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Abstract.—A challenge to understanding biological diversification is accounting for community-scale processes that cause
multiple, co-distributed lineages to co-speciate. Such processes predict non-independent, temporally clustered divergences
across taxa. Approximate-likelihood Bayesian computation (ABC) approaches to inferring such patterns from comparative
genetic data are very sensitive to prior assumptions and often biased toward estimating shared divergences. We introduce a
full-likelihood Bayesian approach, ecoevolity, which takes full advantage of information in genomic data. By analytically
integrating over gene trees, we are able to directly calculate the likelihood of the population history from genomic data, and
efficiently sample the model-averaged posterior via Markov chain Monte Carlo algorithms. Using simulations, we find that
the new method is much more accurate and precise at estimating the number and timing of divergence events across pairs
of populations than existing approximate-likelihood methods. Our full Bayesian approach also requires several orders of
magnitude less computational time than existing ABC approaches. We find that despite assuming unlinked characters (e.g.,
unlinked single-nucleotide polymorphisms), the new method performs better if this assumption is violated in order to retain
the constant characters of whole linked loci. In fact, retaining constant characters allows the new method to robustly estimate
the correct number of divergence events with high posterior probability in the face of character-acquisition biases, which
commonly plague loci assembled from reduced-representation genomic libraries. We apply our method to genomic data
from four pairs of insular populations of Gekko lizards from the Philippines that are not expected to have co-diverged. Despite
all four pairs diverging very recently, our method strongly supports that they diverged independently, and these results are
robust to very disparate prior assumptions. [Bayesian model choice; biogeography; Dirichlet process prior; phylogeography.]

To understand the distribution of Earth’s biodiversity,
we must consider the degree to which environmental
changes explain diversity within and among species.
A major component of this is understanding how
community-scale processes cause co-diversification
across evolutionary lineages. Such processes are
expected to generate patterns of divergence times that
are difficult to explain by lineage-specific processes
of diversification. Specifically, finding that divergences
are temporally clustered across multiple evolutionary
lineages provides compelling evidence that a shared
process was responsible for the lineages diverging.
For example, the fragmentation of an environment,
such as an island, forest, or watershed, can cause
multiple taxa distributed across that environment to
co-diverge over a short period relative to evolutionary
timescales (Fig. 1). One way to test the predictions
of such processes of diversification is to infer the
temporal pattern of divergences across multiple taxa,
and determine whether any subsets of the taxa shared
the same divergence times.

If researchers are interested in comparing the
divergence times among a number of pairs of
populations, we can approach this as a problem of
model choice: how many divergence events, and what
assignment of taxa to those events, best explain the
genetic variation within and between the diverged
populations of each pair (Fig. 1)? One challenge of this
inference problem is the number of possible models. If
we have N pairs of populations, we would like to assign
them to an unknown number of divergence events, k,
which can range from one to N . For a given number

of divergence events, the Stirling number of the second
kind tells us the number of ways of assigning the taxa to
the divergence times (i.e., the number of models with k
divergence-time parameters):

S2(N ,k)= 1
k!

k−1∑
i=0

(−1)i
(

k
i

)
(k−i)N . (1)

When the number of divergence times is unknown, we
need to sum over all possible values of k to get the total
number of possible divergence models (the Bell number;
Bell, 1934)):

BN =
N∑

k=1

S2(N ,k). (2)

As the number of pairs we wish to compare grows,
the prospect of comparing maximum or marginal
likelihoods among all possible models quickly becomes
daunting. As a result, a Bayesian model-averaging
approach is appealing, because it allows the data to
determine which models are most relevant.

Methods have been developed to perform this
model averaging using approximate-likelihood Bayesian
computation (ABC) (Hickerson et al. 2006; Huang
et al. 2011; Oaks 2014). However, these methods often
struggle to detect multiple divergence times across pairs
of populations (Oaks et al. 2013, 2014) or have little
information to update a priori expectations (Oaks 2014).
More fundamentally, the loss of information inherent to
ABC approaches can prevent them from discriminating
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FIGURE 1. A cartoon depiction of the inference problem for three pairs of insular lizard populations. Three ancestral species of lizards
co-occurred on a paleo-island that was fragmented into two islands by a rise in sea levels at �1. The island fragmentation caused the second and
third (from the top) lineages to co-diverge; the first lineage diverged later (at �2) via over-water dispersal. The five possible divergence models
are shown to the right, with the correct model indicated. The divergence-time parameters (�1 and �2) and the pair-specific divergence times (t1,
t2, and t3) are shown. The third population pair shows the notation used in the text for the biallelic character data (n,r = (n1,r1),(n2,r2)) and
effective sizes of the ancestral (NR

e ) and descendant (ND1
e and ND2

e ) populations. The lizard silhouette for the middle pair is from pixabay.com,
and the other two are from phylopic.org; all were licensed under the Creative Commons (CC0) 1.0 Universal Public Domain Dedication.

among models (Robert et al. 2011; Marin et al. 2013; Green
et al. 2015).

One proposed solution is to focus the inference
problem on whether or not all pairs diverged at the
same time (i.e., k =1 versus k >1) (Hickerson et al.
2014). However, limiting the inference in this way is
often not satisfactory, because biogeographers rarely
expect that all of the pairs of populations they wish to
compare diverged at the same time. Limiting ourselves
to the hypothesis of a single shared divergence would
not recognize situations where only a subset of taxa
co-diverged, or where multiple shared divergences
have occurred. The latter is particularly relevant when
multiple landscape changes are known to have occurred.
More fundamentally, Papadopoulou and Knowles (2016)
astutely point out that all of the pairs co-diverging is not
the correct null hypothesis. If we wish to test for shared
divergences, it is more appropriate to consider all the
pairs diverging independently as the null expectation.

Here, our goal is to develop a new Bayesian model-
choice approach to this problem that handles many more
genetic loci, takes full advantage of the information in
those loci, and therefore, more reliably estimates the
number of divergence events and the assignment of taxa
to those events. Our method leverages recent analytical
work (Bryant et al. 2012) to efficiently and directly
compute the full-likelihood of divergence models from
genomic data. By efficiently using all of the information
in the data, the new method is faster, more accurate, and
more precise than approximate-likelihood methods for
estimating shared divergences. We introduce the new

method and its assumptions, assess its performance with
simulated data, and apply it to genomic data from geckos
from the Philippine Islands.

METHODS

The Data
We assume we have genetic data from multiple pairs

of populations, and our goal is to estimate the time
at which the two populations of each pair diverged,
and compare these divergence times across the pairs.
For each pair of populations that we wish to compare,
we assume that we have collected orthologous genetic
markers with at most two states. We will refer to these
as “biallelic characters,” but note that this includes
constant characters (i.e., characters for which all the
samples from the two populations share the same
state). We follow Bryant et al. (2012) in referring to the
two possible states as “red” and “green.” We assume
each character is effectively unlinked, i.e., each marker
evolved along a gene tree that is independent of the
others, conditional on the population history. Examples
include well-spaced, single-nucleotide polymorphisms
(SNPs), or amplified fragment-length polymorphisms.

For each population and for each marker we sample n
copies of the locus, r of which are copies of the red allele
and the remaining n−r are copies of the green allele; r
can range from zero to n. Thus, for each population of
a pair, and for each locus, we have a count of the total
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TABLE 1. A key to some of the notation used in the text

Symbol Descriptions

N The number of population pairs being compared.
k The number of divergence times (or “events”) across the population pairs being compared.
ti The time in the past when the two populations of pair i diverged.
� The time of a divergence event at which one or more pairs of populations diverged.
T The divergence model, which comprises the divergence times and the mapping of the population pairs to those times.
τ All of the unique divergence times in the model (τ =�1,...,�k ).
T The mapping of population pairs to divergence events, but not the times of the events.
H The base distribution of the Dirichlet process.
� The concentration parameter of the Dirichlet process.
n, r The number of copies of a locus sampled from a population, and the number of those copies that are the “red” allele.
n, r The allele counts from both populations of a pair (i.e., n,r = (n1,r1),(n2,r2)).
Di The allele counts across all the loci from population pair i. That is, all of the characters being analyzed for population pair i.
m The number of loci collected for a pair of populations.
D All of the data being analyzed, i.e., the character matrices from all population pairs.
g A gene tree with branch lengths.
� The rate of mutation.
u Relative rate of mutating from the “red” to “green” state.
v Relative rate of mutating from the “green” to “red” state.
� The stationary frequency of the “green” state.
NR

e The effective size of the ancestral population.
ND1

e , ND2
e The effective sizes of the two descendant populations of a pair.

Ne Shorthand notation for all three effective population sizes for a pair (ancestral and the two descendant populations).
S The species tree for a pair of populations. This comprises the three effective population sizes (ancestral and the two descendant)

and the time of divergence.

sampled gene copies and how many of those are the red
allele.

We will use n and r to denote allele counts for a locus
from both populations of a pair; i.e., n,r = (n1,r1),(n2,r2)
(Fig. 1 and Table 1). We will also use “character pattern”
to refer to n,r. We will use Di to denote these counts
across all the loci from population pair i. In other words,
Di is all the genetic data collected from population pair
i. Finally, we use D to represent the data across all
the pairs of populations of which we wish to compare
the divergence times. Note, because the pairs are
unconnected (Fig. 1 and Supplementary Fig. S1 available
on Dryad at http://dx.doi.org/10.5061/dryad.4b3j2bj),
different characters can be collected for each pair (i.e.,
characters do not need to be orthologous across the
pairs).

