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Abstract: Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space
power plant is established in this paper. The expressions of the cycle power output and thermal
efficiency are derived. Using numerical calculations and taking the cycle power output as the
optimization objective, the surface area distributions of three heat exchangers are optimized, and the
maximum power output is obtained when the total heat transfer area of the three heat exchangers of
the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing
the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on
the maximum power output performance are analyzed. The results show that there is an optimal
temperature of the low-temperature heat sink and a couple of optimal area distributions that allow
one to obtain the double-maximum power output. The results obtained have some guidelines for the
design and optimization of actual space power plants.

Keywords: endoreversible Carnot cycle for space; power output; area distribution; heat sink temper-
ature; performance optimization; finite-time thermodynamics

1. Introduction

Carnot [1] found that the maximum thermal efficiency (TEF) of all thermodynamic
cycles under ideal conditions is the Carnot efficiency, which provides the upper limit of TEF
for heat engines working between the temperatures of hot- and cold-side heat reservoirs.
In order to approach the actual process and reform and improve classical thermodynamics,
some scholars [2–4] established the endoreversible Carnot heat engine (ECHE) model
with only thermal resistance loss considered. The TEF limit of this model at maximum
power output (POW) was obtained, which is the CA efficiency [4]. Andresen et al. [5] first
proposed the concept of finite-time thermodynamics (FTT). Since then, many scholars have
used this theory to study different thermodynamic processes and cycles, and FTT theory
has made great developments [6–35].

Many scholars have studied the performance of the ECHE with FTT theory [36–39].
Yan [36] obtained the basic optimization relationship between the POW and TEF of the
ECHE. Sun et al. [37,38] replaced the finite-time constraint with the finite-area constraint,
took a specific PO as the optimization objective and obtained the relationship between the
principle of the minimum heat transfer (HT) area and the area characteristics of the steady-
flow heat engine. Schwalbe and Hoffmann [39] introduced stochastic thermodynamics into
the study of performance optimization of the ECHE.

Compared with a ground-based power plant, a space power plant presents a series of
novel features. For example, due to the relatively low temperature of the space environment,
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the waste heat generated by a low-temperature heat sink (LTHS) must be dissipated to
the environment through a special radiator panel to increase the POW of the plant. Many
scholars have studied space power plants with classical thermodynamics [40–44]. The
mass and size of the heat exchangers (HEXs) of space power plants have major impacts
on the feasibility of the devices. Therefore, many scholars have optimized the mass and
size of the HEX as well as the performance of the entire space power plant. Barrett [40–42]
studied the HEX model of a closed Brayton cycle (CBC) in nuclear space plants. Toro and
Lior [43] analyzed the effects of the main operating parameters of the CBC for space power
plants on the relationships among the POW and TEF and the radiator panel area ratio
under different working fluid (WF) space conditions. Liu et al. [44] optimized the CBC for
space power plants and found that the overall mass of the power plant could be reduced
by optimizing the core parameters of the plant components.

Some scholars have also studied space power plants with FTT theory [45–49]. Ref-
erences [45–49] established simple and regenerative CBC models in space nuclear plants
and applied the thermal conductances of the HEXs to predict the energy conversion perfor-
mance and analyze the effects of thermal conductances on the performances of the plants.

Based on the endoreversible Carnot cycle model established in References [2–4],
considering a radiator panel between the LTHS and the relatively low temperature of a
space environment to dissipate waste heat to space, a model of an endoreversible Carnot
cycle for space is established in this paper. FTT theory is applied to analyze this model.
General relationships between POW and TEF and the temperature of the LTHS are obtained.
Taking the cycle POW as the optimization objective, the surface area distributions of the
HEXs are optimized when the total area of HEXs of the whole plant is fixed, and the
maximum POW is obtained. Furthermore, the double-maximum POW is obtained by
optimizing the temperature of the LTHS. There are optimal temperatures of the LTHS and
a couple of optimum area distributions, which lead to the double-maximum POW. Such
temperature and area distribution conditions ensure the future design of a plant conversion
system that aligns better performances and compactness. Finally, the influences of fixed
plant parameters on the maximum POW performance are analyzed.

