congenital cardiac arrhyth-
mia and for the screening of promising or already approved
drugs to test for mutation-specific antiarrhythmic effects.
Over time, technological developments will certainly

further promote the study of an increasing number of sci-
entific questions related to cardiac physiology and pathol-
ogy and reveal additional ion channels with potential
involvement. Based on cryo-EM structures of many VGICs
in basic science, a large body of experimental and clini-
cal observations concerning VGICs has been interpreted
and summarized by the structural template.99,100 The
development of clinical and translational medicine could
be advanced by the discovery of the potential drug tar-
gets within many VGICs, as well as drugs characteris-
tics, targets-drugs interaction, and computational mod-
els for integrating and predicting information. Recently,
a novel multiscale approach has been developed to pre-
dict drug-induced arrhythmia directly based on structural
models of drug-channel interactions and kinetics by using
integrative experimental and computational modeling and
machine-learning from the atom to the rhythm in the
heart.216
For potential targets, cryo-EM structures map and clas-

sify hundreds of clinical arrhythmia variants onto all
major domains in the structure of many VGICs,18,21 reveal
the common or distinct clusters of arrythmia mutations
among different types of VGICs99,100 or different isoforms
of the same VGIC,21 provide themolecular basis for under-
standing disease mechanisms, and thus allow the develop-
ment of structure-based diagnosis and drug discovery for
arrhythmias in the future.18 For clinical or potential drugs,
the cryo-EM structure of VGIC-drug interactions provide
structural insights into the binding affinity and mecha-
nism of drugs,20,22 which is beneficial for modifying the
structure of drugs, screening alternatives or synthesizing
new compounds. For example, cryo-EM structure of Kv11.1
channel in the open state19 promotes the investigation of
the state-dependent blockade of Kv11.1 by the heart-rate-
lowering agent ivabradine,22 which could also exert antiar-
rhythmic effects in SQTS1 hiPSC-CMs with the N588K
mutation.170 The development of novel additional phar-
macological approaches (eg, activators/allosteric modula-
tors of potassium Kv11.1 and Kv7.1 channels) are needed
to counteract both congenital LQTSs, although currently
available therapies (implantable cardioverter defibrilla-
tors) have yielded good clinical responses.225 For example,
Lumacaftor, a drug already in clinical use for cystic fibro-
sis, has been demonstrated to interact with a site distinct
from where classic Kv11.1 blockers bind, thereby restor-
ing Kv11.1 trafficking defects and alleviating LQTS2.165
Polyunsaturated fatty acids (PUFAs) and their analogs N-
arachidonoyl taurine have been found to speed up Kv7.1
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channel opening and restore channel gating of many dif-
ferent mutant channels226 PUFAs and their analogs are
effective in shortening the cardiac action potential in phar-
macologically prolonged ventricular action potential and
QT interval in isolated guinea pig hearts227 and in hIPSC-
CM.228 Therefore, activators of Kv7.1 are also worth devel-
oping to treat LQT1 based on structure-function studies on
diverse IKs channel mutations. However, PUFAs analogs
vary in selectivity and different effects for Kv7.1, Nav1.5,
and Cav1.2 through nonidentical mechanisms. It is nec-
essary to determine the specific binding sites of PUFAs
analogs among normal VGICs and to further identify the
most therapeutically relevant PUFAs and PUFA analogs in
the treatment of different LQTS subtypes.Moreover, if neg-
ative allosteric modulators are used in combination with
patient-specific hIPSC-CM, drugs that have been with-
drawn from market or excluded from clinical application
due to diLQT effects may be reconsidered or even rescued
to clinical use229 after safety validation by electrophysio-
logical approaches.
In addition, site-specific and target-oriented approaches

using nanomaterials (NMs) have been increasingly applied
but might exert potential toxicity on ion channels and car-
diac electrophysiology.230,231 Maybe revealing these NM-
induced structural changes in ion channels could facilitate
the modification of bioactive NPs to optimize NM-based
drug delivery and safety.230,232
In general, in-depth studies that combine electrophysio-

logical approaches with other technologies are being used
to explore the expression, function, mechanism, and struc-
ture, and activity modulation of WT VGICs and a broad
variety of mutated VGICs, providing critical contributions
to our knowledge of the roles of VGICs in both normal and
diseased cardiac functions, thus facilitating to the discov-
ery of potential structurally and functionally guided drug
targets for themodification of channel function and for the
treatment of inherited or drug induced cardiac diseases,
providing a basis for structure- and mechanism-based per-
sonalized clinical management, prompting safety control
committees to establishmore integrated strategies for drug
screening, and enabling improved prediction of cardiac
risks to provide safer and more effective drugs for clinical
use.
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