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Abstract: Nitric oxide (NO) is a structurally simple, highly versatile molecule that was 

 originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to 

its vasorelaxing effects, NO is now recognized as a key determinant of vascular health, exerting 

antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-

lived molecule exerts its inhibitory effect on vascular smooth muscle cells and platelets largely 

through cyclic guanosine monophosphate-dependent mechanisms, resulting in a multitude of 

molecular effects by which platelet activation and aggregation are prevented. The biosynthesis 

of NO occurs via the catalytic activity of NO synthase, an oxidoreductase found in many cell 

types. NO insufficiency can be attributed to limited substrate/cofactor availability as well as 

interactions with reactive oxygen species. Impaired NO bioavailability represents the central 

feature of endothelial dysfunction, a common abnormality found in many vascular diseases. In 

this review, we present an overview of NO synthesis and biochemistry, discuss the mechanisms 

of action of NO in regulating platelet and endothelial function, and review the effects of vascular 

disease states on NO bioavailability.
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Introduction
Nitric oxide (NO) is a structurally simple molecule that exerts effects on a wide vari-

ety of actions in the vasculature. NO was first discovered in 1980 by Furchgott and 

Zawadzki1 as an endothelium-derived relaxing factor, it has been recognized as a key 

determinant of vascular homeostasis, regulating several physiological properties of 

the blood vessel, including vasodilation, vascular permeability, and antithrombotic 

properties.2 The bioavailability of NO represents a central feature of the normal 

vascular phenotype required for maintaining vasodilator tone and inhibiting platelet 

activation, thereby preventing thrombosis and its clinical vascular consequences. 

Decreased production or increased metabolism of NO may lead to NO insufficiency 

within the vasculature and its pathobiological consequences. This review begins with 

an overview on NO’s ability to modulate vascular tone and platelet activity, discusses 

the biochemical pathways involved in metabolism of NO, briefly summarizes factors 

controlling NO synthase (NOS) activity, discusses the impact of vascular patholo-

gies on NO and vice versa, and comments on pharmacological therapies for restoring 

vascular NO and their therapeutic utility.
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vascular actions of nitric oxide
vascular tone
NO is a major regulator of vascular homeostasis, acting in 

various ways to regulate vascular tone. Low levels of NO 

produced by the endothelial cell play a key role maintaining 

vasorelaxation by exerting its effects on vascular smooth 

muscle cells (VSMCs), the contractile state of which defines 

vascular tone. NO produced within the cytosol of endothe-

lial cells diffuses rapidly into adjacent VSMCs, exerting 

paracrine effects by activating soluble guanylyl cyclase to 

increase the synthesis of 3,5-cyclic guanosine monophos-

phate (cGMP). NO also decreases cytosolic Ca2+ concentra-

tion through inhibition of voltage-gated Ca2+ channels3 and 

activates protein kinases that phosphorylate proteins in the 

sarcoplasmic reticulum, as well as Ca2+-dependent potas-

sium channels.3 Reduction in cytosolic Ca2+ concentration 

results in inhibition of calcium-calmodulin myosin light 

chain kinase complex formation in the VSMC, promoting 

vasorelaxation.4

Low levels of NO released by endothelial cells are criti-

cal for the maintenance of basal vascular tone. The synthesis 

of endothelial NO is increased in response to biochemical 

stimuli, including thrombin, adenosine diphosphate (ADP), 

serotonin, acetylcholine, and bradykinin; as well as mechani-

cal stimuli, including shear stress and cyclic strain. Studies 

have previously shown that inhibition of NO synthesis in the 

vasculature may lead to hypertension5 or ischemic stroke,6 

likely, in part, through its effects not only on vascular tone, 

but also on thrombotic potential.7

In addition to the ability of NO to regulate basal vas-

cular tone, NO has also been found to influence stimulated 

endothelial release of tissue-type plasminogen activator 

(t-PA). Tissue-type plasminogen activator acts as the primary 

activator of endogenous fibrinolysis by converting the inac-

tive proenzyme plasminogen to the active enzyme plasmin. 

Studies regarding the release of t-PA have thus far been 

conflicting, with some studies showing an inhibitory effect 

of NO on t-PA release8,9 and another showing the opposite.10 

The role of NO in modulating t-PA still remains unclear; 

however, a possible explanation for the inhibitory effect of 

NO on t-PA release may be attributed to acute NO deprivation 

invoking a protective response resulting in greater endothelial 

t-PA release. Conversely, a possible explanation supporting 

NO-induced t-PA release as seen in Giannarelli’s study may 

be due to the lower  concentration of l-NG-monomethyl argi-

nine citrate, a NOS inhibitor, 1 mg/min, compared with the 

2 previously mentioned studies by Smith et al8 and Pretorius 

and Brown,9 5 mg/min and 3 mg/min, respectively. Further 

studies are needed to elucidate NO’s role in endothelial t-PA 

modulation.

Platelet function and formation
NO plays a key role in maintaining vascular integrity and 

blood flow by modulating platelet–endothelial interactions.11 

Although platelets play an important role in hemostatic 

plug formation and wound healing, hyperreactivity can lead 

to vascular thrombosis and its clinical sequelae.7 Platelets 

normally circulate in an inactive state, suppressed by 3 

biochemical systems: prostacyclin, ecto-AD(T)Pase/CD39, 

and NO.12 Prostacyclin, the main product of arachidonic 

acid metabolism in endothelial cells,13 inhibits platelets via 

cAMP-dependent mechanisms that include direct inhibition 

of Ca2+ mobilization and granule release.14 Ecto-AD(T)Pase 

is responsible for inhibition of platelet function by decreas-

ing ADP-induced platelet aggregation15 and also indirectly 

by inhibiting the thromboxane A
2
 (TXA

2
) receptor16 (see 

later).

Calcium plays a central role as a second messenger 

in platelets. Concentrations within resting platelets are 

maintained between 50 and 100 nM, and upon activation, 

can achieve levels as high as 1 mM.17 An increase in Ca2+ 

concentration within platelets leads to cytoskeletal rear-

rangement, shape change, and platelet granule secretion, 

ultimately resulting in aggregation.12 Platelet-associated 

Ca2+-binding proteins include alpha-helix, loop, second 

alpha-helix (EF-hand) proteins, and Ca2+-phospholipid 

binding proteins.18 Calmodulin is an EF-hand protein that 

binds to alpha-granules and is associated mechanistically 

with the Ca2+-calmodulin-induced phosphorylation of myo-

sin light chain contributing to platelet granule secretion.19,20 

Synaptotagmin, a Ca2+-phospholipid binding protein, 

has been associated with the regulation of dense granule 

secretion,21 further contributing to platelet activation and 

aggregation.