2. Cycle Model and Performance Indicators

Figure 1 shows an endoreversible Carnot cycle model for a space plant. Figure 2 shows
its T-s diagram. In the figures, processes 1→ 2 and 3→ 4 are two adiabatic processes,
and 2→ 3 and 4→ 1 are two isothermal processes. The actual device is simplified into a
Carnot cycle, but the power plant is different from the ground-based Carnot cycle. The
power plant uses HEXs between the WF and the heat reservoirs (the heat absorption
and heat release processes of the WF are completed by the hot HEX and the cold HEX,
respectively), and it is also necessary to use a radiator panel between the LTHS and the
space environment to dissipate waste heat to space. TH and TL are the temperatures of the
high- and low-temperature heat reservoirs, and Th and Tl are the corresponding working
temperatures of the WF.

Assuming that the heat transfer (HT) between the heat reservoir and the WF obeys
Newton HT law, the heat flux rates are, respectively,

Q1 = K1F1(TH − Th) (1)

Q2 = K2F2(Tl − TL) (2)

The radiator panel radiates the heat from the cold HEX to the space environment.
According to Reference [44], the heat flux rate of the radiation HT is

Q3 = σεArη f

(
T4

L − T4
0

)
(3)
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where K1 (K2) is the HT coefficient of the hot (cold) HEX, F1 (F2) is the surface area of the hot
(cold) HEX, ε is the emissivity of the radiator, Ar is the area of the radiation panel surface,
σ is the Boltzmann constant, η f is the fin efficiency, and T0 is the ambient temperature.

Figure 1. Model of Carnot cycle for space plant.

Figure 2. T-s Diagram of Carnot cycle for space.
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According to the endoreversible condition and the first law of thermodynamics,
one has

P = Q1 −Q2 (4)

Q2 = Q3 =
Tl
Th

Q1 (5)

From Equations (4) and (5), one has

P = Q1 −Q2 = Q1(1−
Tl
Th

) (6)

From Equations (1)–(4), one has

Tl =
σεArη f

(
T4

L − T4
0
)

K2F2
+ TL (7)

Th =
K1F1THσεArη f

(
T4

L − T4
0
)
+ K1F1K2F2THTL

σεArη f (K1F1 + K2F2)
(
T4

L − T4
0
)
+ K1F1K2F2TL

(8)

From Equations (7) and (8), one has

Tl
Th

=
σεArη f (K1F1 + K2F2)

(
T4

L − T4
0
)
+ K1F1K2F2TL

K1F1K2F2TH
(9)

Substituting Equations (1), (7) and (8) into Equation (5), one has

P = K1F1(TH −
K1F1THσεArη f (T4

L−T4
0 )+K1F1K2F2TH TL

σεArη f (K1F1+K2F2)(T4
L−T4

0 )+K1F1K2F2TL
)

(1− σεArη f (K1F1+K2F2)(T4
L−T4

0 )+K1F1K2F2TL
K1F1K2F2TH

)

(10)

The TEF of the cycle is defined by

η = P/Q1 (11)

Substituting Equations (1), (8) and (10) into Equation (11), one has

η = (1−
σεArη f (K1F1 + K2F2)

(
T4

L − T4
0
)
+ K1F1K2F2TL

K1F1K2F2TH
) (12)

3. Power Optimization

In the actual design process, the total HT area FT (FT = F1 + F2 + F3) of the HEXs is
finite. When FT is fixed, the area of each HE should be reasonably distributed to improve
the performance of the power plant.

For the fixed total HT area (FT) of the HEXs, the area distribution is defined as

fi = Fi/FT (i = 1, 2, 3) (13)

So, the hot HEX area distribution ( f1) and the cold HEX area distribution ( f2) are,
respectively,

f1 = F1/FT , f2 = F2/FT (14)
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The radiator panel area distribution is

F3 = (1− f1 − f2)FT (15)

The area distribution should satisfy the following relationship:

∑ fi = 1, 0 < fi < 1 (16)

Taking the cycle POW as the optimization objective, the area distributions of the three
HEXs can be optimized, and the maximum POW can be obtained when the total HT area
of the HEXs of the whole plant is fixed. Furthermore, the double-maximum POW can be
obtained by optimizing the temperature of the LTHS. In this paper, the optimization results
of the POW are numerically calculated. According to References [37,38,46], the following
parameters are determined: σ = 5.67 × 10−8 W/(m2·K4), η f = 0.9, FT = 20∼40 m2,
K1FT = K2FT = 2∼6 W/K, ε = 0.9, T0 = 180 K∼220 K and TH = 1050 K∼1250 K.