The Model
The evolution of markers.—We assume a finite-sites,
continuous-time Markov chain (CTMC) model for the
evolution of the biallelic characters along a gene tree with
branch lengths, g. As the marker evolves along the gene
tree, forward in time, there is an instantaneous relative
rate u of mutating from the red state to the green state,
and a corresponding relative rate v of mutation from
green to red. The stationary frequency of the red and
green state is then v/(u+v) and u/(u+v), respectively.
Thus, if given the stationary frequency of the green allele,
�, we can obtain the relative rates of mutation between
the two states. We will denote the overall rate of mutation
as �. If a mutation rate per site per unit time is given,
then branch lengths are in absolute time. Alternatively,
if �=1, the branch lengths of the gene tree are in units
of expected substitutions per site. In such a case, for a

given pair of populations, the � is redundant, because it
can be incorporated into the branch lengths of the gene
tree. However, we introduce the notation here, because it
will be useful later when we want to allow rate variation
among pairs of populations.

The evolution of gene trees.—We assume that each marker
sampled from a pair of populations evolved within a
simple “species” tree with one ancestral root population
that diverged into two descendant (terminal) branches
at time t (Fig. 1). Again, if the � is given, t is in units
of absolute time; however, if � is set to one, time is in
units of expected substitutions per site. We will use Ne
to denote all three effective sizes of a population pair
(NR

e , ND1
e , and ND2

e ). We will also use S as shorthand for
the species tree, which comprises the population sizes
and divergence time of a pair (Ne and t).

The likelihood.—Given �, �, and S, the probability of the
observed data at a locus (n and r), is the probability
of the character pattern given the gene tree multiplied
by the probability of the gene tree given the species
tree, summed over all possible gene tree topologies and
integrated over all possible gene tree branch lengths,

p(n,r |S,�,�)=
∫

g
p(n,r |g,�,�)p(g,�,� |S)dg (3)

(Felsenstein 1988; Nielsen and Wakeley 2001; Rannala
and Yang 2003). We take advantage of the mathematical
work of Bryant et al. (2012) to analytically integrate
over all possible gene trees and all possible character
substitution histories along those gene trees. This allows
us to compute the likelihood of the species tree directly
from a biallelic character pattern under a coalescent

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
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model, i.e., p(n,r |S,�,�). We refer readers to Bryant et al.
(2012) for the details of this likelihood and the algorithms
to compute it.

Assuming independence among loci (conditional on
the species tree), we can calculate the probability of m
loci given the species tree by simply taking the product
over them,

p(D |S,�,�)=
m∏

i=1

p(ni,ri |S,�,�). (4)

Finally, assuming our N pairs are independent, the
overall likelihood is simply the product of the likelihood
of each pair,

p(D|S,μ,π)=
N∏

i=1

p(Di |Si,�i,�i), (5)

where D=D1,D2,...,DN , S =S1,S2,...,SN ,
μ=�1,�2,...,�N , and π=�1, �2,...,�N .

Correcting for excluded constant characters.—If we exclude
constant characters and only analyze variable characters,
we need to correct the sample space for the excluded
constant characters. We can correct the likelihood by
simply dividing by the probability of a variable character,
which is equal to one minus the probability of a constant
character,

p(n,r |S,�,�,variable)

= p(n,r |S,�,�)
p(variable|S,�,�)

= p(n,r |S,�,�)
1−p(constant|S,�,�)

= p(n,r |S,�,�)
1−p(n all red|S,�,�)−p(n all green|S,�,�)

. (6)

When we take the product over loci to get the probability
of all the variable data collected from a pair of
populations, we correct each character pattern to allow
for different numbers of sampled gene copies among
loci,

p(D |S,�,�,variable)

=
m∏

i=1

p(ni,ri |S,�,�)
1−p(ni all red|S,�,�)−p(ni all green|S,�,�)

.

(7)

This is a bit different than the correction done in the
software SNAPP (Bryant et al. 2012). If we use max(n)
to denote the maximum number of gene copies sampled
from each population, then the correction in SNAPP is

pSNAPP(D |S,�,�,variable)

=
∏m

i=1p(ni,ri |S,�,�).
(1−p(max(n) all red|S,�,�)

−p(max(n) all green|S,�,�))m

. (8)

These are equivalent if the same number of samples
are collected across all variable loci for each population
(i.e., no missing gene copies) but will deviate if fewer
copies are sampled for at least one locus. Thus, identical
likelihoods between SNAPP and our method should not
be expected when analyzing variable-only data.

Bayesian Inference
We can obtain a posterior probability distribution by

naively plugging the likelihood in Equation 5 into Bayes’
rule,

p(S,μ,π |D)= p(D|S,μ,π)p(S,μ,π)
p(D)

. (9)

However, this assumes all pairs of populations diverged
independently, not allowing us to learn about shared
divergence times. What we want to do is relax
this assumption and allow pairs to share divergence
times.

Let’s use T to represent the divergence model, which
comprises the divergence times—the number of which
(k) can range from 1 to N —and the mapping of non-
overlapping subsets of the population pairs to these
k divergence times. We will separate out T into two
components,

1. the partitioning of the N population pairs to
divergence events, which we will denote as
T , and

2. the divergence times themselves, τ=�1,...,�k , the
number of which (k) is determined by T .

We relax the assumption of independent divergence
times by treating the number of divergence events and
the assignment of population pairs to those events as
random variables under a Dirichlet process (Ferguson,
1973; Antoniak, 1974). Specifically, we use the Dirichlet
process as a prior on divergence models, T ∼DP(H,�),
where H is the base distribution of the process and �
is concentration parameter that controls how clustered
the process is. The concentration parameter determines
the prior probability of T (the partitioning of the
population pairs) and the base distribution determines
the prior probability of the divergence time of each
subset.

Under the Dirichlet process prior, the posterior
becomes

p(�,T,Ne ,μ,π |D,H)

= p(D|T,Ne ,μ,π)p(T |�,H)p(�)p(Ne )p(μ)p(π)
p(D,H)

, (10)

where Ne is the collection of the effective population
sizes (Ne) across all of the pairs. By expanding the
divergence model (T) into the partitioning of the
population pairs to divergence events (T ) and the times
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of those events (τ), we get

p(�,τ,T ,Ne ,μ,π |D,H)

= p(D|τ,T ,Ne ,μ,π)p(T |�)p(τ |T ,H)p(�)p(Ne)p(μ)p(π)
p(D,H)

.

(11)

Prior on the concentration parameter. Given a single
parameter, �, the Dirichlet process determines the
prior probability of all the possible ways the N
pairs of populations can be partitioned to k =1,2,...N
divergence events. Given �, the prior probability that two
pairs of populations, i and j (assuming i �= j), share the
same divergence time is

p(ti = tj |�)= 1
1+�

(12)

This illustrates that when � is small, the process tends
to be more clumped, and as it increases, the process
tends to favor more independent divergence times. One
option is to simply fix the concentration parameter to
a particular value, which is likely sufficient when the
number of pairs is small. Alternatively, we allow a
hierarchical approach to accommodate uncertainty in
the concentration parameter by specifying a gamma
distribution as a prior on � (Escobar and West 1995;
Heath et al. 2011).

Prior on the divergence times. Given the partitioning
of the pairs to divergence events, we use a gamma
distribution for the prior on the time of each event,
� |T ∼Gamma(·,·). This is the base distribution (H) of
the Dirichlet process.

Prior on the effective population sizes. For the two
descendant populations of each pair, we use a gamma
distribution as the prior on the effective population sizes.
For the root population, we use a gamma distribution
on the effective population size relative to the mean size
of the two descendant populations, which we denote
as RNR

e
. For example, a value of one would mean the

root population size is equal to (ND1
e +ND2

e )/2. The goal
of this approach is to allow more informative priors
on the root population size; we often have stronger
prior expectations for the relative size of the ancestral
population than the absolute size. This is important,
because the effective size of the ancestral population
is a difficult nuisance parameter to estimate and can
be strongly correlated with the divergence time. For
example, if the divergence time is so old such that
all the gene copies of a locus coalesce within the
descendant populations, the locus provides very little
information about the size of the ancestral population.
As a result, a larger ancestral population and more recent
divergence will have a very similar likelihood to a small
ancestral population and an older divergence. Thus,
placing more prior density on reasonable values of the

ancestral population size can help improve the precision
of divergence-time estimates.

Prior on mutation rates. In the model presented above,
for each population pair, the divergence time (�) and
mutation rate (�) are inextricably linked. For a single pair
of populations, if little is known about the mutation rate,
this problem is easily solved by setting it to one (�1 =1)
such that time is in units of expected substitutions per
site and the effective population sizes are scaled by �.
However, what about the second pair of populations
for which we wish to compare the divergence time to
the first? Because the species trees in our model are
disconnected (Fig. 1 and Supplementary Fig. S1 available
on Dryad), we cannot learn about the relative rates of
mutation across the population pairs from the data. As
a result, we need strong prior information about the
relative rates of mutation across population pairs for this
model to work.

If the second pair of populations is closely related
to the first, and shares a similar life history, we could
assume they share the same mutation rate and set the
mutation rate of the second pair to one as well (�1 =�2 =
1). Alternatively, we could relax that assumption and
put a prior on �2. However, this should be a strongly
informative prior. Placing a weakly informative prior
on �2 would mean that we can no longer estimate its
divergence time relative to the first pair, which is our
primary goal. So, while it is possible to incorporate
uncertainty in relative mutation rates, it is important
to keep in mind that the data cannot inform these
parameters, and thus the prior uncertainty in rates will
be directly reflected in the posterior of divergence times.