NO exerts its inhibitory effects on platelets via cGMP 

production and a secondary Ca2+-adenosine triphosphatase 

(ATPase)-dependent refilling of Ca2+ stores.22 Increased 

NO-stimulated guanylyl cyclase activity results in decreased 

intracellular Ca2+ levels through the inhibition of receptor-

mediated Ca2+ release from the dense tubular system, an 

increased rate of Ca2+ extrusion, and decreased Ca2+ entry 

from the extracellular environment. In addition, NO increases 

sarcoplasmic reticulum Ca2+-ATPase activity via cGMP-

dependent protein kinase G-mediated phosphorylation of 

phosphlamban,23 which results in lower Ca2+ available for 

participating in activation/aggregation mechanisms.
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NO’s ability to regulate cGMP is the principal deter-

minant of its platelet inhibitory actions. The mechanisms 

by which cGMP-associated inhibition of platelets occurs 

include not only a decrease in intracellular Ca2+ concentra-

tion by the mechanisms described earlier, but also impaired 

expression of the active (fibrinogen binding) conforma-

tion of glycoprotein (GP) IIb/IIIa and decreased platelet-

bound fibrinogen. For hemostatic plug formation to take 

place, platelets must interact with one another by forming 

crosslinks with cell surface receptors, thereby leading 

to aggregation. Fibrinogen, a bivalent molecule, bridges 

adjacent activated platelets via the platelet GPIIb/IIIa 

integrin receptors. Cyclic GMP reduces the total number of 

conformationally active GPIIb/IIIa receptors on the platelet 

surface via inhibition of thrombin-mediated activation of 

phophoinositide 3-kinase24 and increases in the dissociation 

constant between fibrinogen and the GPIIb/IIIa receptor, 

resulting in unfavorable conditions for platelet aggrega-

tion. The resulting decrease in fibrinogen binding has been 

shown to be dose-dependent and strongly correlated with 

NO-dependent cGMP production.25 TXA
2
, an eicosanoid 

produced via arachadonic acid metabolism within the 

platelet, contributes to platelet aggregation by mediating 

platelet GPIIb/IIIa expression. The TXA
2
 receptor serves as 

a substrate for cGMP-dependent protein kinase and cGMP 

itself,16 leading to impaired receptor function, thereby rep-

resenting another mechanism by which NO inhibits platelet 

activation. Furthermore, cGMP regulates the expression of 

the platelet (and endothelial) surface adhesion molecule 

P-selectin, in part, through the down-regulation of protein 

kinase C (PKC).26

NO has also been shown to modulate megakaryocyte 

apoptosis. Megakaryocytes are responsible for platelet 

production, and factors affecting their viability may 

ultimately affect platelet formation (thrombopoiesis). 

Battinelli and Loscalzo27 investigated the role of NO on 

apoptosis in megarkaryocyte cell lines and found that NO 

induced apoptosis. They reported that both endogenous and 

exogenous sources of NO regulated apoptosis in Meg-01 

and human erythroleukemia megakaryocytoid cell lines 

via modulation of the Bcl-2 family of proteins. This same 

group further investigated the role of NO-induced apop-

tosis on platelet formation by exploring the role of NO in 

the terminal stages of megakaryocytopoiesis. They found 

that NO-induced apoptosis in megakaryocytes resulted 

in platelet production.28 Thus, NO has effects on platelet 

production from megakaryocytes as well as on platelet 

function itself.

Nitric oxide synthesis and biochemistry
Nitric oxide synthesis
NO synthesis occurs in a range of cell types and tissues within 

the vasculature, including platelets, macrophages, and the 

vascular endothelium.29 A class of enzymes known as NOS 

includes neuronal NOS (nNOS), endothelial NOS (eNOS), 

and inducible NOS (iNOS), all sharing between 50% and 

60% sequence homology.30 All 3 isoforms catalyze a 5-step 

electron oxidation of the terminal guanidino nitrogen atom of 

l-arginine to produce l-citrulline and NO.31 Enzyme activity 

requires flavin mononucleotide, flavin adenine dinucleotide, 

tetrahydrobiopterin (BH
4
), Ca2+-calmodulin, and heme, 

which serve as cofactors, along with nicotinamide adenine 

dinucleotide phosphate (NADPH) and molecular oxygen, 

which serve as cosubstrates.32

NO is an uncharged radical molecule approximately 

70 times more soluble in hydrophobic environments than in 

water, enabling it to diffuse readily across cell membranes. 

Owing to its relatively short half-life, NO acts primarily 

in local environments. After synthesis, NO diffuses across 

biological membranes into specific target cells where it 

stimulates guanylyl cyclase to produce cGMP from guanos-

ine triphosphate (GTP).33 Biological responses mediated by 

cGMP second messenger pathways described earlier are the 

principal, but not exclusive, action of NO.34

The 3 NOS isoforms are characterized by their site of 

synthesis, pattern of expression, and Ca2+ dependency: NOS 

I or nNOS is expressed primarily in neurons; NOS II or 

iNOS, initially isolated from cytokine-induced macrophages, 

is now recognized as located in macrophages, neutrophils, 

platelets, and VSMCs, as well as in other nonvascular cells; 

NOS III or eNOS is constitutively expressed in endothelial 

cells.35 Each NOS isoform is comprised of an N-terminal 

oxygenase domain and a C-terminal reductase domain with a 

calmodulin recognition sequence between the 2.36 NOS activ-

ity is regulated by changes in intracellular Ca2+ concentration 

that affect the binding of calmodulin for efficient electron 

transfer from NADPH to the heme iron, which then catalyzes 

NO synthesis.37 The constitutively expressed NOS isoforms 

(nNOS and eNOS) are membrane-associated and bind cal-

modulin in a rapidly reversible and strongly  Ca2+-dependent 

manner to regulate their activity.

When endothelial cells are activated by a  receptor-mediated 

agonist, such as acetylcholine or bradykinin, or mechanical 

stimuli, such as shear stress, Ca2+ is transiently released 

from intracellular stores via a second messenger cascade 

involving inositol triphosphate, resulting in  Ca2+-calmodulin 

 complex-dependent activation of eNOS. NO production 
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by eNOS is transient, paralleling intracellular Ca2+ levels.38 

Endothelial NOS produces NO in the nanomolar range, a 

concentration that decreases with decreasing intracellular Ca2+ 

concentration, associated with the cytoprotective effects of 

NO and effective regulation of vascular tone. Unlike eNOS 

and nNOS, iNOS is less susceptible to changes in intracel-

lular Ca2+ concentration, binding more avidly to calmodulin 

at the low Ca2+ concentrations found in resting cells.39 NO 

production by iNOS is regulated at the transcriptional level, 

stimulated mainly by cytokines and microbial products 

(endotoxin),40 resulting in NO production in the micromolar 

range; these concentrations have been associated with mito-

chondrial membrane pore transition and caspase activation, 

resulting in apoptosis and necrosis.41 These elevated levels of 

NO are associated with the general cytotoxic effects of NO.