Figure 3 shows a three-dimensional relationship among the POW and the hot HEX
area distribution f1 and the cold HEX area distribution f2 when FT = 30 m2, TH = 1150 K,
T0 = 200 K and K1 = K2 = 4/FT . The figure shows that there is a couple of optimal
distributions ( f1opt and f2opt) for the fixed FT and TL, which result in the maximum POW
(Pmax). Figure 4 shows the relationship between the maximum POW and the temperature of
the LTHS when the area distributions are the optimal values. One can see that Pmax − TL is
a parabolic-like one, and there is an optimal TLopt , which will lead to the double-maximum
POW (Pmax,max). When TL is fixed, there exists a couple of area distributions that result
in the maximum POW (Pmax), and when the area distribution is fixed, there is an optimal
TLopt , which also results in Pmax. So, there is an optimal TLopt and a couple of optimum area
distributions that lead to the double-maximum POW (Pmax,max).

Figure 3. Relation of P versus f1 and f2.
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Figure 4. Relation of Pmax versus TL.

Figures 5–14 show the effects of TH , FT , K1, K2 and T0 on Pmax−TL, f1opt −TL, f2opt −TL
and Pmax − η characteristics. TH , FT , K1, K2 and T0 are fixed parameters; TH and T0 depend
on the external environment; and K1, K2 and FT depend on the material properties of the
HEXs and the technology. The major point of this paper is to optimize the area distribution
of the three HEXs for the fixed total area of the HEXs, thereby optimizing the temperature
of the working fluid to optimize the cycle performance, and to analyze the effects of fixed
parameters on the cycle performance.

Figure 5. Pmax versus TL under different TH .



Entropy 2021, 23, 1285 7 of 19

Figure 6. Pmax versus TL under different TH .

Figure 7. Pmax versus TL under different TH .
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Figure 8. Pmax versus η under different TH .

Figure 9. Cont.
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Figure 9. (a) Pmax, (b) f1opt and (c) f2opt versus TL under different FT ; (d) Pmax versus η under different FT .

Figure 10. Cont.
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Figure 10. (a) Pmax, (b) f1opt and (c) f2opt versus TL under different K1 and K2; (d) Pmax versus η under different K1 and K2.

Figure 11. Pmax versus TL under different T0.
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Figure 12. f1opt versus TL under different T0.

Figure 13. f2opt versus TL under different T0.
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Figure 14. Pmax versus η under different T0.

One can see that the optimal area distributions of the HEXs increase with an increase in
TL; the curve of Pmax − η is a parabolic-like one. The corresponding TEF under the double-
maximum POW is ηPmax . Figures 15–18 show the effects of K2 on Pmax − TL, f1opt − TL,
f2opt − TL and Pmax − η characteristics when K1 6= K2.
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Figures 5–8 show the influence of TH on the relationships between Pmax−TL, f1opt −TL,
f2opt − TL and Pmax − η. With an increase in TH , Pmax,max, ηPmax , f1opt , f2opt and TLopt will
increase. When TH increases from 1050 K to 1250 K, Pmax,max increases from 259.50 W to
351.65 W and increases by 35.5%, ηPmax increases from 0.556 to 0.591 and increases by 6.3%,
f1opt and f2opt increase from 0.4469 to 0.4486 and increase by 0.38% and TLopt increases from
234.3 K to 240 K and increases by 2.43%. When FT = 30 m2, TH = 1250 K, T0 = 200 K and
K1 = K2 = 4/FT , the Novikov–Curzon–Ahlborn efficiency is 0.60 according to equation
ηCA = 1−

√
TL/TH , which was derived from References [2–4]. The TEF at the double

maximum POW is 0.591 obtained herein. The Carnot efficiency is 0.84 according to equation
ηC = 1− (TL/TH), which was derived from Reference [1]. The maximum TEF is 0.84.
One can see that the TEF at the double-maximum POW is close to CA efficiency, and the
maximum TEF and the Carnot efficiency are the same.

Figure 9 shows the influences of FT on the relationships between Pmax − TL, f1opt − TL,
f2opt − TL and Pmax − η. With an increase in FT , Pmax,max, f1opt , f2opt and ηPmax will increase,
while TLopt will decrease. When FT increases from 20 m2 to 40 m2, Pmax increases from
291.24 W to 313.46 W and increases by 7.6%, f1opt and f2opt increase from 0.4406 to 0.4560
and increase by 3.5%, ηPmax increases from 0.572 to 0.576 and increases by 0.7% and TLopt

decreases from 245 K to 235 K and decreases by 0.4%.
Figure 10 shows the influences of K1 and K2 on the relationships between Pmax − TL,

f1opt − TL, f2opt − TL and Pmax − η. With an increase in K1 and K2, Pmax,max and TLopt will
increase, while f1opt , f2opt and ηPmax

will decrease. When K1 and K2 increase from 2/FT to
6/FT , Pmax,max increases from 162.46 W to 436.87 W and increases by 169%, f1opt and f2opt

decrease from 0.4596 to 0.440 and decrease by 4.26%, ηmax decreases from 0.578 to 0.571
and decreases by 1.2% and TLopt increases from 227.2 K to 244.6 K and increases by 7.66%.