Prior on the equilibrium-state frequency. Our method
allows for a beta prior to be placed on the frequency
of the green allele for each pair of populations, �i ∼
Beta(·,·). However, if using SNP data, we advise fixing
the frequency of the red and green states to be
equal (i.e., �=0.5). The reason for this is that there
is no natural way of re-coding four-state nucleotides
to two states, and so the relative transition rates, u
and v, are not biologically meaningful. There will
always be arbitrariness associated with how one decides
to perform this re-coding, and unless �=0.5, this
arbitrariness will affect the likelihood and results.
Constraining � to 0.5 makes the CTMC model a two-
state analog of the “JC69” model (Jukes and Cantor 1969).
However, if the genetic markers are naturally biallelic,
the frequencies of the two states can be meaningfully
estimated, making the model a two-state general time-
reversible model (Tavaré 1986).

Approximating the posterior with Markov chain Monte
Carlo.—We use Markov chain Monte Carlo (MCMC)
algorithms to sample (approximately) from the joint
posterior in Equation 11. To update the divergence
model (T) during the chain, we use the Gibbs
sampling algorithm (Algorithm 8) of Neal (2000).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
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We also use univariate Metropolis–Hastings algorithms
(Metropolis et al. 1953; Hastings 1970) to update each
parameter of the model during the MCMC. To improve
mixing of the chain when there are strong correlations
between divergence times, effective population sizes,
and mutation rates we use multivariate Metropolis–
Hastings algorithms. The details of these multivariate
moves can be found in Appendix.

Software Implementation
The method outlined above is implemented in the

open-source software package, ecoevolity, written
in the C++ language. The source code is freely available
from https://github.com/phyletica/ecoevolity, and
documentation is available at http://phyletica.
org/ecoevolity/. The software package is accompanied
by an extensive test suite, which, among other aspects,
validates that the likelihood code returns the same
values as SNAPP (Bryant et al. 2012), and all of our
MCMC proposals sample from the expected prior
distribution when data are ignored.

The ecoevolity package includes four programs:

1. ecoevolity for performing Bayesian inference
under the model described above.

2. sumcoevolity for summarizing posterior
samples collected by ecoevolity and
performing simulations to calculate Bayes factors
for all possible numbers of divergence events.

3. simcoevolity for simulating biallelic characters
under the model described above.

4. DPprobs for Monte Carlo approximations of
probabilities under the Dirichlet process; this can
be useful for choosing a prior on the concentration
parameter.

We have also developed a Python package,
pycoevolity, to help with preprocessing data
and summarizing posterior samples collected by
ecoevolity. This includes assessing MCMC chain
stationarity and convergence and plotting posterior
distributions. The source code for pycoevolity is
available at https://github.com/phyletica/pycoevolity.

All of our analyses were performed with Version
0.1 (commit 1d688a3) of the ecoevolity software
package. The TimeRootSizeMixer algorithm
implemented in this version of the software only
updates one ancestral population size per proposal.
In Version 0.2 (commit 884780e), the default behavior
is for the TimeRootSizeMixer proposal to update
the ancestral population size for all other pairs
associated with the same divergence time (see
above). While this tends to improve mixing slightly,
it does not change the results we present here in a
meaningful way. Our results can be reproduced exactly
with Version 0.1. To help facilitate reproducibility,
a detailed history of this project is available at

https://github.com/phyletica/ecoevolity-experiments,
including all of the data and scripts needed to produce
our results.

Analyses of Simulated Data
Validation analyses.—Our first step to validate the new
method was to verify that it behaves as expected when
the model is correct (i.e., data are simulated and analyzed
under the same model). We used the simcoevolity
tool from the ecoevolity package, which simulates
data under the model described above. All data were
simulated under the following settings:

1. N =3

2. n =10 (i.e., 10 alleles—five diploid individuals—
sampled from each population)

3. �=1.414216, which corresponds with a prior mean
of k =2 divergence events

4. �∼Exponential(mean=0.01)

5. �=0.5

6. �=1

We simulated data under five different settings for
the effective population sizes. The first setting was
an idealized situation where all population sizes were
known and equal, NR

e =ND1
e =ND2

e =0.002. The four
remaining scenarios differed in their distribution on the
relative effective size of the root population:

1. RNR
e
∼Gamma(shape=2,mean=1)

2. RNR
e
∼Gamma(shape=10,mean=1)

3. RNR
e
∼Gamma(shape=100,mean=1)

4. RNR
e
∼Gamma(shape=1000,mean=1)

For these four scenarios, the descendant populations
were distributed as Gamma(shape=5,mean=0.002).
The most difficult nuisance parameter to estimate for a
pair of populations is the root population size, which
can be correlated with the parameter of interest, the
divergence time. Thus, our choice of simulation settings
is designed to assess how uncertainty in the root
population size affects inference.

Under each of the five scenarios, we simulated 500 data
sets of 100,000 characters and 500 data sets of 500,000
characters. This includes constant characters; the mean
number of variable SNPs was approximately 5500 and
27,500, respectively. We then analyzed all 5000 simulated
data sets in ecoevolity both with and without
constant characters included. For all analyses, the prior
for each parameter matched the distribution the true
value was drawn from when the data were simulated.
For analyses where NR

e =ND1
e =ND2

e =0.002, we ran
three independent MCMC chains for 37,500 generations,
sampling every 25th generation. For all other analyses,
we ran the three chains for 75,000 generations, sampling

https://github.com/phyletica/ecoevolity
http://phyletica.org/ecoevolity/
https://github.com/phyletica/ecoevolity
https://github.com/phyletica/pycoevolity
https://github.com/phyletica/ecoevolity-experiments
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every 50th generation. As a result, we collected 4503
samples for each analysis (1501 samples from each chain,
including the initial state).

In order to assess the frequentist behavior of the
posterior probabilities of divergence models inferred
by ecoevolity, we simulated an additional 20,000
data sets of 100,000 characters under the setting where
RNR

e
∼Gamma(shape=100,mean=1). All 20,500 data

sets were analyzed with ecoevolity and binned based
on the inferred posterior probability that k =1. The mean
posterior probability that k =1 for each bin was plotted
against the proportion of data sets within the bin for
which the true divergence model was k =1; the latter
approximates the true probability that k =1. If the new
method is unbiased, in a frequentist sense, the inferred
posterior probabilities that k =1 within a bin should
approximately equal the proportion of the data sets for
which that is true (Huelsenbeck and Rannala 2004; Oaks
2014; Oaks et al. 2013).

Assessing the effect of linked characters.—The characters
of most data sets being collected by high-throughput
technologies do not all evolve along independent gene
trees. Most consist of many putatively unlinked loci
that each comprise sequences of linked nucleotides. For
example, “RADseq” and “sequence capture” techniques
generate thousands of loci that are approximately 50–300
nucleotides in length. This creates a question when using
methods like ecoevolity that assume each character
is independent: Is it better to violate the assumption of
unlinked characters and use all of the data, or throw
away much of the data to avoid linked characters?

To better adhere to the unlinked-character
assumption, we could retain only a single site per
locus. However, this results in a very large loss of data.
Furthermore, to try and maximize the informativeness
of the retained characters, most researchers retain
only one variable character per locus. While this can
be corrected for (see Equation 7), it still results in the
loss of a very informative component of the data: the
proportion of variable characters. Before throwing away
so much information, we should determine whether it
is in our best interest. In other words, does keeping all
of the data and violating the assumption of unlinked
characters result in better or worse inferences than
throwing out much of our data?

To address this question, we simulated data sets
composed of loci of linked sites that were 100, 500,
and 1000 characters long. The characters for each locus
were simulated along the same gene tree (i.e., no
intra-locus recombination). Simulated data sets were
analyzed with ecoevolity in one of three ways: (1)
All characters were included, (2) only variable characters
were included, and (3) only a maximum of one variable
character per locus was included. Only the last option
avoids violating the assumption of unlinked characters,
but throws out the most data.

For all three locus lengths, we simulated 500
data sets with a total of 100,000 and 500,000

characters. The settings of the simulations performed
with simcoevolity, and subsequent analyses with
ecoevolity, correspond with the validation analyses
described above where the relative size of the
root population was distributed as Gamma(shape=
100,mean=1). Furthermore, to assess the affect of linked
characters on the posterior probabilities of divergence
models, we simulated an additional 10,000 data sets with
1000, 100-character loci (100,000 total characters each). As
described above, to assess the frequentist behavior of the
inferred posterior probabilities, we binned the results
of the analyses of these 10,500 data sets based on the
posterior probability that k =1 and plotted the mean of
each bin against the approximated true probability that
k =1.

Assessing the effect of missing data.—The method should
be robust to missing data, because it is simply treated
as a smaller sample of gene copies from a particular
population for a particular locus. Because each character
is assumed to have evolved along a coalescent gene tree,
the identity of each gene copy within a population does
not matter. Thus, some loci having fewer sampled gene
copies from some populations should result in more
variance in parameter estimates, but is not expected to
create bias. To confirm this behavior, we simulated data
sets with different probabilities of sampling each gene
copy. Specifically, we simulated data sets for which the
probability of sampling each gene copy was 90%, 75%,
or 50%, which resulted in data sets with approximately
10%, 25%, or 50% missing data. For each sampling
probability, we simulated 100 data sets with 500,000
unlinked characters; the settings were the same as
described for the validation analyses above where RNR

e
∼

Gamma(shape=100,mean=1).