Nitric oxide bioreactivity
NO can exist in 3 closely interrelated redox forms: the free 

radical (NO.), nitrosonium (NO+) resulting from a 1-electron 

oxidation of NO., and nitroxyl anion (NO−) resulting from a 

1-electron reduction of NO..42 Each redox form has distinct 

chemical properties and reactivity. The major metabolic 

product of NO in aqueous solutions is nitrite. These NO 

species (NO
x
) (reactive nitrogen species) and, in some cases, 

NO itself, can interact with molecular oxygen, thiols, reduced 

hemoproteins, and redox metals that conspire to determine 

its half-life and metabolism in biological systems. Some of 

these interactions include the reaction of NO with heme iron 

that leads to guanylyl cyclase activation resulting in cGMP 

formation; and the reaction of nitrosonium with – SH group-

containing biomolecules in the presence of molecular oxygen 

to produce S-nitrosothiols (RSNO). S-nitrosothiols are rela-

tively stable compared with NO and may represent a storage 

pool for bioavailable NO.43,44 S-nitrosoalbumin accounts for 

the majority of RSNO in human plasma, and, along with 

other S-nitrosothiols, protects NO from inactivation with 

an approximate half-life ranging from 15 to 40 minutes in 

circulating blood. Cysteine is the sole thiol source in proteins 

and also constitutes the reactive thiol residue of glutathione. 

S-nitrosoglutathione (GSNO) possesses an approximate 

half-life of 8 minutes in the circulating blood. Biological 

actions of RSNO may be associated with heterolytic as well 

as homolytic mechanisms of decomposition resulting in 1 

of the 3 NO redox forms. Heterolytic pathways of RSNO 

decomposition have been associated with many biological 

activities of NO.45 The substantially slower reaction rates 

between superoxide and RSNO compared with superoxide 

and NO suggest that the RSNO stabilizes NO protecting it 

from oxidative inactivation and thereby increasing its bio-

availability.46 In addition, as many S-nitrosoproteins47 form 

via trans-S-nitrosation from GSNO, GSNO reductase48 is an 

important regulator of the bioavailability of (RS)NO.

The ability of NO to form a complex with hemoglobin 

(Hb) is a recent emerging concept unveiling a vital physi-

ological function in the setting of hypoxic vasodilation. Hb 

becomes S-nitrosylated on a specific cysteine residue on 

the β-chain (βCys93) as red blood cells become oxygen-

ated in the lungs, resulting in SNO-Hb formation. This 

complex, SNO-Hb, exists in 2 conformational states, the 

R-state (relaxed and unreactive state, high oxygen affinity 

Hb conformation) and the T-state (tense reactive state, low 

oxygen affinity Hb conformation) in which SNO-Hb can 

rapidly react with thiols and elicit a vasodilatory response 

within the vasculature.49,50 Dysfunction in this pathway has 

been shown to be associated with congestive heart failure,51 

diabetes,52 and pulmonary hypertension.53 This SNO-Hb 

paradigm, recently reviewed by Allen et al,54 could have 

therapeutic implications for diseases involving abnormal 

microcirculatory perfusion.

NO can react with molecular oxygen and several reactive 

oxygen species (ROS), as shown in Figure 1, including super-

oxide anion (O
2

−.), hydrogen peroxide (H
2
O

2
;  indirectly), and 

hydroxyl radical (.OH), to limit its bioactivity. Both endothelial 

NO
H2O2

Fenton rxn HNO2

O2

NO2
−/NO3

−

O2
−

OONO−

NO3
−

RSNO RSH
O2

Heme
Albumin

Nitrosyl-Heme
S-nitroso-Albumin

Figure 1 Biological reactions of nitric oxide. The free radical nitric oxide (NO.) 
can react with many constituents within the vasculature that affect its bioavailability. 
NO. can undergo oxidative inactivation (reactions shown in dashed lines) to form 
nitrite (NO2

−) and nitrate (NO3
−). Other biologically relevant mechanisms include 

indirect interaction with hydrogen peroxide (H2O2) products (via Fenton chemistry) 
resulting in nitrous acid (HNO2) formation. Another key reactive oxygen species in 
the vasculature contributing to NO insufficiency is superoxide (O2

−.) which reacts 
with NO to form peroxynitrite (OONO−). S-nitrosothiols (RSNO) formation via 
OONO− interaction with thiols, and nitrosyl-heme/S-nitroso-albumin formation 
represent ways in which NO can be protected from oxidative inactivation, thereby 
increasing overall bioavailability.
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cells and macrophages are sources of these ROS. NO reacts 

with O
2
−. to form peroxynitrite (OONO−)55 at an almost near-

diffusion-limited rate of 6.7 × 109 M−1 s−1. This rate of peroxyni-

trite formation exceeds the rate constant for the reduction of 

superoxide to hydrogen peroxide by superoxide dismutase, the 

principal antioxidant responsible for O
2
−. metabolism.56 Among 

its deleterious effects are included loss of bioactive NO and 

direct cytotoxic effects resulting in apoptosis or necrosis.57

Through the reduction of H
2
O

2
 via Fenton chemistry, a 

hydroxyl radical, .OH, can react readily with NO, decreas-

ing its bioavailability. ROS in the vessel wall can react with 

polyunsaturated fatty acid species in the low density lipo-

protein (LDL) particle, initiating lipid peroxidation, which 

results in the formation of oxidized LDL.58 Oxidized LDL 

has been shown to limit NO bioavailability by a number of 

mechanisms. For example, Chen et al59 investigated the role 

of the l-arginine-NO pathway in oxidized LDL-mediated 

platelet activation, and found that oxidized LDL decreased 

l-arginine uptake, eNOS expression, cGMP production, and 

subsequent NO (nitrite) production.

Nitric oxide synthase regulation
The activity of NOS is regulated by a number of tran-

scriptional and posttranslational mechanisms as shown 

in Figure 2. Some modes of regulation are specific to a 

particular NOS isoform, whereas others are shared between 

them. Factors regulating NOS activity affect NO bioavailabil-

ity and, ultimately, target cell function and phenotype. One 

major factor regulating NOS activity is feedback inhibition by 

NO itself. NOS isoforms are hemoproteins, readily binding 

NO to their heme prosthetic groups.60 NO binds reversibly 

to ferric or ferrous heme proteins within seconds after the 

initiation of NO synthesis, resulting in temporary eNOS 

inactivation.60,61 These inactive complexes have the ability 

to reactivate, producing NO when NO dissociates from the 

heme iron. Studies have shown that 70%–90% of iNOS and 

nNOS are present in their inactive ferrous-NO forms during 

steady-state catalysis,60,61 resulting in NOS activity that is 

only a fraction of its maximal activity. Ferrous-NO can react 

with O
2
 to participate in NO generation; ferrous-NO complex 

formation results in NO synthesis rates proportional to the 

O
2
 concentration throughout the physiological range due 

primarily to NOS–NO complex dissociation, which itself is a 

function of O
2
 concentration rather than the intrinsic affinity 

of the NOS heme iron for O
2
.60

NOS activity can also be regulated by BH
4
 levels. BH

4
 

is a critical cofactor required for NO synthesis owing to 

its ability to couple heme iron reduction to NO synthesis. 