Figures 11–14 show the influences of T0 on the relationships between Pmax− TL, f1opt −
TL, f2opt − TL and Pmax − η. With a decrease in T0, Pmax, ηmax and TLopt will increase, while
f1opt and f2opt will decrease. When T0 decreases from 220 K to 180 K, Pmax,max increases
from 291.52 W to 317.40 W and increases by 8.9%, f1opt and f2opt decrease from 0.4522 to
0.4430 and decrease by 2%, ηPmax increases from 0.557 to 0.593 and increases by 6.5% and
TLopt increases from 229.8 K to 247.5 K and increases by 7.7%.
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Figures 15–18 show the influences of K2 on the relationships between Pmax − TL,
f1opt − TL, f2opt − TL and Pmax − η when K1 6= K2. With an increase in K2, Pmax, f1opt and
TLopt will increase, while f2opt will increase. When K2 increases from 1/FT to 4/FT , Pmax
increases from 145.76 W to 304.79 W and increases by 109.1%, f1opt increases from 0.3075 to
0.4478 and increases by 55.4%, f2opt decreases from 0.6151 to 0.4478 and decreases by 27.2%
and TLopt increases from 225.7 K to 237.2 K and increases by 5.1%.

4. About FTT

Some ones have some controversies about FTT. It is necessary to discuss it further. As
Tang et al. [50] pointed out the following about FTT:

“FTT is the further extension of conventional irreversible thermodynamics. The cycle
model established by Curzon and Ahlborn [4] was a reciprocating Carnot cycle, and the
finite time was its major feature. Therefore, such problems of extremal of thermodynamic
processes were first named as FTT by Andresen et al [5] and as Optimization Thermo-
dynamics or Optimal Control in Problems of Extremals of Irreversible Thermodynamic
Processes by Orlov and Rudenko [51]. When the research object was extended from recip-
rocating devices characterized by finite-time to the steady state flow devices characterized
by finite size, one releases that the physical property of the problems is the heat transfer
owing to temperature deference. Therefore, Grazzini [52] termed it as Finite Temperature
Difference Thermodynamics, and Lu [53] termed it as Finite Surface Thermodynamics.
In fact, the works performed by Moutier [54] and Novikov [2] were also steady state
flow device models. While Bejan introduced the effect of temperature difference heat
transfer on the total entropy generation of the systems, taken the entropy generation
minimization as the optimization objective for designing thermodynamic processes and
devices, and termed as “Entropy Generation Minimization” or “Thermodynamic Opti-
mization” [55,56]. For the steady state flow device models, Feidt [15,57–66] termed it as
Finite Physical Dimensions Thermodynamics (FPDT). The model established here in is
closer to FPDT. For both reciprocating model and steady state flow model, the suitable
name may be thermodynamics of finite size devices and finite time processes, as Bejan
termed [55,56].”

Muschik and Hoffmann [67] studied the connection between the endoreversible
reciprocating model of FTT and the actual irreversible model. According to the idiomatic
usage, the theory is termed as FTT in this paper.

5. Conclusions

Using FTT theory, a model of an endoreversible Carnot cycle for space plants is
established in this paper. The expressions of the cycle POW and TEF are derived. The
influences of various design parameters of the plant on the maximum POW performance
are analyzed by numerical examples. The results obtained show the following:

(1) The relationships between Pmax − TL and Pmax − η are parabolic-like ones. When the
temperature of the LTHS is fixed, there are a couple of area distributions that allow
one to obtain the maximum POW. At the same time, when the area distributions are
fixed, there is an optimal temperature of the LTHS that allows one to obtain another
maximum POW. So, there is an optimal temperature of the LTHS and a couple of
optimal area distributions that allow one to obtain the double-maximum POW.

(2) The double-maximum POW, the corresponding TEF under the double-maximum PO,
the optimal area distributions and the optimal temperature of the LTHS increase with
an increase in the temperature of the high-temperature heat sink. With a decrease in
the space environment, the double-maximum POW, the corresponding TEF under
the double-maximum POW and optimal the temperature of the LTHS increase, while
the optimal area distributions decrease.