Assessing the effect of biases in character-pattern
acquisition.—When analyzing the Gekko data (see
below), we observed large discrepancies in the
estimated divergence times depending on whether
or not the constant characters were removed from
the analysis. This was not observed in the analyses of
simulated data, because the likelihood is appropriately
corrected for the excluded constant characters. This
suggests that there are additional character-pattern
acquisition biases in the empirical data, for which are
our method cannot correct. Such acquisition biases
have been documented during the de novo assembly of
RADseq loci (Harvey et al. 2015; Linck and Battey 2017).

The loss of rare alleles during the acquisition and
assembly of the data could explain the much larger
divergence times estimated from the empirical data
when constant characters are removed. After the
constant characters, the rare alleles are “next in line”
to inform the model that the population divergence
was recent. If these patterns are being lost during data
acquisition and assembly, and not accounted for in the
likelihood calculation, this should create an upward bias
in the divergence time estimates.
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To explore whether data acquisition bias can explain
the discrepancy we observed for the Gekko data, we
simulated data sets where the probability of sampling
singleton character patterns (i.e., one gene copy is
different from all the others) was 80%, 60%, and 40%.
For each, we simulated and analyzed 100 data sets with
500,000 unlinked characters; the settings were the same
as described for the validation analyses above where
RNR

e
∼Gamma(shape=100,mean=1).

Comparison to ABC methods.—We wanted to compare the
performance of the new method to the existing ABC
method dpp-msbayes (Oaks 2014). In order to do this,
we had to simulate relatively small data sets that the
ABC method could handle in a reasonable amount of
time. Accordingly, we simulated data sets with 200 loci,
each with 200 linked characters (40,000 total characters).
For simulations and analyses of both ecoevolity and
dpp-msbayes, the settings were

1. N =3

2. n =10 (i.e., 10 alleles—five diploid individuals—
sampled from each population)

3. �=1.414216, which corresponds with a prior mean
of k =2 divergence events

4. �∼Gamma(shape=2,mean=0.05)

5. �=1

For dpp-msbayes, we placed a Gamma(shape=
5,mean=0.008) distribution on 4Ne� for the
ancestral and both descendant populations of each
pair. Accordingly, for ecoevolity, we used a
Gamma(shape=5,mean=0.002) distribution on
Ne� for both descendant populations of each pair. For
the relative effective size of the ancestral population in
ecoevolity, we used a Gamma(shape=100,mean=1)
distribution; this induces a marginal prior distribution
on NR

e similar to that used for dpp-msbayes. For
analyses with dpp-msbayes, we assumed a Jukes–
Cantor model of nucleotide substitution, whereas for
the ecoevolity, we assumed the two-state equivalent
(i.e., �=0.5).

Each method was applied to 500 data sets simulated
under its own model. Thus, there were no model
violations, except for the new method, for which the
assumption of unlinked characters was violated by the
200-character loci. For the analysis of each simulated
data set with ecoevolity, three independent MCMC

chains were run for 75,000 generations, sampling
every 50th generation. For the dpp-msbayes analyses,
500,000 samples were simulated from the joint prior
distribution. To determine which samples to retain for
the approximate posterior, for each pair we used the
mean of four summary statistics across all the loci:

1. The number of segregating sites (�W ; Watterson,
1975),

2. the average number of pairwise differences across
all gene copies (�; Nei and Li, 1979),

3. the net number of pairwise differences between the
two populations (Equation 25 in Nei and Li, 1979),
and

4. the standard deviation in the difference between �
and �W (Tajima 1989).

After standardizing these statistics, the 2000 prior
samples that were closest to the same statistics calculated
from a simulated data set were retained as the
approximate posterior.

Empirical Application
Previous methods for estimating shared divergence

times often over-cluster taxa (Oaks et al. 2013, 2014).
Thus, a good empirical test of the new method
would be pairs of populations that we expect diverged
independently of one another. We analyzed restriction-
site-associated sequence (RADseq) data from four pairs
of populations of Gekko lizards (Table 2). Each pair
of populations inhabit two different oceanic islands
in the Philippines that were never connected during
lower sea levels of glacial periods. Because these islands
were never connected, the divergence between the
populations of each pair is likely due to over-water
dispersal, the timing of which should be idiosyncratic to
each pair. We used previous phylogenetic results based
on different genetic data (Siler et al. 2012; Siler et al. 2014)
to help ensure that the pairs are independent (i.e., they
do not overlap each other in the phylogeny of Gekko).

We analyzed the data with and without the constant
characters. Also, there were a small number of sites
that had more than two nucleotides represented
(Table 2), which cannot be handled directly by our
model of biallelic characters. We explored two ways of
handling these sites: (1) excluding them and (2) coding
the first nucleotide in the alignment as 0 (“green”),
and all other nucleotides for that site as 1 (“red”).

TABLE 2. A summary of the data collected from the pairs of Gekko populations from the Philippines

Species Island 1 Island 2 Sample sizes # loci # sites # variable # polyallelic

G. crombota-rossi Babuyan Claro Calayan 5 5 16,901 1,538,408 5737 50
G. mindorensis Lubang Luzon 5 4 18,137 1,651,186 12,092 68
G. mindorensis Maestre De Campo Masbate 3 3 15,993 1,455,238 11,845 27
G. sp. B-sp. A Camiguin Norte Dalupiri 5 5 15,199 1,383,596 5612 31

Notes: Each row represents a pair of populations sampled from two islands that were never connected during low sea levels of glacial periods.
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Thus, between including/excluding the constant sites
and removing/re-coding the polyallelic characters, we
analyzed four versions of the RADseq data.

To be conservative in assessing the ability of the
new method to distinguish divergence times among the
pairs, we set �=0.44, which places 50% of the prior
probability on one divergence event (i.e., all four pairs
sharing the same divergence). Furthermore, to assess the
sensitivity of the results to �, we also used �=3.77, which
corresponds with a prior mean number of divergence
events of three. Other settings that were shared by all
analyses of the Gekko RADseq data include:

• ND
e ∼Gamma(shape=4,mean=0.004)

• RNR
e
∼Gamma(shape=100,mean=1)

• �=0.5

• �=1 for all four pairs

The ABC methods of inferring shared divergence
events are very sensitive to the prior on divergence times
(Oaks et al. 2013; Hickerson et al. 2014; Oaks et al. 2014).
To assess whether results of our new method are also
sensitive to the prior on divergence times, we analyzed
the data sets that included constant characters under the
following priors:

1. �∼Exponential(mean=0.005)

2. �∼Exponential(mean=0.01)

3. �∼Exponential(mean=0.05)

4. �∼Exponential(mean=0.1)

5. �∼Exponential(mean=0.2)

For the two versions of the Gekko data that lacked the
constant characters, we used the following priors:

1. �∼Exponential(mean=0.01)

2. �∼Exponential(mean=0.05)

3. �∼Exponential(mean=0.1)

4. �∼Exponential(mean=0.2)

5. �∼Exponential(mean=0.5)

For all analyses, we ran 10 independent MCMC
chains for 150,000 generations, sampling every 100th
generation. Convergence and mixing of the chains was
assessed by the potential scale reduction factor (PSRF;
the square root of Equation 1.1 in Brooks and Gelman,
1998) and effective sample size (ESS; Gong and Flegal,
2016) of the log-likelihood and all parameters. We also
inspected the chains visually with the program Tracer
version 1.6 (Rambaut et al. 2014).

The collection and assembly of the Gekko
RADseq data are detailed by Oaks et al. (2018).
The sequence reads are available on the NCBI
Sequence Read Archive (Bioproject PRJNA486413,
SRA Study SRP158258) and the assembled data
matrices are available in our project repository
(https://github.com/phyletica/ecoevolity-experiments).

Empirical comparison to ABC.—The Gekko data set is
much too large to analyze with existing ABC methods
for estimating co-divergences. In order to compare the
results of the new full-likelihood method, ecoevolity,
to the ABC method, dpp-msbayes, we randomly
sampled (without replacement) 200 loci from three of the
pairs of Gekko populations. The prior settings we used
for the ecoevolity analysis of this reduced data set
was:

• �=1.414216, which corresponds with a prior mean
number of divergence events of two

• �∼Exponential(mean=0.1)

• ND
e ∼Gamma(shape=5,mean=0.002)

• RNR
e
∼Gamma(shape=100,mean=1)

• �=0.5

• �=1 for all three pairs

We used the same settings for the dpp-msbayes
analysis, except to account for the different
parameterization of effective population sizes, we
used a Gamma(shape=5,mean=0.008) prior on 4Ne�
for the ancestral and descendant populations.

For the ecoevolity analysis, we ran five
independent MCMC chains for 12,000 generations,
sampling every 10th generation. We assessed
convergence and mixing using the same methods
as we did for the analyses of the full Gekko data set,
described above. For the dpp-msbayes analysis, we
simulated 500,000 samples from the joint prior, and
to get a sample from the approximate posterior, we
retained the 5000 samples with summary statistics most
similar to those calculated from the reduced Gekko data
set. For each pair, we used two summary statistics: the
average number of pairwise differences across all gene
copies (�) and between the gene copies from the two
populations (�b) (Nei and Li 1979). For each pair, we
used the mean of both statistics across the 200 loci. The
results from simulated data demonstrate that additional
statistics that summarize information about effective
population sizes are not informing the ABC method
(see below).