Subsaturating levels of BH
4
 have been shown to result in NOS 

inhibition by NO,62 occurring over several minutes. Possible 

mechanisms of inactivation include uncoupled O
2
 reduction 

to superoxide that occurs in the absence of sufficient BH
4
, 

dimer dissociation,62 or NO binding to heme.63 Dimeriza-

tion of NOS is essential for its biological activity, and BH
4
 

interacts with residues on both subunits of the dimer and 

also forms hydrogen bonds with the heme site. Dimerization 

activates NOS by sequestering heme from solvent, creating 

favorable conditions for l-arginine and BH
4
 binding, and also 

allows electrons from reductase domain flavins to transfer to 

the oxygenase domain heme.64,65 NO can inhibit expression 

of NOS, limiting assembly of dimeric NOS by preventing 

heme insertion and decreasing heme availability.66

Another cofactor essential for NO biosynthesis via 

NOS is the substrate, l-arginine. l-arginine is converted to 

l-citrulline and NO via a 5-step electron oxidation of the ter-

minal guanidino-nitrogen atom of l-arginine. An experiment 

of nature leading to l-arginine deficiency also supports the 

importance of this amino acid in NO and vascular homeo-

stasis. In the genetic disorder, lysinuric protein intolerance, 

a mutation in the SLC7A7 gene leads to impaired l-arginine 

uptake by cells.67 The resulting deficiency of l-arginine 

transport led to significantly reduced NO synthesis, impaired 

endothelium-dependent dilation,68 and enhanced platelet 

activation and intravascular coagulation,69 highlighting the 

importance of endogenous l-arginine in NO production and 

its key vascular actions.70

Administration of l-arginine has proven to be protec-

tive for endothelial function in animal studies.71 Both acute 

and chronic administration of l-arginine in cholesterol-fed 

animals results in improvement of endothelium-dependent 

dilation.72 The beneficial effects of l-arginine administration 

have also been demonstrated in other disease states, such as 

hypertension,73 coronary atherosclerosis,74 and transgenic-

knockout sickle mice.75 l-arginine supplementation in hyper-

cholesterolemic rabbits resulted in attenuation of aorta intima/

media thickening and increased eNOS expression compared 

with controls.76 A randomized, double-blind, placebo-con-

trolled study administering oral l-arginine to patients with 

heart failure for 6 weeks resulted in improved forearm blood 

flow, increased distances during a 6-minute walk test, as well 

as improved arterial compliance compared with controls.77 

Most of the previously mentioned studies showing benefi-

cial effects of l-arginine supplementation were short-term 

studies. Long-term administration of l- arginine in patients 

with peripheral artery disease showed the  contrary data. 

Wilson et al78 conducted a randomized clinical trial of oral 
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l-arginine vs placebo for 6 months in patients with intermit-

tent claudication due to peripheral artery disease. They found 

that long-term l-arginine supplementation did not increase 

NO synthesis or improve vascular reactivity.78 In another 

clinical study involving patients with stable coronary heart 

disease, l-arginine supplementation failed to show any 

significant improvement of endothelium-dependent vasodi-

lation or blood flow as compared with placebo.79 l-arginine 

supplementation has also been shown to have no significant 

effect on endothelial function, blood flow, markers for oxida-

tive stress, or exercise performance in patients with coronary 

heart disease and stenosis80 as well as no benefit in patients 

with coronary artery disease after the onset of myocardial 

infarction with respect to death, reinfarction, or recurrent 

myocardial ischemia.81 The mechanism by which l-arginine 

administration exerts its beneficial effects in various disease 

states is unclear; however, future benefits occurring via the 

enhancement of vascular NO synthesis has been supported 

NO

Soluble guanylyl 
cyclase

GTP cGMP

GPIIb/IIIa
receptor 

TXA2

receptor 

P-selectin

Ca2+

eNOS

L-arginine         L-citrulline + NO

Platelet

Endothelial cell

Inhibitory factors Stimulatory factors
NO (- feedback)
L-arginine

BH4

ADMA
Hypoxia
Oxidized LDL

Shear stress
Cell growth
H2O2

Figure 2 Factors and actions affecting NO and platelet function. Nitric oxide (NO) exerts inhibitory effects (dashed lines) on platelets through a variety of mechanisms. The 
predominant pathway involves generation of NO from l-arginine by endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate (cGMP) formation via 
guanylyl cyclase activation by NO. Nitric oxide inhibits platelet activation and aggregation by decreasing intracellular Ca2+ concentration, glycoprotein (GP) iiB/iiia expression, 
and platelet association with fibrinogen. cGMP, formed from NO’s catalytic effect on guanylyl cyclase, also inhibits platelets by decreasing thromboxane A2 expression as 
well as expression of the platelet surface adhesion molecule, P-selectin. endothelial NOS activity is regulated by several transcriptional, posttranslational, and physiological 
factors that either result in inactivation or upregulation, ultimately affecting NO bioavailability. Factors decreasing eNOS (dashed lines) activity include NO itself, via negative 
feedback, reduced substrate and/or cofactor bioavailability, hypoxia, and oxidized low density lipoprotein (LDL). By contrast, laminar shear stress, cell growth, and H2O2 have 
been shown to increase eNOS activity (solid lines), cGMP formation, and bioavailable NO.
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by corresponding upregulation of the NO-cGMP pathway in 

endothelial cells of the myocardium.82

In addition to limited cofactor availability affecting 

eNOS activity and NO synthesis, a naturally occurring 

inhibitor, asymmetric dimethylarginine (ADMA), was first 

identified in 1992.83 ADMA is synthesized by methylation 

of arginine residues via N-methyltransferases, which utilize 

S-adenosylmethionine as a methyl group donor. It is released 

when the methylated arginine residues are degraded into their 

amino acid components during hydrolytic protein turnover.84 

The physiological effects of ADMA were first characterized 

in vascular rings where ADMA inhibited NOS resulting 

in decreased NO synthesis and vasoconstriction.83 Plasma 

ADMA concentrations are elevated in many disease states, 

including hypercholesterolemia,85 hyperhomocysteinemia,86 

hypertension,87 pulmonary hypertension,88 stroke,89 and 

diabetes mellitus.90 A recent study by Ding et al91 identified 

a novel 4-nucleotide deletion/insertion variant in the dim-

ethylarginine dimethylaminohydrolase I (DDAH1) gene, an 

important gene in the major pathway for ADMA clearance, 

associated with increased susceptibility to thrombotic stroke 

and coronary heart disease. Overexpression of DDAH1 has 

been shown to protect against cerebral arteriole hypertrophy 

and to improve vascular smooth muscle function.92 In a study 

investigating the effects of ADMA on shear stress-dependent 

dilation of skeletal muscle arterioles, Toth et al93 showed 

that ADMA inhibited shear stress-induced NO release and 

vasodilation, and, instead, stimulated O
2
−. release, favoring 

the development of increased shear stress, increased vascular 

resistance, and, ultimately, hypertension.