(3) With an increase in the HT coefficients of the hot HEX and cold HEX, the double-
maximum POW and the optimal temperature of the LTHS increase, while the optimal
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area distributions and the corresponding TEF under the double-maximum POW
decrease. With an increase in the total HT area of the HEXs, the double-maximum
POW, the optimal area distributions and the corresponding TEF under the double-
maximum POW increase, while the optimal temperature of the LTHS decreases.

(4) When the HT coefficients of the hot HEX and cold HXE are different, it will have a
greater impact on the POW and the optimal area distributions of the HEXs. With
an increase in the HT coefficient of the cold HEX, the double-maximum POW, the
optimal area distribution of the hot HEX and the optimal temperature of the LTHS
increase, while the optimal area distribution of the cold HEX and the corresponding
TEF under the double-maximum POW decrease. When the HT coefficients of the hot
HEX and cold HEX are the same, the changes in the optimal area distributions of the
hot HEX and cold HEX are the same.
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Abbreviations

CBC Closed Brayton cycle
ECHE Endoreversible Carnot heat engine
FTT Finite time thermodynamics
HEX Heat exchanger
HT Heat transfer
LTSH Low-temperature heat sink
POW Power output
TEF Thermal efficiency
WF Working fluid
FPDT Finite Physical Dimensions Thermodynamics
Nomenclature
Ar Area of radiation surface (m2)
F1 Area of hot heat exchangers (m2)
F2 Area of cold heat exchangers (m2)
K1 Heat transfer coefficient of hot heat exchanger (W/

(
m2·K

)
)

K2 Heat transfer coefficient of cold heat exchanger (W/
(
m2·K

)
)

P Power output (W)
Q1 heat flux rate of hot side (W)
Q2 heat flux rate of cold side (W)
Q3 heat flux rate of radiator panel (W)
T Temperature (K)
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Greek Letters
ε Emissivity of the radiator (-)
η Thermal efficiency (-)
η f Fin efficiency (-)

σ Boltzmann constant (W/
(

m2·K4
)

)

Superscripts
H Temperature of the high-temperature heat source
h Temperature of the high-temperature work fluid
L Temperature of the low-temperature heat sink
l Temperature of the low-temperature work fluid
max Maximum value
max, max Double maximum value
opt Optimum
0 Environment
1− 4 Cycle state points

References
1. Carnot, S. Reflection on the Motive of Fire; Bachelier: Paris, France, 1824.
2. Novikov, I.I. The efficiency of atomic power stations (A review). J. Nucl. Energy 1958, 7, 125–128. [CrossRef]
3. Chambdal, P. Les Centrales Nucleases; Armand Colin: Paris, France, 1957.
4. Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [CrossRef]
5. Andresen, B.; Berry, R.S.; Nitzan, A.; Salamon, P. Thermodynamics in finite time: The step-Carnot cycle. Phys. Rev. A 1977, 15,

2086–2093. [CrossRef]
6. Andresen, B. Finite-Time Thermodynamics; Physics Laboratory II, University of Copenhagen: Copenhagen, Danmark, 1983.
7. Sciubba, E. On the second-law inconsistency of emergy analysis. Energy 2010, 35, 3696–3706. [CrossRef]
8. Andresen, B. Current trends in finite-time thermodynamics. Ange. Chem. Int. Ed. 2011, 50, 2690–2704. [CrossRef] [PubMed]
9. Hajmohammadi, M.R.; Eskandari, H.; Saffar-Avval, M.; Campo, A. A new configuration of bend tubes for compound optimization

of heat and fluid flow. Energy 2013, 62, 418–424. [CrossRef]
10. Feidt, M. The history and perspectives of efficiency at maximum power of the Carnot engine. Entropy 2017, 19, 369. [CrossRef]
11. Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo-Hernandez, A. Carnot-like heat engines versus low-dissipation models.