RESULTS

Analyses of Simulated Data
Validation analyses.—When there is no model
misspecification, our new method has the desired
frequentist behavior wherein 95% of the time the true
value of a parameter falls within the 95% credible
interval. We see this for divergence times (Fig. 2) and
the effective sizes of descendant (Supplementary Fig. S2
available on Dryad) and ancestral (Supplementary
Fig. S3 available on Dryad) populations. Our results
also show that the estimated posterior probability of the

https://github.com/phyletica/ecoevolity-experiments
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
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FIGURE 2. The accuracy and precision of divergence time estimates, in units of expected subsitutions per site, when data are simulated and
analyzed under the same model (i.e., no model misspecification). The first four columns show the results from different distributions on the
relative effective size of the ancestral population, decreasing in variance from left to right. The fifth column shows results when the effective size
(Ne�) of all populations is fixed to 0.002. For the first two and last two rows, the simulated character matrix for each population had 500,000
and 100,000 characters, respectively. The first and third rows show the results of analyses using all characters, whereas the second and fourth
rows show the results when only variable characters are used. Each plotted circle and associated error bars represent the posterior mean and
95% credible interval for the time that a pair of populations diverged. Each plot consists of 1500 estimates—500 simulated data sets, each with
three pairs of populations. For each plot, the root mean square error (RMSE) and the proportion of estimates for which the 95% credible interval
contained the true value—p(t ∈CI)—is given. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

single divergence model (k =1) mirrors the probability
that the model is correct (Fig. 3). We see the same
behaviors whether or not the constant characters are
excluded, demonstrating that our likelihood correction
for excluded constant characters is working correctly
(Equation 7).

As expected, the precision of divergence time and
population size estimates is greater when the constant
characters are included and when there is greater prior
information about the ancestral population size (Fig. 2,
Supplementary Figs. S2 and S3 available on Dryad). The
increase in precision associated with the fivefold increase
in the number of sampled characters (100k to 500k) is
relatively modest (Fig. 2, Supplementary Figs. S2 and S3
available on Dryad). Retaining the constant characters
results in a much larger increase in precision than
collecting five times more characters.

The true model and number of divergence events
is included in the 95% credible set greater than 97%

of the time for all the simulation conditions (Fig. 4
and Supplementary Fig. S4 available on Dryad). The
frequency at which the correct number of events
has the largest posterior probability, and the median
posterior probability of the correct number of events,
increases when constant characters are retained and as
prior information about the ancestral population size
increases (Fig. 4). We see the same patterns for inferring
the correct divergence model (Supplementary Fig. S4).
As with the parameter estimates, the performance
increase associated with the increase from 100k to
500k sampled characters is moderate; retaining the
constant characters has a much larger effect (Fig. 4
and Supplementary Fig. S4 available on Dryad). When
constant characters are used, the median posterior
probability of the correct number of divergence events
is high (over 0.89 for all simulation conditions; Fig. 4).
Likewise, the median posterior probability of the correct
divergence model is greater than 0.887 across all

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
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FIGURE 3. Assessing frequentist behavior of divergence-model posterior probabilities when there is no model misspecification. A total
of 20,500 data sets were simulated and analyzed under the same model and assigned to bins of width 0.2 based on the estimated posterior
probability of a single, shared divergence event. The mean posterior probability of each bin is plotted against the proportion of data sets in the
bin for which a single, shared divergence is the true model. The number of data sets within each bin is provided next to the corresponding plotted
point. The left plot shows the results when all characters are analyzed, and the right plot shows the results when only the variable characters are
analyzed. All simulated data sets had three pairs of populations, each with 100,000 characters. We generated the plot using matplotlib Version
2.0.0 (Hunter 2007).

FIGURE 4. The ability of the new method to estimate the number of divergence events when data are simulated and analyzed under the same
model (i.e., no model misspecification). The first four columns show the results from different distributions on the relative effective size of the
ancestral population, decreasing in variance from left to right. The fifth column shows results when the effective size (Ne�) of all populations
is fixed to 0.002. For the first two and last two rows, the simulated character matrix for each population had 500,000 and 100,000 characters,
respectively. The first and third rows show the results of analyses using all characters, whereas the second and fourth rows show the results
when only variable characters are used. Each plot shows the results of the analyses of 500 simulated data sets, each with three population pairs;
the number of data sets that fall within each possible cell of true versus estimated numbers of events is shown, and cells with more data sets are
shaded darker. The estimates are based on the number of events with the maximum a posteriori (MAP) probability. For each plot, the proportion
of data sets for which the number of events with the largest posterior probability matched the true number of events—p(k̂ =k)—is shown in the

upper left corner, the median posterior probability of the correct number of events across all data sets—p̃(k|D)—is shown in the upper right
corner, and the proportion of data sets for which the true number of events was included in the 95% credible set—p(k ∈CS)—is shown in the
lower right. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).
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FIGURE 5. Assessing the effect of linked sites on the accuracy and precision of divergence time estimates (in units of expected subsitutions
per site). The columns, from left to right, show the results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated data
set, each of three population pairs has 500,000 sites total. The rows show the results when (top) all sites, (middle) all variable sites, and (bottom)
at most one variable site per locus are analyzed. For each plot, the root mean square error (RMSE) and the proportion of estimates for which the
95% credible interval contained the true value—p(t ∈CI)—is given. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

simulation conditions when constant characters are used
(Supplementary Fig. S4 available on Dryad).

For the data sets simulated with 100,000 and 500,000
characters, the number of variable characters ranged
from 515–21,676 to 4,670–105,373, respectively, with an
average of approximately 5500 and 27,500 variable
characters, respectively (Supplementary Figs. S5 and S6
available on Dryad). As expected, the variance in the
number variable characters increases with the variance
in the prior distribution of the relative effective size
of the root population (Supplementary Figs. S5 and S6
available on Dryad).

The MCMC chains for all analyses converged very
quickly; we conservatively removed the first 401 samples,
resulting in 3300 samples from the posterior (1100
samples from three chains) for each analysis. To assess
convergence and mixing, we plotted histograms of
the potential scale reduction factor across the three
independent chains and the effective sample size for
the log-likelihood and divergence times (Supplementary
Figs. S7–S10 available on Dryad). Mixing was poorer

when there was more prior uncertainty in the root
population size (Supplementary Figs. S9 and S10
available on Dryad). However, given the expected
frequentist behavior for how often the true parameter
values were contained within the 95% confidence
intervals (Fig. 2, Supplementary Figs. S2 and S3 available
on Dryad), and the weak relationship between the ESS
and estimation error (Supplementary Fig. S11 available
on Dryad), we do not expect MCMC mixing had a large
effect on our simulation results under the most extreme
levels of uncertainty in the root population size that we
simulated.

Assessing the effect of linked characters.—The accuracy
of divergence time estimates did not appear to be
affected by the model violation of linked characters
(Fig. 5 and Supplementary Fig. S12 available on Dryad).
However, as the length of loci increases, we do see an
underestimation of posterior uncertainty (i.e., the true
divergence time is contained within the 95% credible

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy063#supplementary-data
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FIGURE 6. Assessing the effect of linked sites on the ability of the new method to estimate the number of divergence events. The columns,
from left to right, show the results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated data set, each of three
population pairs has 500,000 sites total. The rows show the results when (top) all sites, (middle) all variable sites, and (bottom) at most one
variable site per locus are analyzed. The number of data sets that fall within each possible cell of true versus estimated numbers of events is
shown, and cells with more data sets are shaded darker. The estimates are based on the number of events with the maximum a posteriori (MAP)
probability. For each plot, the proportion of data sets for which the number of events with the largest posterior probability matched the true
number of events—p(k̂ =k)—is shown in the upper left corner, the median posterior probability of the correct number of events across all data

sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for which the true number of events was included in the 95%
credible set—p(k ∈CS)—is shown in the lower right. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

interval less frequently than 95% of the time; Fig. 5 and
Supplementary Fig. S12 available on Dryad). This makes
sense given that there is less coalescent variation in the
data than the model expects if all the characters had
evolved along independent gene trees. Importantly, this
effect of underestimating posterior uncertainty is small
for data sets with 100bp loci, suggesting this violation
of the model has little impact for high-throughput data
sets with short loci, like those collected via RADseq.
As expected, analyzing only one variable site per locus
removes this underestimation of posterior uncertainty
(see the last row of Fig. 5 and Supplementary Fig. S12
available on Dryad), but at a large cost of much greater
posterior uncertainty in parameter estimates due to the
loss of data. We see the same behavior for estimating
the effective sizes of the ancestral and descendant
populations (Supplementary Figs. S13–S16 available on
Dryad).