The association between plasma ADMA concentration 

and endothelial dysfunction contributing to cardiovascular 

disease has lead to its emerging as a novel risk factor and 

potential pharmacotherapeutic target. Clinical studies involv-

ing l-arginine supplementation in hypercholesterolemic sub-

jects have shown improved endothelial function,94 improved 

vasomotor responses to methacholine,95 and improved flow-

mediated dilation96 in the brachial artery. Studies involv-

ing l-arginine supplementation in subjects with arterial 

hypertension have also shown increases in forearm blood 

flow,77 improvement in coronary small-vessel endothelial 

function,97 and decreased blood pressure via increased NO 

production.98

In addition to posttranslational mechanisms regulating 

NOS activity, there are many transcriptional and post-

transcriptional regulators of the enzyme. Posttrascriptional 

regulators of eNOS include phosphorylation by several 

kinases regulating protein–protein interactions and the avail-

ability of cofactors and substrates,99 localization of eNOS 

to the caveolae, and dissociation from caveolin-1.100 Other 

posttranslational modifications regulating eNOS expression 

include myristoylation and palmitoylation, which are required 

for the targeting of eNOS to the caveolae.101,102

Several physiological and pathophysiological stimuli have 

been indentified that affect eNOS mRNA expression and 

stability. Stimuli shown to increase eNOS expression include 

shear stress, cell growth, and hydrogen peroxide. By contrast, 

hypoxia and oxidized LDL can decrease eNOS expression. 

One of the more potent regulators of eNOS expression is 

laminar shear stress. Both in vivo103 and in vitro104,105 studies 

have shown an upregulation in eNOS expression due to shear 

stress. Weber et al106 conducted in vitro experiments using 

bovine aortic endothelial cells and found that shear stress 

increased expression of eNOS mRNA with long poly(A) tails 

resulting in a 3-fold increase in half-life compared with cells 

not exposed to shear (ie, cultured under static conditions). 

Their results support the concept that shear stress modu-

lates eNOS mRNA stability and translation via increased 

3′-adenylation due to a dose-dependent effect of shear on 

eNOS polyadenylation, also observed in vivo,107 and shown 

to be dependent on the duration of shear stress. Laminar shear 

stress resulted in an early increase in eNOS mRNA expression 

and a sustained stabilization of eNOS mRNA, as evidenced 

by a 4-fold to 5-fold increase in transcription and an increase 

in mRNA half-life by more than 3-fold compared with cells 

cultured under static conditions.108 Davis et al108 identified 

two pathways involving c-src that lead to an increase in eNOS 

mRNA transcription and mRNA stability. The increase in 

eNOS mRNA transcription involved the Raf, Ras, and ERK 

1/2 pathway, whereas the stabilization of eNOS in response to 

shear stress was completely abrogated by the c-src inhibitor 

PP1, but not altered by Ras or ERK inhibition, supporting the 

existence of separate pathways responsible for the increase 

in transcription and for mRNA stabilization.

More recent studies identified miR-21 as a regulator 

of eNOS activity and apoptosis in human umbilical vein 

endothelial cells (HUVEC). MicroRNAs are short RNA 

molecules averaging 22 nucleotides that bind to comple-

mentary sequences in the 3´-untranslated region (UTR) of 

mRNA transcripts, leading to posttranscriptional regulation 

(degradation of mRNAs) of genes involved in differentia-

tion, proliferation, and apoptosis. Through the utilization 

of a TaqMan low density array and qRT-PCR, miR-21 was 

shown to be increased 5.2-fold in HUVECs exposed to 

unidirectional shear stress compared with cells grown under 

static conditions. HUVECs overexpressing miR-21 had 
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decreased apoptosis and increased eNOS phosphorylation 