Entropy 2017, 19, 182. [CrossRef]
12. Gonzalez-Ayala, J.; Medina, A.; Roco, J.M.M.; Calvo Hernandez, A. Entropy generation and unified optimization of Carnot-like

and low-dissipation refrigerators. Phys. Rev. E 2018, 97, 022139. [CrossRef] [PubMed]
13. Bejan, A. Thermodynamics today. Energy 2018, 160, 1208–1219. [CrossRef]
14. Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.G.; Yazdi, M.A.; Kumar, R. Thermoelectric

cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy
2019, 186, 115849. [CrossRef]

15. Feidt, M.; Costea, M. Progress in Carnot and Chambadal modeling of thermomechnical engine by considering entropy and heat
transfer entropy. Entropy 2019, 21, 1232. [CrossRef]

16. Guo, J.C.; Wang, Y.; Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo Hernández, A. Continuous power output criteria and
optimum operation strategies of an upgraded thermally regenerative electrochemical cycles system. Energy Convers. Manag. 2019,
180, 654–664. [CrossRef]

17. Chen, L.G.; Ma, K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized
convective heat transfer law. Energies 2020, 13, 3229. [CrossRef]

18. Bejan, A. Discipline in thermodynamics. Energies 2020, 13, 2487. [CrossRef]
19. Lucia, U.; Grisolia, G.; Kuzemsky, A.L. Time, irreversibility and entropy production in nonequilibrium systems. Entropy 2020,

22, 887. [CrossRef]
20. Grisolia, G.; Fino, D.; Lucia, U. Thermodynamic optimisation of the biofuel production based onmutualism. Energy Rep. 2020, 6,

1561–1571. [CrossRef]
21. Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo-Hernández, A. Optimization, stability, and entropy in endoreversible heat

engines. Entropy 2020, 22, 1323. [CrossRef]
22. Yasunaga, T.; Fontaine, K.; Ikegami, Y. Performance evaluation concept for ocean thermal energy conversion toward standardiza-

tion and intelligent design. Energies 2021, 14, 2336. [CrossRef]
23. Dumitras, cu, G.; Feidt, M.; Grigorean, S. Finite physical dimensions thermodynamics analysis and design of closed irreversible

cycles. Energies 2021, 14, 3416. [CrossRef]
24. Chen, L.G.; Meng, Z.W.; Ge, Y.L.; Wu, F. Performance analysis and optimization for irreversible combined quantum Carnot heat

engine working with ideal quantum gases. Entropy 2021, 23, 536. [CrossRef]

http://doi.org/10.1016/0891-3919(58)90244-4
http://doi.org/10.1119/1.10023
http://doi.org/10.1103/PhysRevA.15.2086
http://doi.org/10.1016/j.energy.2010.05.015
http://doi.org/10.1002/anie.201001411
http://www.ncbi.nlm.nih.gov/pubmed/21374763
http://doi.org/10.1016/j.energy.2013.09.046
http://doi.org/10.3390/e19070369
http://doi.org/10.3390/e19040182
http://doi.org/10.1103/PhysRevE.97.022139
http://www.ncbi.nlm.nih.gov/pubmed/29548120
http://doi.org/10.1016/j.energy.2018.07.092
http://doi.org/10.1016/j.energy.2019.07.179
http://doi.org/10.3390/e21121232
http://doi.org/10.1016/j.enconman.2018.11.024
http://doi.org/10.3390/en13123229
http://doi.org/10.3390/en13102487
http://doi.org/10.3390/e22080887
http://doi.org/10.1016/j.egyr.2020.06.014
http://doi.org/10.3390/e22111323
http://doi.org/10.3390/en14082336
http://doi.org/10.3390/en14123416
http://doi.org/10.3390/e23050536


Entropy 2021, 23, 1285 18 of 19

25. Costea, M.; Petrescu, S.; Feidt, M.; Dobre, C.; Borcila, B. Optimization modeling of irreversible Carnot engine from the perspective
of combining finite speed and finite time analysis. Entropy 2021, 23, 504. [CrossRef]

26. Li, Z.X.; Cao, H.B.; Yang, H.X.; Guo, J.C. Comparative assessment of various low-dissipation combined models for three-terminal
heat pump systems. Entropy 2021, 23, 513. [CrossRef]

27. Chattopadhyay, P.; Mitra, A.; Paul, G.; Zarikas, V. Bound on efficiency of heat engine from uncertainty relation viewpoint. Entropy
2021, 23, 439. [CrossRef]

28. Chen, J.F.; Li, Y.; Dong, H. Simulating finite-time isothermal processes with superconducting quantum circuits. Entropy 2021,
23, 353. [CrossRef]

29. Shakouri, O.; Assad, M.E.H.; Açıkkalp, E. Thermodynamic analysis and multi-objective optimization performance of solid oxide
fuel cell-Ericsson heat engine-reverse osmosis desalination. J. Therm. Anal. Calorim. 2021, 145, 1075–1090. [CrossRef]