The cost of removing data to avoid violating
the assumption of unlinked characters is also very
pronounced for estimating the divergence model and
number of divergence events. The method better
estimates the correct model and number of events,
both with much higher posterior probability, when the
constant characters are retained (Fig. 6, Supplementary
Figs. S17–S19 available on Dryad). The median posterior
probability of both the correct number of divergence
events and the correct model is over 0.95 for all 500k-
character data sets, even when loci were 1000 bp long
(Fig. 6 and Supplementary Fig. S17 available on Dryad).
However, our results show that linked characters do
introduce bias in the estimated posterior probability of
the one divergence model (k =1) (Fig. 7). However, the
bias is moderate and makes the method conservative in
the sense that it tends to underestimate the probability
of shared divergence (Fig. 7).
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FIGURE 7. Assessing the effect of linked sites on the frequentist behavior of divergence-model posterior probabilities. A total of 10,500 data sets
were simulated such that each of three population pairs has 1000 loci, each with 100 linked sites (100,000 sites total). Each simulated data set is
assigned to a bin of width 0.2 based on the estimated posterior probability of a single, shared divergence event. The mean posterior probability of
each bin is plotted against the proportion of data sets in the bin for which a single, shared divergence is the true model. The number of data sets
within each bin is provided next to the corresponding plotted point. The plots show the results when (left) all characters, (middle) all variable
characters, and (right) at most one variable character per locus is analyzed. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

FIGURE 8. Assessing the effect of missing data on the accuracy and precision of divergence time estimates (in units of expected subsitutions
per site). The columns, from left to right, show the results when each simulated 500,000-character matrix has approximately 0%, 10%, 25%, and
50% missing cells. For comparison, the first column shows the results of the 500 data sets from Figure 2; the remaining columns show the results
of 100 data sets. The rows show the results when (top) all sites and (bottom) only variable sites are analyzed. For each plot, the root mean square
error (RMSE) and the proportion of estimates for which the 95% credible interval contained the true value—p(t ∈CI)—is given. All simulated
data sets had three pairs of populations. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

For simulated data sets with loci of length 100, 500, and
1000 base pairs, there were an average of 5.4, 27.1, and 54.1
variable characters per locus, respectively. As expected,
the number of variable characters per 100k and 500k data
set was very similar to the simulated unlinked-character
data sets, with an average of about 5500 variable
characters per 100k data set (Supplementary Fig. S20
available on Dryad) and 27,100 variable characters per
500k data set (Supplementary Fig. S21 available on
Dryad). When at most one variable character is sampled
per locus, the number of remaining characters is usually
close or equal to the number of loci; 1000, 200, and 100
characters for the 100k data sets with 100, 500, and 1000
bp loci, respectively, and 5000, 1000, and 500 characters
for 500k data sets with 100, 500, and 1000 bp loci,

respectively (Supplementary Figs. S20 and S21 available
on Dryad).

Assessing the effect of missing data.—As predicted by
coalescent theory, our results show that random missing
data has little effect on the performance of the method
with respect to estimating divergence times (Fig. 8),
effective population sizes (Supplementary Figs. S22 and
S23 available on Dryad), the number of divergence
events (Fig. 9), or the divergence model (Supplementary
Fig. S24 available on Dryad).

Assessing the effect of biases in character-pattern
acquisition.—Biased character acquisition against
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FIGURE 9. Assessing the effect of missing data on the ability of the new method to estimate the number of divergence events. The columns,
from left to right, show the results when each simulated 500,000-character matrix has approximately 0%, 10%, 25%, and 50% missing cells. For
comparison, the first column shows the results of the 500 data sets from Figure 4; the remaining columns show the results of 100 data sets. The
rows show the results when (top) all sites and (bottom) only variable sites are analyzed. The number of data sets that fall within each possible
cell of true versus estimated numbers of events is shown, and cells with more data sets are shaded darker. The estimates are based on the number
of events with the maximum a posteriori (MAP) probability. For each plot, the proportion of data sets for which the number of events with the
largest posterior probability matched the true number of events—p(k̂ =k)—is shown in the upper left corner, the median posterior probability

of the correct number of events across all data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for which the
true number of events was included in the 95% credible set—p(k ∈CS)—is shown in the lower right. All simulated data sets had three pairs of
populations. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

singleton character patterns does create bias in
estimates of divergence times (Fig. 10) and population
sizes (Supplementary Figs. S25 and S26 available on
Dryad), and the bias increases as the probability of
missing a character with a singleton pattern increases.
Notably, this bias is smaller when the constant characters
are retained in the data set (Fig. 10, Supplementary
Figs. S25 and S26 available on Dryad).

However, in the face of data-acquisition bias, the
method still estimates the number of divergence events
and the divergence model well, especially when constant
characters are used (Fig. 11 and Supplementary Fig. S27
available on Dryad). Even when the probability of
sampling a character with a singleton pattern is 0.4,
the median posterior probability of the correct number
of divergence events is 0.948 (Fig. 11), and the median
posterior probability of the correct model is 0.945
(Supplementary Fig. S27 available on Dryad).

Comparison to ABC methods.—The new full-likelihood
method, ecoevolity, does a much better job of
estimating divergence times (Fig. 12) and effective
population sizes (Supplementary Figs. S28 and S29
available on Dryad), than the approximate-likelihood
Bayesian method, dpp-msbayes. This is despite the
simulated data sets being “tailored” for the ABC method
(i.e., loci of 200 linked base pairs). Notably, the new
method does not underestimate the older divergence
times like the ABC method, which suffers from saturated
population-genetic summary statistics that assume an

infinite-sites model of mutation (Fig. 12). Also, the ABC
approach gleans no information from the data about
effective population sizes; the posterior distribution
nearly matches the prior for all analyses (Supplementary
Figs. S28 and S29 available on Dryad). This is despite the
fact that three of the four statistics used for the ABC
approach summarize information about population
sizes.

The new method also does a better job of estimating
the number of divergence events (Fig. 13), with a median
posterior probability of the correct number of events
of 0.942, compared with 0.7 for the ABC method.
Similarly, the new method is better at estimating the
divergence model (Supplementary Fig. S30 available
on Dryad), with a median posterior probability of the
correct model of 0.942, compared with 0.685 for the ABC
method. Importantly, the new method underestimates
the number of events much less frequently (Fig. 13
and Supplementary Fig. S30 available on Dryad), which
should lead to fewer erroneous interpretations of shared
processes of divergence.

It is difficult to compare the computational effort
between the two approaches, given that ecoevolity is
collecting autocorrelated samples from the full posterior,
whereas dpp-msbayes is collecting independent
samples from a different distribution we hope is
similar to the posterior. Nonetheless, the comparison
is aided by the fact that the heavy computation of
both methods is coded in C/C++. To compare the
overall amount of computation required by the two
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FIGURE 10. Assessing the effect of an acquisition bias against rare allele patterns on the accuracy and precision of divergence time estimates
(in units of expected subsitutions per site). The columns, from left to right, show the results when each simulated 500,000-character data set has
a probability of 100%, 80%, 60%, and 40% of sampling each simulated singleton pattern. For example, each character matrix analyzed in the far
right column is missing approximately 60% of characters where all but one gene copy has the same allele. For comparison, the first column
shows the results of the 500 data sets from Figure 2; the remaining columns show the results of 100 data sets. The rows show the results when
(top) all sites and (bottom) only variable sites are analyzed. For each plot, the root mean square error (RMSE) and the proportion of estimates
for which the 95% credible interval contained the true value—p(t ∈CI)—is given. All simulated data sets had three pairs of populations. We
generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

FIGURE 11. Assessing the effect of an acquisition bias against rare allele patterns on the ability of the new method to estimate the number
of divergence events. The columns, from left to right, show the results when each simulated 500,000-character data set has a probability of
100%, 80%, 60%, and 40% of sampling each simulated singleton pattern. For example, each character matrix analyzed in the far right column is
missing approximately 60% of characters where all but one gene copy has the same allele. For comparison, the first column shows the results
of the 500 data sets from Figure 4; the remaining columns show the results of 100 data sets. The rows show the results when (top) all sites and
(bottom) only variable sites are analyzed. The number of data sets that fall within each possible cell of true versus estimated numbers of events
is shown, and cells with more data sets are shaded darker. The estimates are based on the number of events with the maximum a posteriori
(MAP) probability. For each plot, the proportion of data sets for which the number of events with the largest posterior probability matched the
true number of events—p(k̂ =k)—is shown in the upper left corner, the median posterior probability of the correct number of events across all

data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for which the true number of events was included in the
95% credible set—p(k ∈CS)—is shown in the lower right. All simulated data sets had three pairs of populations. We generated the plot using
matplotlib Version 2.0.0 (Hunter 2007).
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FIGURE 12. Comparing the accuracy and precision of divergence-time estimates between (left) the new full-likelihood Bayesian method,
ecoevolity, and (right) the approximate-likelihood Bayesian method, dpp-msbayes. Each plotted circle and associated error bars represent
the posterior mean and 95% credible interval for the time that a pair of populations diverged. Each plot consists of 1500 estimates—500 simulated
data sets, each with three pairs of populations. The simulated character matrix for each population pair consisted of 200 loci, each with 200
linked sites (40,000 characters total). For each plot, the root mean square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(t ∈CI)—is given. We generated the plot using matplotlib Version 2.0.0 (Hunter 2007).

FIGURE 13. Comparing the ability to estimate the number of divergence events between (left) the new full-likelihood Bayesian method,
ecoevolity, and (right) the approximate-likelihood Bayesian method, dpp-msbayes. Each plot shows the results of the analyses of 500
simulated data sets; the number of data sets that fall within each possible cell of true versus estimated numbers of events is shown, and cells
with more data sets are shaded darker. Each simulated data set contained three pairs of populations, and the simulated character matrix for
each pair consisted of 200 loci, each with 200 linked sites (40,000 characters total). The estimates are based on the number of events with the
maximum a posteriori (MAP) probability. For each plot, the proportion of data sets for which the number of events with the largest posterior
probability matched the true number of events—p(k̂ =k)—is shown in the upper left corner, the median posterior probability of the correct

number of events across all data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for which the true number
of events was included in the 95% credible set—p(k ∈CS)—is shown in the lower right. We generated the plot using matplotlib Version 2.0.0
(Hunter 2007).

approaches we look at the average time it takes to analyze
a simulated data set on a single processor (2.6GHz
Intel Xeon CPU E5-2660 v3). This was 38.8 days for
dpp-msbayes (3,350,465 s) and only 33.4 min (2004.5
s) for ecoevolity. The majority of the runtime for
the ABC method is spent simulating samples from the
prior distribution. While this step can be parallelized,
the likelihood computations of ecoevolity can also be
multi-threaded. Regardless of the difficulties associated

with comparing the approaches, the 1671-fold difference
in computation time clearly demonstrates the full-
likelihood method is much more efficient than ABC.