and NO production.109 miR-21 also suppressed phosphatase 

and tensin (PTEN), which is a tumor suppressor gene, and has 

been shown to play an important role in regulating apoptosis 

via antagonism of the PI3K/Akt pathway.110 The authors 

concluded that miR-21 overexpression in HUVECs involves 

regulation of PTEN expression and subsequent changes in 

the PI3K/Akt/eNOS pathway.109

Cell growth has also been shown to be a potent stimulus 

for eNOS expression, both in vitro111 and in vivo.112 In vitro 

studies using bovine aortic endothelial cells (BAECs) revealed 

a 3-fold increase in eNOS protein level, a 6-fold increase in 

mRNA expression, and a 3-fold increase in eNOS activity 

in proliferating cells compared with confluent cells.111 The 

authors concluded that these results were due either to an 

increase in transcription or a decrease in degradation of eNOS 

mRNA. In a follow-up study, Searles et al113 investigated the 

factors responsible for changes in eNOS expression during 

cell proliferation. Using BAECs, they showed steady-state 

eNOS mRNA levels to be 4-fold higher in proliferating cells 

compared with confluent cells. A nuclear run-on analysis 

was performed to determine whether or not this was due 

to a change in transcription. The intensity of the bands for 

eNOS nascent transcripts was identical between proliferating 

and confluent cells, thereby providing evidence for growth-

induced regulation of eNOS expression modulated by post-

transcriptional mechanisms. By contrast, they observed a 

3-fold increase in half-life in proliferating cells compared 

with confluent cells. Ultraviolet-crosslinking analysis revealed 

a 51-kDa protein expressed 3-fold higher in confluent cells 

compared with proliferating cells. This cytosolic protein was 

found to bind to a 43-nt cis-element in the proximal 3´-UTR 

resulting in destabilization of eNOS mRNA.113

Endothelial NO activity has also been shown to be 

regulated by ROS. Hydrogen peroxide, in particular, induces 

both an elevation of eNOS protein expression and enzyme 

activity. Studies have shown that adding H
2
O

2
 to endothelial 

cells stimulates eNOS activation by PI3-kinase-Akt- mediated 

phosphorylation of Ser1177 on eNOS.114 Drummond 

et al115 performed nuclear run-on and 5,6-dichloro-1-β-d-

ribofuranosylbenzimidazole case studies to show a 3-fold 

increase in eNOS transcription and a 2.8-fold increase in 

eNOS half-life in cells exposed to H
2
O

2
. A subsequent 

study revealed that the induction of eNOS expression by 

H
2
O

2
 was Ca2+-dependent. Immunocytochemical staining of 

BAECs revealed expression of Ca2+/calmodulin-dependent 

protein kinase II (CaM kinase II), and an in-gel kinase assay 

showed H
2
O

2
-induced autophosphorylation of CaM kinase II, 

resulting in increased eNOS activity. Cai et al116 were able to 

show that H
2
O

2
-induced activation of eNOS was dependent 

on the CaM kinase II/Janus kinase (JNK) 2 pathway. Hydro-

gen peroxide produced under shear stress has been shown to 

be regulated by PKC delta. Kumar et al117 investigated the 

mechanism by which shear stress can stimulate eNOS activity 

via PI3 kinase/Akt signaling and phosphorylation of Ser1177. 

They found that shear stress decreased PKC delta activity, 

attenuating catalase activity and increasing H
2
O

2
 signaling, 

resulting in increased eNOS phosphorylation at Ser1177 and 

NO synthesis.117 A recent study by Tian et al118 investigated 

how H
2
O

2
 affects NO activity when endothelial cells are 

subjected to shear stress. Using a small interfering RNA 

for caveolin-1, they showed decreased eNOS localization to 

the plasma membrane as well as impairment of increases in 

NO in BAECs. Caveolin-1 enhances eNOS transport to the 

plasma membrane and appears to be involved in priming 

eNOS for activation under conditions of shear stress.118

Although factors such as shear stress, cell proliferation, 

and H
2
O

2
 have been found to increase both eNOS expres-

sion and stability, hypoxia has been associated with both 

upregulation and down-regulation of eNOS expression via 

transcriptional and posttranscriptional mechanisms.119–122 

In response to hypoxia, the systemic arteries will dilate, 

allowing more blood to be delivered to peripheral tissues, 

whereas vasoconstriction will take place in the pulmonary 

system resulting in higher pulmonary pressures. This same 

trend has been shown for eNOS expression in rats exposed 

to hypoxia. Rats subjected to 10% oxygen for 12 hours, 

48 hours, or 7 days showed an 80% decrease in eNOS protein 

expression as well as eNOS mRNA expression compared 

with normoxic controls.119 Exposure to hypoxia also resulted 

in impaired capacity of aortic segments to generate cGMP 

in response to stimulation by acetylcholine. Comparison of 

eNOS expression in the left and right lungs of normoxic 

and chronically hypoxic rats resulted in a decrease in eNOS 

protein expression (32% ± 7%) and eNOS mRNA expression 

(54% ± 13%) in hypoxic lungs compared with the normoxic 

lung from the same rat.120 Thus, not only are there regional 

differences in eNOS expression in the setting of hypoxia, 

but the onset or duration of hypoxia may also affect eNOS 

expression. In lung biopsies of infants with pulmonary 

hypertension secondary to cardiac abnormalities (early stage 

of pulmonary hypertension), eNOS expression was found to 

be significantly increased in pulmonary vascular endothelial 

cells.121 This increase in eNOS expression in early stages of 

pulmonary vascular disease may represent a compensatory 

mechanism to rising pulmonary pressures. However, in the 
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setting of chronic pulmonary hypertension, there is reduced 

eNOS expression.122

Endothelial NOS activity is not always simply overex-

pressed or inhibited by certain physiological or pathophysi-

ological stimuli. As is the case with hypoxia, where regional 

differences and onset/duration of disease can affect eNOS 

expression, oxidized LDL has been shown to elicit both 

stimulatory and inhibitory responses in eNOS expression. 

Liao et al123 treated human saphenous vein endothelial cells 

with increasing concentrations of native or oxidized LDL 

and found that oxidized LDL resulted in a time-dependent 

decrease in eNOS mRNA expression. This decrease in 

eNOS mRNA expression coincided with a 56% decrease in 

NOS activity. Nuclear run-on studies revealed the complex 

nature of eNOS regulation by oxidized LDL. During the 

first 6 hours of treatment, eNOS expression was decreased 

by 25%, followed by a 2.2-fold increase in the subsequent 

18 hours. The results of this study indicate that oxidized LDL 

regulates eNOS expression through a combination of early 

transcriptional inhibition and mRNA destabilization.

vascular diseases and nitric oxide
Atherosclerosis and thrombosis
In addition to promoting endothelial dysfunction, NO insuf-

ficiency has been shown to increase atherosclerotic burden in 

vivo. Under normal conditions, NO exerts atheroprotective 

effects through several pathways, including the reduction 

of endothelial cell apoptosis and activation, via inhibition 

of nuclear factor-kappa factor (NF-κB) and inflammatory 

gene expression.124 Another way in which NO prevents 

atherogenesis is via the attenuation of leukocyte–endothelial 

cell adhesive interactions.125 BH
4
 deficiency, which is 

commonplace in vascular disease, has been linked to eNOS 

uncoupling in the vasculature, resulting in O
2

−. production 

and NO insufficiency. A more recent study by Takaya 

et al126 highlighted the importance of BH
4
 availability 

in preventing eNOS uncoupling-induced atherosclerotic 

lesion progression. The authors compared atherosclerotic 

lesion progression between apolipoprotein E knockout 

(ApoE-KO)/eNOS-Tg mice treated with vitamin C and 

ApoE-KO mice crossed with mice overexpressing eNOS 

(eNOS-Tg) with mice overexpressing GTP-cyclohydrolase 

I (GCH-Tg) to produce ApoE-KO/eNOS-Tg/GCH-Tg mice. 

Atherosclerotic formation was increased in the ApoE-KO/

eNOS-Tg mice compared with ApoE-KO mice. This finding 

was attributed to uncoupled eNOS-superoxide production 

and was reversed by overexpressing GTP-cyclohydrolase I, 

the rate-limiting enzyme in BH
4
 synthesis.126 Endothelial 

dysfunction in hypercholesterolemia has been implicated 

in atherosclerosis progression. Several studies have shown 

a decrease of eNOS activity and expression,127,128 as well 

as its reversal with l-arginine supplementation129,130 in 

hypercholesterolemic models.