30. Açıkkalp, E.; Kandemir, S.Y. Performance assessment of the photon enhanced thermionic emitter and heat engine system. J.
Therm. Anal. Calorim. 2021, 145, 649–657. [CrossRef]

31. Li, J.; Chen, L.G. Exergoeconomic performance optimization of space thermoradiative cell. Eur. Phys. J. Plus 2021, 136, 644.
[CrossRef]

32. Qiu, S.S.; Ding, Z.M.; Chen, L.G.; Ge, Y.L. Performance optimization of thermionic refrigerators based on van der Waals
heterostructures. Sci China Technol. Sci 2021, 64, 1007–1016. [CrossRef]

33. Ding, Z.M.; Qiu, S.S.; Chen, L.G.; Wang, W.H. Modeling and performance optimization of double-resonance electronic cooling
device with three electron reservoirs. J. Non-Equilib. Thermodyn. 2021, 46, 273–289. [CrossRef]

34. Qi, C.Z.; Ding, Z.M.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Modelling of irreversible two-stage combined thermal Brownian refrigerators
and their optimal performance. J. Non-Equilib. Thermodyn. 2021, 46, 175–189. [CrossRef]

35. Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [CrossRef]
36. Yan, Z.J. Thermal efficiency of a Carnot engine at the maximum power-output with a finite thermal capacity heat reservoir. J. Eng.

Thermophys. 1984, 5, 125–131. (In Chinese)
37. Sun, F.R.; Chen, L.G.; Chen, W.Z. Finite-time thermodynamic analysis and evaluation of a steady-state energy conversion heat

engine between heat sources. Therm. Energy Power Eng. 1989, 4, 1–6. (In Chinese)
38. Chen, W.Z.; Sun, F.R.; Chen, L.G. The area characteristics of the steady-state energy conversion heat engine between heat sources.

J. Eng. Thermophys. 1990, 11, 365–368. (In Chinese)
39. Schwalbe, K.; Hoffmann, K.H. Performance features of a stationary stochastic Novikov engine. Entropy 2018, 20, 52. [CrossRef]
40. Barrett, M.J. Performance expections of closed-Brayton-cycle heat exchangers in 100-kWe nuclear space power systems. In Pro-

ceedings of the 1st International Energy Conversion Engineering Conference (IECEC), Portsmouth, VA, USA, 17–21 August 2003.
41. Barrett, J.M.; Johnson, P.K. Model fidelity requirements for closed-Brayton- cycle space power systems. J. Propuls. Power 2007, 23,

637–640. [CrossRef]
42. Barrett, M.J. Expectations of closed-Brayton-cycle heat exchangers in nuclear space power systems. J. Propuls. Power 2005, 21,

152–157. [CrossRef]
43. Toro, C.; Lior, N. Analysis and comparison of solar-driven Stirling, Brayton and Rankine cycles for space power generation.

Energy 2017, 120, 549–564. [CrossRef]
44. Liu, H.Q.; Chi, Z.R.; Zang, S.S. Optimization of a closed Brayton cycle for space power systems. Appl. Therm. Eng. 2020, 179,

115611. [CrossRef]
45. Ribeiro, G.B.; Guimarães, L.N.F.; Filho, F.B. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion.

In Proceedings of the 2015 International Nuclear Atlantic Conference—INAC 2015, São Paulo, Brazil, 4–9 October 2015.
46. Ribeiro, G.B.; Filho, F.B.; Guimarães, L.N.F. Thermodynamic analysis and optimization of a closed Regenerative Brayton cycle for

nuclear space power systems. Appl. Therm. Eng. 2015, 90, 250–257. [CrossRef]
47. Araújo, E.F.; Ribeiro, G.B.; Guimarães, L.N.F. Thermodynamic optimization of a heat exchanger used in thermal cycles applicable

for space systems. In Proceedings of the 25th International Congress of Mechanical Engineering, Uberiandia, Brazil, 20–25
October 2019.

48. Romano, L.F.R.; Ribeiro, G.B. Parametric evaluation of a heat pipe-radiator assembly for nuclear space power systems. Therm. Sci.
Eng. Prog. 2019, 13, 100368. [CrossRef]

49. Romano, L.F.R.; Ribeiro, G.B. Cold-side temperature optimization of a recuperated closed Brayton cycle for space power
generation. Therm. Sci. Eng. Prog. 2020, 17, 100498. [CrossRef]

50. Tang, C.Q.; Chen, L.G.; Feng, H.J.; Ge, Y.L. Four-objective optimization for an improved irreversible closed modified simple
Brayton cycle. Entropy 2021, 23, 282. [CrossRef]

51. Orlov, V.N.; Rudenko, A.V. Optimal control in problems of extremal of irreversible thermodynamic processes. Autom. Remote
Control 1985, 46, 549–577.

