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Abstract
Clinically relevant adverse drug reactions differ between men and women. The un‐
derlying physiological and pharmacological processes contributing to these differ‐
ences are infrequently studied or reported. As gene expression, cellular regulatory 
pathways, and integrated physiological functions differ between females and males, 
aggregating data from combined groups of men and women obscures the ability to 
detect these differences. This paper summarizes how genetic sex, that is, the pres‐
ence	of	sex	chromosomes	XY	for	male	or	XX	for	 female,	and	the	 influence	of	sex	
hormones affect transporters, receptors, and enzymes involved in drug metabo‐
lism. Changing levels of sex steroids throughout life, including increases at puberty, 
changes with pregnancy, and decreases with age, may directly and indirectly affect 
drug absorption, distribution, metabolism, and elimination. The direct and indirect 
effects of sex steroids in the form of exogenous hormones such as those used in hor‐
monal contraceptives, menopausal hormone treatments, transgender therapy, and 
over‐the‐counter performance enhancing drugs may interfere with metabolism of 
other pharmaceuticals, and these interactions may vary by dose, formulation, and 
mode of delivery (oral, injection, or transdermal) of the steroid hormones. Few drugs 
have sex‐specific labeling or dosing recommendations. Furthermore, there is limited 
literature evaluating how the circulating levels of sex steroids impact drug efficacy or 
adverse reactions. Such research is needed in order to improve the understanding of 
the impact of sex hormones on pharmacological therapies, particularly as medicine 
moves toward individualizing treatments.
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1  | INTRODUC TION

Adverse drug reactions are common and thought to be the fourth 
leading cause of death.1 Pharmacogenomic approaches to individu‐
alizing pharmacologic therapy involve genetic testing to predict both 
medication response and adverse reactions to therapy. For individu‐
als predicted to be at higher risk for adverse drug reactions (ADR), a 
different medication or dose can be prescribed. ADR can range in se‐
verity from minor discomfort to death. Depending on the impact on 
quality of life, ADR can lead to poor medication adherence or discon‐
tinuation of therapy. Studies now recognize that there are sex dif‐
ferences in ADRs.2 Historically, women were not included in clinical 
trials because investigators thought women were difficult to study 
as a result of fluctuating hormone levels throughout the menstrual 
cycle.	 In	addition,	 fears	of	experimental	medications	being	 terato‐
genic to a potential developing fetus resulted in the United States 
Food and Drug Administration (FDA) excluding women from phase 1 
and 2 clinical trials in 1977. As result, ADR disproportionately affect‐
ing women may not have been recognized until after medications 
were approved and on the market, as is often the case with rare ge‐
netic differences that can place individuals at risk for rare adverse 
events	not	captured	during	clinical	phase	trials.	In	1993,	a	law	was	
passed in the United States requiring clinical studies funded by the 
National	Institute	of	Health	to	include	women.	As	of	2009,	an	anal‐
ysis found that most studies had an average enrollment of only 37% 
women and the majority (64%) did not stratify results by sex, poten‐
tially obscuring differences in efficacy or adverse event outcomes 
between men and women.3

In	 spite	 of	 problems	 with	 data	 reporting	 by	 sex,	 over	 the	
past several decades, studies have recognized that ADR are 

experienced by women more often than men 4‐7 with a 1.6‐fold 
higher odds ratio (Figure 1). This topic is garnering more attention 
and additional studies. A 2018 study performed in the Netherlands 
evaluating ADR related to the use of selective serotonin reuptake 
inhibitors	(SSRIs)	from	2003	to	2016	found	that	among	the	6791	
ADR reports, 68% involved women; however, the percentage of 
severe reactions was higher among men (31.6% vs 22.9%). Most 
ADR that impacted women were dose‐related and were common 
reactions mentioned in the product labeling. Among 59 ADR that 
were reported at least 50 times, 16 were reported more often 
in women than in men and four were more commonly reported 
in men than in women.8	In	the	United	States,	a	2016	study	used	
the US Food and Drug Administration Adverse Event Reporting 
System to evaluate sex differences in ADR across a wide range 
of treatments. This study, which included the top 20 long‐term 
treatment regimens in the US as well as 668 specific drugs, found 
significant sex differences in ADR for 307 of those medications. 
Some of these differences could be attributed to medications that 
are typically only used in one sex or resulted in sex‐specific ad‐
verse events (eg prostate cancer). After removing these, 266 sex 
differences in medications remained.2 A similar large‐scale study 
involving ADRs reported to the pharmacovigilance center Lareb 
in the Netherlands accounted for gender differences in the num‐
ber of medication users, which is important given that women use 
more and different medications than men. A “possibly relevant” 
sex difference was identified in 15% of the drug‐ADR combina‐
tions after accounting for differences in medication use; the risk 
was higher for women than men in 89% of cases.9	 If	 personal‐
ized medicine is to become a reality, it is critical to understand 
not only interindividual genetic differences, but also underlying 