NO insufficiency, eNOS deficiency,131 and a deficiency of 

the extracellular antioxidant enzyme plasma glutathione per-

oxidase (GPx-3) in patients with vascular disease and stroke 

represent further evidence of the prothrombotic consequence 

of NO insufficiency in vivo. The first direct evidence that an 

arterial thrombotic disorder can derive from NO insufficiency 

stems from a study conducted by Freedman et al132 analyzing 

platelet inhibition by NO in 2 brothers with a cerebral throm-

botic disorder of unknown etiology. The patients were found 

to have hyperreactive platelets, a 3-fold increase in plasma 

H
2
O

2
, and decreased GPx-3 activity. GPx-3 is an enzyme that 

protects cells from oxidative damage via the reduction of 

hydrogen peroxide and lipid hydroperoxides. GPx-3 is pro-

duced primarily in the renal promixal tubules and is the only 

isoform in the GPx family that is found in the extracellular 

space. During platelet activation, specifically, activation of 

the second messenger cascade and the cytoskeletal changes 

that occur, ROS are generated.133 Hydrogen peroxide produc-

tion as a result of collage-stimulated platelet activation has 

been shown to reach concentrations up to 1 mM.134 GPx-3 

maintains NO bioavailability by preventing the accumulation 

of ROS like H
2
O

2
, allowing NO to exert an inhibitory effect 

on platelets and preventing platelet-dependent thrombosis. 

Through platelet/plasma mixing experiments, it was deter-

mined that NO bioavailability was too low to limit platelet 

activation in patient plasma. After glutathione peroxidase 

was exogenously added to the patient plasma, the inhibitory 

effects of NO were restored. We concluded that decreased 

levels of GPx-3 resulted in increase ROS flux, limiting the 

ability of NO to inhibit further platelet recruitment to the 

growing platelet thrombus (which is partly due to platelet-

derived NO135), resulting in a prothrombotic state. More 

recent studies have demonstrated an association between 

decreased GPx-3 activity in both arterial ischemic stroke136 

and cerebral venous thrombosis137 patients.

Hypertension
Endothelial dysfunction in hypertension and diabetes mellitus 

appears to be due, in part, to an imbalance in ROS genera-

tion and a decrease in NO bioavailability. This decrease in 

NO bioavailability contributes to endothelial dysfunction, 

a common property in essential hypertension138–140 and 

diabetes mellitus.141,142 Endothelial NOS plays a prominent 
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role in regulating NO bioavailability, which contributes to 

endothelial function or the lack thereof, in various vascu-

lar disease states. In most situations in which endothelial 

dysfunction occurs as a result of increased oxidative stress, 

eNOS expression is upregulated rather than decreased.143,144 

This paradoxical increase in eNOS expression is likely due 

to increased H
2
O

2
 production by the endothelium, which 

upregulates eNOS via the PI3/Akt pathway. Upregulation 

of eNOS expression in the setting of endothelial dysfunction 

shows that this increase in NO synthesis may not be sufficient 

to overcome the deleterious effects or other factors that limit 

and decrease overall NO bioavailability.

Several studies have shown that eNOS uncoupling due 

to insufficient levels of the cofactor BH
4
 can shift eNOS 

activity away from converting l-arginine to l-citrulline 

and NO production, toward generating O
2

−. via reduction 

of molecular oxygen.145,146 Although several studies have 

shown that l-arginine supplementation improves endothelial 

dysfunction,72,147,148 physiological concentrations in plasma 

(∼100 µM)149 far exceed the K
m
 of eNOS for l-arginine 

(∼3 µM),150,151 making substrate insufficiency an unlikely 

cause of eNOS uncoupling. As previously mentioned, BH
4
 

plays a critical role in eNOS activation that binds to heme 

and is involved in the electron transport-mediated release of 

NO and l-citrulline. Under conditions in which BH
4
 is lim-

ited, eNOS cannot transfer electrons efficiently and, instead, 

reduces molecular oxygen resulting in O
2
−. production. One 

possible cause of BH
4
 depletion may be attributed to its reac-

tivity with OONO−. Peroxynitrite is readily formed when NO 

reacts with O
2
−., which, in turn, can readily oxidize BH

4
 to the 

BH
3
 radical, resulting in eNOS uncoupling. Oxidative degra-

dation of BH
4
 by H

2
O

2
 and OONO− leading to the formation 

of 7,8-dihydro- l-biopterin, effectively competing for eNOS 

BH
4
 binding sites, also results in eNOS uncoupling.

A major source of ROS found in hypertension can be 

attributed to activity of the NADPH-oxidases. NADPH-

oxidase is a multisubunit enzyme that catalyzes the produc-

tion of O
2

−. by the 1-electron reduction of O
2
 using NADPH 

as the electron donor. An increase in NADPH-oxidase 

activity has been implicated with regulating vascular tone 

directly or indirectly by decreasing NO bioavailability 

through O
2

−. production.152,153 Several studies have shown 

an increase in NADPH-oxidase-dependent O
2
−. production 

resulting in decreased NO bioavailability.154,155 Superoxide 

dismutase, an antioxidant responsible for neutralization of 

O
2
−., was recently shown to prevent NADPH-oxidase-induced 

 oxidative stress in both the early stages of diabetes mellitus 

and hypertension,156 providing further evidence for redox 

imbalance contributing to endothelial dysfunction in these 

disorders.

Diabetes mellitus
As with hypertension, ROS generation and redox imbalance 

play a causative role in endothelial dysfunction in diabetes 

mellitus. Increased O
2

−. levels have been reported in diabetic 

rats157,158 as well as in diabetic hypertensive patients.159 

Hyperglycemia increases O
2

−. generation in endothelial 

cells.160 Possible mechanisms contributing to ROS genera-

tion under hyperglycemic conditions involve direct effects 

of glucose and free fatty acids on endothelial ROS produc-

tion, as well as via the generation of advanced glycation end 

(AGE)-products.

The activation of NADPH-oxidase has been implicated 

as a source of increased ROS formation in endothelial cells 

exposed to hyperglycemia161 as well as in hyperglycemic 

rats.162 NADPH-oxidase activation appears to occur via 

increased diacylglycerol-mediated activation of PKC161 and 

PI3-kinase-dependent activation of PKC,163 both of which 

result in ROS production. Free fatty acids also stimulate ROS 

formation in endothelial cells164,165 and appear to be associated 

with PKC activation.161 Recent studies have shown a syn-

ergistic activation of glucose-6-phosphate dehydrogenase, 

the rate limiting enzyme in the pentose phosphate pathway, 

and NADPH-oxidase resulting in increased O
2

−. generation 

in type 2 diabetic rats.166,162 AGE-products are formed as a 

result of nonenzymatic glycation and oxidation of proteins, 

lipids, and polynucleotides. The receptor for advanced glyca-

tion end-products (RAGE) is a pattern recognition receptor 

that interacts with a variety of ligands. RAGE signaling 

includes the activation of NF-κB, which is associated with 

inflammation.167 In vascular endothelial cells and monocytes, 

RAGE activation results in ROS formation via NADPH-

oxidase activation. Although there are many possible causes 

of endothelial dysfunction in the setting of hypertension and 

diabetes, ROS generation, specifically O
2
−., appears regulated 

principally by NADPH-oxidase activation.