52. Grazzini, G. Work from irreversible heat engines. Energy 1991, 16, 747–755. [CrossRef]
53. Lu, P.C. Thermodynamics with finite heat-transfer area or finite surface thermodynamics. Thermodynamics and the Design,

Analysis, and Improvement of Energy Systems, ASME Adv. Energy Sys. Div. Pub. AES 1995, 35, 51–60.
54. Moutier, J. Éléments de Thermodynamique; Gautier-Villars: Paris, France, 1872.
55. Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996.

http://doi.org/10.3390/e23050504
http://doi.org/10.3390/e23050513
http://doi.org/10.3390/e23040439
http://doi.org/10.3390/e23030353
http://doi.org/10.1007/s10973-020-10413-7
http://doi.org/10.1007/s10973-020-10004-6
http://doi.org/10.1140/epjp/s13360-021-01638-y
http://doi.org/10.1007/s11431-020-1749-9
http://doi.org/10.1515/jnet-2020-0105
http://doi.org/10.1515/jnet-2020-0084
http://doi.org/10.3390/e22080908
http://doi.org/10.3390/e20010052
http://doi.org/10.2514/1.20384
http://doi.org/10.2514/1.5749
http://doi.org/10.1016/j.energy.2016.11.104
http://doi.org/10.1016/j.applthermaleng.2020.115611
http://doi.org/10.1016/j.applthermaleng.2015.06.093
http://doi.org/10.1016/j.tsep.2019.100368
http://doi.org/10.1016/j.tsep.2020.100498
http://doi.org/10.3390/e23030282
http://doi.org/10.1016/0360-5442(91)90024-G


Entropy 2021, 23, 1285 19 of 19

56. Bejan, A. Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes. J. Appl.
Phys. 1996, 79, 1191–1218. [CrossRef]

57. Feidt, M. Thermodynamique et Optimisation Energetique des Systems et Procedes, 2nd ed.; Technique et Documentation; Lavoisier:
Paris, France, 1996. (In French)

58. Dong, Y.; El-Bakkali, A.; Feidt, M.; Descombes, G.; Perilhon, C. Association of finite-dimension thermodynamics and a bond-graph
approach for modeling an irreversible heat engine. Entropy 2012, 14, 1234–1258. [CrossRef]

59. Feidt, M. Thermodynamique Optimale en Dimensions Physiques Finies; Hermès: Paris, France, 2013.
60. Perescu, S.; Costea, M.; Feidt, M.; Ganea, I.; Boriaru, N. Advanced Thermodynamics of Irreversible Processes with Finite Speed and Finite

Dimensions; Editura AGIR: Bucharest, Romania, 2015.
61. Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1: Fundamental; ISTE Press and Elsevier: London, UK, 2017.
62. Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 2: Complex Systems; ISTE Press and Elsevier: London, UK, 2018.
63. Blaise, M.; Feidt, M.; Maillet, D. Influence of the working fluid properties on optimized power of an irreversible finite dimensions

Carnot engine. Energy Convers. Manag. 2018, 163, 444–456. [CrossRef]
64. Feidt, M.; Costea, M. From finite time to finite physical dimensions thermodynamics: The Carnot engine and Onsager’s relations

revisited. J. Non-Equilib. Thermodyn. 2018, 43, 151–162. [CrossRef]
65. Dumitrascu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions

thermodynamics. Energies 2019, 12, 3165.
66. Feidt, M.; Costea, M.; Feidt, R.; Danel, Q.; Périlhon, C. New criteria to characterize the waste heat recovery. Energies 2020, 13, 789.

[CrossRef]
67. Muschik, W.; Hoffmann, K.H. Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time

thermodynamics. Entropy 2020, 22, 997. [CrossRef]

http://doi.org/10.1063/1.362674
http://doi.org/10.3390/e14071234
http://doi.org/10.1016/j.enconman.2018.02.056
http://doi.org/10.1515/jnet-2017-0047
http://doi.org/10.3390/en13040789
http://doi.org/10.3390/e22090997

	Introduction 
	Cycle Model and Performance Indicators 
	Power Optimization 
	About FTT 
	Conclusions 
	References