Empirical Application
When the new method is applied to all of the RADseq

sites from the four pairs of Gekko populations, the
results strongly support that all of the pairs diverged
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independently (Fig. 14). The results are very robust to
the priors on divergence times (�) and the concentration
parameter (�) of the Dirichlet process, and to whether
the polyallelic SNPs are recoded as binary (Fig. 14) or
removed (Supplementary Fig. S31 available on Dryad).
Likewise, the estimates of divergence times and effective
population sizes are nearly identical regardless of the
prior on � or �, or whether polyallelic SNPs are recoded
or removed (Fig. 15, Supplementary Figs. S32–S34
available on Dryad).

However, when only variable SNPs are analyzed,
the behavior is much different. First, the estimated
divergence times and population sizes are clearly far too
large and more sensitive to the priors on the divergence
times and the concentration parameter (Supplementary
Figs. S35 and S36 available on Dryad). While the true
values of these parameters are obviously unknown,
given the variability of these data (Table 2), and other
data from these species (Siler et al. 2012; Siler et al.
2014), these values are clearly nonsensical. The posterior
probabilities of the number of divergences are also
much more sensitive to the � and � priors, with
some combinations yielding results for which three
divergence events are preferred, although Bayes factors
always preferred four divergences (Supplementary
Fig. S37 available on Dryad). These findings are similar
when the polyallelic SNPs are removed (Supplementary
Figs. S38–S40 available on Dryad).

The large overestimation of divergence times and
population sizes is consistent with our findings from the
data sets simulated with an acquisition bias against rare
allele patterns (Fig. 10, Supplementary Figs. S25 and S26
available on Dryad). In these simulation-based analyses,
we also saw dramatic overestimation of these parameters
when constant characters were excluded. It appears that
some variable character patterns are being lost during
the acquisition and assembly of the RADseq data, and
the model is sensitive to these missing variable sites,
especially when only variable characters are analyzed.

Empirical comparison to ABC.—Figure 16 shows the
dramatic difference between the results of the new
full-likelihood method, ecoevolity, and the ABC
method, dpp-msbayes, when analyzing a random
subset of the Gekko data. For dpp-msbayes, there is
strong support for a single, shared divergence (Fig. 16c),
and the marginal posterior distributions of divergence
times are almost completely overlapping among the
three pairs of populations (Fig. 16d). In contrast,
ecoevolity strongly supports three independent
divergences (Fig. 16a), and the marginal posterior
divergence-time distributions are almost completely
non-overlapping (Fig. 16b). Furthermore, the computing
time for ecoevolity and dpp-msbayes was 7.6
minutes and 49.3 days, respectively.

DISCUSSION

Previous approaches to estimating shared divergence
times based on ABC are very sensitive to prior

assumptions about divergence times and often over-
cluster divergences with strong support (Oaks et al. 2013;
Hickerson et al. 2014; Oaks et al. 2014; Oaks 2014). Here,
we introduced a new approach that increases the power
and robustness of these inferences by leveraging all of
the information in genomic data within a full-likelihood,
Bayesian framework. The full-likelihood approach is
much better at estimating divergence times (Fig. 12) and
nuisance parameters (Supplementary Figs. S28 and S29
available on Dryad) than ABC. It is also better able
to estimate the correct number of divergence events
with more confidence, and is much less biased toward
underestimating the number of divergence events
(Fig. 13). This is especially important, because most
biogeographers that use these methods are interested
in testing for shared events. The increased power of the
method to detect variation in divergence times and avoid
spurious estimates of shared divergences will lead to
fewer erroneous interpretations of shared processes of
divergence.

The efficiency associated with using all of the
information in the data makes the method very
promising for empirical applications. For example,
increasing the number of characters from 100,000 to
500,000 resulted in only modest improvements in
precision (Fig. 2, Supplementary Figs. S2 and S3 available
on Dryad). This suggests that the benefit of collecting
more characters begins to plateau when data sets are
small relative to the number of characters commonly
collected via modern high-throughput sequencing
technologies (e.g., the simulated 100k data sets had
only 5500 SNPs on average). Even with only 200
short (200 bp) loci, the median posterior probability
of the correct number of divergence events was 0.94
(Fig. 13). Also, directly calculating the likelihood of
the population history from genomic data avoids
the computation necessary for approximating the
likelihood via simulations. As a result, the new method,
ecoevolity, provides better approximations of the
posterior over 1000 times faster than the ABC method,
dpp-msbayes.

To Exclude Linked Characters, or Not?
The increased precision and robustness associated

with retaining constant characters creates an interesting
question when analyzing DNA sequence data from
reduced-representation genomic libraries: Is it better to
analyze all the data and violate the assumption that the
characters are unlinked, or suffer a large loss of data to
avoid violating that assumption? Several of our results
suggest retaining all the data is preferable. First of all,
the method is much better at estimating the divergence
times, effective population sizes, and the correct number
of events with high posterior probability when analyzing
linked sequences of characters compared to when only
one variable character per locus is analyzed (Fig. 5 and
6 and Supplementary Figs. S12–S16 and S18 available
on Dryad). Second, retaining all the data makes the
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FIGURE 14. The prior (light bars) and approximated posterior (dark bars) probabilities of the number of divergence events across Gekko pairs
of populations, under eight different combinations of prior on the divergence times (rows) and the concentration parameter of the Dirichlet
process (columns). For these analyses, constant characters were included, and all characters with more than two alleles were recoded as biallelic.
The Bayes factor for each number of divergence times is given above the corresponding bars. Each Bayes factor compares the corresponding
number of events to all other possible numbers of divergence events. We generated the plots with ggplot2 Version 2.2.1 (Wickham 2009).
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FIGURE 15. The approximate marginal posterior densities of divergence times for each Gekko pair of populations, under eight different
combinations of prior on the divergence times (rows) and the concentration parameter of the Dirichlet process (columns). For these analyses,
constant characters were included, and all characters with more than two alleles were recoded as biallelic. We generated the plots with ggridges
Version 0.4.1 (Wilke 2018) and ggplot2 Version 2.2.1 (Wickham 2009).
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FIGURE 16. The results of the (a and b) new full-likelihood Bayesian method, ecoevolity, and (c and d) approximate-likelihood Bayesian
method, dpp-msbayes, when applied to 200 RADseq loci randomly sampled from three of the pairs of Gekko populations. Plots b and d show
the estimated marginal posterior densities of divergence times for each pair of Gekko populations. Plots a and c show the approximated prior
(light bars) and posterior (dark bars) probabilities of the number of divergence events across the pairs of Gekko populations. The Bayes factor
for each number of divergence times is given above the corresponding bars. Each Bayes factor compares the corresponding number of events
to all other possible numbers of divergence events. We generated the plots with ggridges Version 0.4.1 (Wilke 2018) and ggplot2 Version 2.2.1
(Wickham 2009).

method more robust to data-acquisition biases (Fig. 10
and 11 and Suplementary Figs. S25 and S26 available on
Dryad), which are common in alignments from reduced-
representation genomic libraries (Harvey et al. 2015;
Linck and Battey 2017). Third, the results from the
Gekko RADseq data are reasonable and robust to prior
assumptions when all data are analyzed, but nonsensical
and sensitive to prior assumptions when only variable
characters are analyzed. Our simulations suggest this is
due to the filtering of the character patterns that occurred
when assembling these data.

Perhaps most striking is how much better the method
estimates the number of divergence events when all the
data are used. For example, across the 500,000-character
data sets, the median posterior probability of the correct
number of divergence events is over 0.94 regardless of
the linked characters or pattern-acquisition biases we
simulated (Figs. 4, 6 and 11). For comparison, these
values are as low as 0.41 when constant characters are
removed (Fig. 11).

We caution against generalizing our findings of
favorable performance with linked loci to other methods
that assume unlinked characters. However, Chifman
and Kubatko (2014) found quartet inference of splits

in multi-species coalescent trees from SNP data was
also robust to the violation of unlinked characters. Our
results show the amount of data that is discarded to
avoid linked characters can far outweigh the effects
of violating the assumption of unlinked characters.
When analyzing linked loci with a method that assumes
unlinked characters, using simulations to assess the
effect of linkage on the method may be worth the effort
in order to bring more data to bear.

Philippine Gekko
We purposefully selected a challenging empirical

test case for the new method. Each of the four
pairs of populations of Gekko occur on two different
oceanic islands that were never connected. Thus, we
do not expect shared divergence times across the pairs.
However, based on previous findings (Siler et al. 2012,
2014), all of these pairs likely diverged very recently.
This is a challenging region of parameter space for this
type of method: Very similar and recent divergence times
that are nonetheless independent. Our results strongly
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support independent divergences, despite all four pairs
diverging very recently (Figs. 14 and 15).