Pharmacotherapies and vascular  
nitric oxide
effects of statins on nitric oxide
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase inhibitors (statins) are accepted as first-line agents 

for the prevention of cardiovascular diseases associated 

with atherosclerosis. Statins lower serum cholesterol by 

inhibiting the reduction of HMG-CoA to mevalonate, the 

rate-limiting step of liver cholesterol biosynthesis.168 Statins 
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have been shown to reduce adverse cardiovascular events 

independent of the reduction of lowered serum cholesterol 

levels, suggesting additional beneficial effects of the drugs. 

These cholesterol-independent, pleiotropic effects of statins 

include improvement in endothelial function, stability of 

atherosclerotic plaques, and a decrease in oxidative stress and 

inflammation.169 In endothelial cells, inactivation of RhoA by 

statins results in increased NO biosynthesis through increased 

expression of eNOS.170 Recently, Nohria et al171 demonstrated 

that high-dose atorvastatin inhibits the Rho/Rho-associated 

kinase pathway in patients with atherosclerosis, independent 

of cholesterol reduction.

Several studies have investigated the possible mecha-

nisms by which statins increase NO bioavailability. One 

such study by Laufs et al172 investigated whether statins 

can directly upregulate eNOS activity independent of a 

decrease in serum cholesterol levels. Human saphenous 

vein endothelial cells treated with oxidized-LDL resulted in 

decreased eNOS mRNA and protein levels (91% ± 4% and 

67% ± 8%) after 72 hours.172 Treatment with either simvas-

tatin or lovastatin resulted in increased eNOS expression by 

almost 4-fold. Actinomycin treatment revealed that statins 

also increased the half-life of eNOS mRNA, supporting the 

concept that upregulation of eNOS by statins occurs via a 

posttranscriptional mechanism. Other studies showed that 

statins increased eNOS activity via activation of the PI3/Akt 

kinase pathway, resulting in upregulation of eNOS, increased 

cGMP production, and NO biosynthesis.173,174

Another mechanism by which statins restore endothelial 

function is through the inhibition of NADPH oxidase activ-

ity and uncoupled eNOS-dependent O
2

−. production.175,176 

Cholesterol is a large component of caveolae, which 

constitute plasma membrane microdomains and are ubiq-

uitously present in endothelial cells.177 Caveolin-1 is a 22 

kDa protein constituent of caveolae which acts as a scaf-

folding protein that can modulate signaling of proteins 

and mediate transcytosis, transferring molecules from 

the lumen of blood vessels to the subendothelial space. 

Caveolae have been shown to be involved in the regula-

tion of eNOS, which targets to endothelial caveolae via 

N-terminal myristoylation and plamitoylation, forming an 

inhibitory complex, that renders the enzyme inactive.178 

This inhibitory complex can be reversed through increased 

Ca2+ concentrations, leading to Ca2+-calmodulin binding 

and caveolin displacement of eNOS.179 A recent study by 

Suh et al showed that rosuvastatin improved endothelial 

dysfunction in  spontaneously  hypertensive rats: the statin 

resulted in increased NO
x
  levels, phosphorylation of eNOS 

at Ser1177, and decreased caveolin-1 expression compared 

with controls.180

Nitrovasodilators and vascular  
nitric oxide
Nitrovasodilators have long been used in clinical settings to 

treat angina pectoris. Even though the physiological effects 

of nitrate administration is undeniably beneficial, the mecha-

nisms through which it exerts its effects on the endothelium 

and the heart are not fully understood. A number of stud-

ies have implicated several enzymes, such as glutathione 

S-transferase,181,182 oxidoreductases,183 and mitochondrial 

aldehyde dehydrogenase,184 in the bioactivation and conver-

sion of nitroglycerin to NO. Despite the extensive number 

of studies conducted, none have been able to explain the 

observation that maximal nitroglycerin-induced vasorelax-

ation occurs within minutes of administration,185 whereas 

NO produced from nitroglycerin bioactivation takes over an 

hour.186 Bonini et al recently investigated the possible role 

for eNOS-mediated vasodilation in response to nitroglycerin 

administration. In their study, the authors showed a decrease 

in systolic and diastolic pressures immediately after sub-

lingual nitroglycerin administration in rats. Treatment with 

NOS inhibitors, aminoguanidine and L-N5-(1-iminoethyl) 

ornithine dihydrochloride, inhibited average diastolic arte-

rial pressures and aortic ring relaxation compared with 

controls.187 They also showed a time course of nitroglycerin-

induced eNOS phosphorylation in HUVEC cells, which 

resulted in peak Ser1177-phosphorylation 5 minutes after 

treatment. Through their study, they suggested that eNOS 

modulation by nitroglycerin is involved in the immediate 

effects following nitroglycerin administration.

Conclusion
NO plays a versatile role in the vasculature, maintaining 

vascular tone, inhibiting or reversing platelet activity, and pre-

venting endothelial dysfunction often seen in vascular disease 

states. This highly reactive molecule contributes to vascular 

hemostasis through a variety of different pathways, with the 

classical signaling heme group-binding reaction leading to 

activation of soluble guanylyl cyclase to produce cGMP as 

a central mechanism. Not surprisingly, NO exerts its inhibi-

tory effects on platelets primarily, but not entirely, through 

cGMP generation, which, in turn, decreases intracellular 

Ca2+ concentration, GPIIb/IIIa expression, platelet fibrinogen 

binding, and platelet surface P-selectin expression. In the 

vasculature, an increase in ROS leading to NO  insufficiency 

defines the pathobiological state of oxidant stress. Oxidant 
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stress can arise from pathophysiological stimulation of 

enzymatic sources and can result in a perturbation of normal 

endothelial and platelet function. Although NO inactivation 

is primarily due to deleterious interactions with ROS within 

the vasculature, other factors limiting cofactor or substrate 

bioavailability may result in eNOS uncoupling, resulting in 

decreased NO generation. Nevertheless, despite the increas-

ing amount of information acquired since the discovery of 

endogenous NO 3 decades ago, many questions remain about 

the versatile nature of NO itself, and the complex interactions 

in which it is involved. With respect to potential new thera-

pies intended to treat disease states, such as hypertension, 

diabetes mellitus, and atherothrombosis, associated with NO 

insufficiency, more studies, both basic and clinical, are clearly 

needed to elucidate the complex role NO plays in treating or 

preventing these common disorders.
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