We found similar results when we analyzed a
random subset of 200 loci from three of the pairs
of Gekko populations (Fig. 16a and b). In contrast,
when we analyzed these 200 loci with the ABC
method, dpp-msbayes, we found strong support for
the opposite conclusion that all three pairs diverged at
the same time (Fig. 16c and d). In addition, ecoevolity
took approximately 9300-fold less computing time than
dpp-msbayes. These results demonstrate that using
the likelihood from genomic data provides enough
information to efficiently and unambiguously separate
divergences across very narrow timescales, and avoids
erroneous inferences of shared divergences.

Caveats
This method is subject to the caveats associated with

all model-based statistical methods, however, there are
two caveats that are worth emphasizing with specific
reference to the types of models we explored here. First,
it is important to keep in mind that when modeling
the divergence of two populations, the time of the
divergence and the mutation rate are inextricably linked.
Thus, we cannot learn about the relative rates of
mutation among pairs of populations when also trying
to estimate their divergence times. Unlike previous
methods (Hickerson et al. 2006; Huang et al. 2011; Oaks
2014), we allow priors to be placed on mutation rates,
to allow uncertainty to be incorporated into the model.
However, the priors on the mutation rates need to be
informative if one hopes to be able to estimate the
divergence times.

Second, the new method does not allow migration
after populations diverge. This is a weakness compared
with ABC approaches to this problem (Huang et al. 2011;
Oaks 2014). However, given the biases and sensitivity
to priors exhibited by the ABC methods even when
migration is ignored (Oaks et al. 2013; Oaks et al. 2014;
Oaks 2014), modeling migration with these methods
is not advisable without thorough simulation-based
analyses to assess their statistical behavior.

CONCLUSIONS

We introduced a new Bayesian model-choice
method for estimating shared divergence times across
taxa. By using the full likelihood and genome-scale
data, the new method is more accurate, precise,
robust, and efficient than existing methods based on
approximate likelihoods. This new tool will allow
biologists to leverage comparative genomic data to test
hypotheses about the effects of environmental change
on diversification.
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APPENDIX

MULTIVARIATE METROPOLIS–HASTINGS MOVES

Here, we describe the multivariate Metropolis–
Hastings moves that improve mixing of the MCMC chain
when there are strong correlations between divergence
times, effective population sizes, and mutation rates. The
probability of accepting a Metropolis–Hastings proposal
is determined by the product of three terms, the first
two of which are the ratios of the likelihood and prior
probability densities of the proposed state to the current
state of the model. The third term, the Hastings ratio
(HR), accounts for any difference in the probability of
the proposed move versus the probability of the move
that would exactly reverse the proposed state back to the
current state of the model. Below, we detail the Hastings
ratios for two of our multivariate moves.

A.1 TimeRootSizeMixer proposal
One case of poor mixing can occur for pairs that

diverge long enough ago such that only a single
coalescence occurs within the root for most loci. In this
scenario, there is very little information in the character
patterns about the size of the ancestral population, and
so the divergence time and root population size become
highly correlated (i.e., an older divergence time and
smaller root size explain the data equally well as a
younger divergence time and larger root size). We used
expectations under the coalescent to design a proposal to
better sample this correlated region of parameter space.
To simplify notation, throughout this section we will

http://dx.doi.org/10.5061/dryad.4b3j2bj
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use N in place of NR
e to denote the effective size of the

ancestral population.
When coalescence of gene lineages is complete within

a sampled pair of populations, only two lineages coalesce
within the ancestral population. In this case, the expected
height of the root of a gene tree is equal to ��+
2N�, in units of time determined by � (e.g., expected
substitutions per site if �=1). The purpose of our move
is to keep the expected root height of the gene trees of
the proposed state equal to the current state,

�′�+2N′�=��+2N�. (A.1)

The mutation rate cancels, giving us the following
relationship to uphold during our proposal,

�′+2N′ =�+2N. (A.2)

This relationship will allow us to jointly and efficiently
explore the space of � and N when there is little
information in the data to tease them apart.

For population pair i, we first draw a uniform
random deviate, u∼Uniform(−�,�), where � is a tuning
parameter that can be adjusted to improve the acceptance
rate of the proposal. Next, we propose a new value for
the effective population size of the root population

N′
i =Nie

u.

Now, we use the relationship in Equation A.2 to
determine the corresponding proposed value for the
population divergence time,

�′ =�+2Ni −2N′
i. (A.3)

The uniform deviate to reverse this move is simply u′ =
−u.

To get the Hastings ratio for this move, we use the
formula of Green (1995),

Hastings ratio= g′(u′)
g(u)

|det(J)|, (A.4)

which is the ratio of the probability of drawing the
random deviate that would reverse the proposed move
to the probability of drawing the random deviate of the
proposed move, multiplied by the absolute value of the
determinant of a Jacobian matrix. Because the forward
and reverse random deviates are uniform, g′(u′)

g(u) =1, and

the Hastings ratio reduces to just the Jacobian term,

J =

⎡
⎢⎢⎣

∂N′
i

∂Ni

∂N′
i

∂�

∂N′
i

∂u
∂�′
∂Ni

∂�′
∂�

∂�′
∂u

∂u′
∂Ni

∂u′
∂�

∂u′
∂u

⎤
⎥⎥⎦

=
[ eu 0 Neu

2(1−eu) 1 −2Neu

0 0 −1

]

det(J)=eu
∣∣∣∣ 1 −2Neu

0 −1

∣∣∣∣−0
∣∣∣∣ 2(1−eu) −2Neu

0 −1

∣∣∣∣
+Neu

∣∣∣∣ 2(1−eu) 1
0 0

∣∣∣∣
=−eu

|det(J)|=|−eu|=eu =Hastings ratio.

(A.5)

Notice that the change to � also changes the divergence
times of all the pairs that currently share this divergence
time with pair i. So, the efficiency of this move can be
hindered when there is a lot of sharing of divergence
times. However, we can easily extend this move to change
the sizes of the ancestral population of pairs j,k,...n that
share their divergence time with pair i. To do this, we,
again, adhere to the relationship in Equation A.2:

2N′
j =2Nj +�−�′

N′
j =Nj + 1

2
(�−�′)

=Nj + 1
2

(�−(�+2Ni −2N′
i))

=Nj + 1
2

(�−�−2Ni +2N′
i)

=Nj −(Ni −N′
i)

=Nj −(Ni −Nie
u)

=Nj −Ni(1−eu).

(A.6)

The Jacobian term then becomes

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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i

∂Ni
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i
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i
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∂N′
i

∂Nk
...
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i

∂Nn−1

∂N′
i

∂Nn

∂N′
i

∂u
∂�′
∂Ni

∂�′
∂�

∂�′
∂Nj

∂�′
∂Nk

...
∂�′

∂Nn−1

∂�′
∂Nn

∂�′
∂u

∂N′
j

∂Ni

∂N′
j

∂�

∂N′
j

∂Nj

∂N′
j

∂Nk
...

∂N′
j

∂Nn−1

∂N′
j

∂Nn

∂N′
j

∂u
∂N′

k
∂Ni

∂N′
k

∂�

∂N′
k

∂Nj

∂N′
k

∂Nk
...

∂N′
k

∂Nn−1

∂N′
k

∂Nn

∂N′
k

∂u
...

...
...

...
. . .

...
...

...
∂N′

n−1
∂Ni

∂N′
n−1

∂�

∂N′
n−1

∂Nj

∂N′
n−1

∂Nk
...

∂N′
n−1

∂Nn−1

∂N′
n−1
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∂Nn
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eu 0 0 0 ... 0 0 Nieu

2(1−eu) 1 0 0 ... 0 0 −2Nieu

eu −1 0 1 0 ... 0 0 Nieu

eu −1 0 0 1
. . . 0 0 Nieu

...
...

...
. . .

. . .
. . .

...
...

eu −1 0 0 0
. . . 1 0 Nieu

eu −1 0 0 0 ... 0 1 Nieu

0 0 0 0 ... 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

det(J)=−eu

|det(J)|=|−eu|=eu =Hastings ratio. (A.7)

A.2 TimeSizeRateMixer proposal
This proposal is designed to improve mixing of

the MCMC chain when there are strong posterior
correlations among divergence time, population size,
and mutation rate parameters. It does so by jointly
scaling these parameters according to the direction
(positive or negative) of the posterior correlations
we often observed when analyzing simulated data.
The divergence time was often positively correlated
with the effective sizes of the descendant populations,
and negatively correlated with the mutation rate and
effective population size of the ancestral population.

For a given divergence time, �i, we first draw a random
uniform deviate, u∼Uniform(−�,�), where � is, again,
a tuning parameter to adjust the proposal’s acceptance
rate. We use this random deviate to propose a new value
for the divergence time,

�′
i =�ie

u.

Next, we visit each population pair that is associated
with this divergence time, and propose the following
updates to the pair’s parameters, if they are being
estimated (i.e., not fixed):

NR
e

′ =NR
e e−u

ND1
e

′ =ND1
e eu

ND2
e

′ =ND1
e eu

�′ =�e−u.

(A.8)

When doing so, we keep track of the total number of
parameters that have been updated, denoted as n, and
how many of these were scaled by eu, denoted m; the
remaining n−m parameters were scaled by e−u.

Given n and m, we can again use Green’s 1995 formula
(Equation A.4 above) to determine the Hastings ratio for

this proposal. Once again, g′(u′)
g(u) =1, because the random

deviates are uniform. Using �1,...,�m and �m+1,...,�n to
denote the parameters that have been scaled by eu and

e−u, respectively, the Jacobian term is

J =
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det(J)=−eume−u(n−m)

=−e2um−un

|det(J)|=eu(2m−n) =Hastings ratio. (A.9)
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