F I G U R E  1   Volcano plot of adverse 
drug	event	signals.	In	the	volcano	plot	of	
ADE signals, the signal detection result 
shows the magnitude (log2 reporting 
odds	ratio	[ROR],	x‐axis)	and	significance	
(−log10	adjusted	P value, y‐axis) for sex‐
drug‐event combinations associations 
of specific drugs. Each spot represents 
a specific drug‐drug‐event combination 
interaction. The dashed horizontal 
green line signals statistical significance 
threshold (P	≤	.05	after	adjustment	with	
Bonferroni correction). Two vertical 
green	lines	show	the	threshold	of	ROR	
(log2	ROR	>	1	or < −1).	The	blue	spots	
represent the drug‐event combinations 
more frequently associated with female 
patients; the red spots, drug‐event 
combinations more frequently associated 
with male patients. Reprinted with 
permission from Reference [2]
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physiological differences between males and females that addi‐
tionally contribute to sex differences in ADR. Recognition and 
understanding of sex differences may lead to further improve‐
ments in outcomes when combined with traditional and pharma‐
cogenomic approaches to medication selection as a part of shared 
decision‐making between the patient and physician.

2  | BA SIC MECHANISMS

2.1 | Physiologic differences

The	presence	of	sex	chromosomes,	XX	in	female	and	XY	in	males,	in	all	
nucleated cells represents the most fundamental genetic difference be‐
tween females and males. Genes on these chromosomes regulate spe‐
cific and diverse physiological functions, in part, through modulation of 
genes on the autosomes.10,11	In	addition,	the	SRY gene on the Y chro‐
mosome encodes the sex‐determining region Y (SRY) protein, which is a 
DNA‐binding protein that is important in the development of the testes 
that will ultimately secrete testosterone and lead to a male phenotype. 
The AR	 gene	 that	 encodes	 the	 androgen	 receptor	 resides	 on	 the	 X	
chromosome; therefore, any variant in AR that impacts function will be 
expressed	as	an	X‐linked	trait	in	males	with	one	X	chromosome.12‐14	In	
females,	variants	in	genes	on	the	X	chromosome	that	undergo	X	inacti‐
vation typically show mosaic expression of the phenotype in a particu‐
lar tissue or system, or may lead to skewed lyonization.15‐18

As the reproductive organs form, sex steroid hormones differ‐
ing between males and females will be secreted and influence body 
size, organ size, tissue composition (lean body mass, body fat), 
gastric acid secretion, gastric emptying time, circulating proteins 
that may bind medications, renal function, immune reactivity, and 
drug metabolizing enzymes;19 all of which influence absorption, 
distribution, metabolism, and elimination of drugs. While many of 
these differences may influence medication efficacy and toxicity 
can be attributed, in part, to underlying differences in hormone 
expression, hormonal status and potential interactions of phar‐
maceuticals with pathways modulated by sex steroids are usually 
not considered in preclinical studies for drug development, clinical 
trials, or reporting of ADRs.

2.2 | Sex steroid signaling mechanisms

Traditionally, sex hormone signaling mechanisms were only thought 
to alter gene transcription through steroid response elements 
on specific genes, that is, genomic effects (Figure 2).20 However, 
these mechanisms did not account for the rapid changes in cellular 
functions when steroids were applied acutely in experimental set‐
tings.21,22 Although some of the rapid effects observed could be at‐
tributed to antioxidant properties of the steroids, surface G‐coupled 
receptors (GPR30) that are independent of estrogen receptors but 
responsive to estrogen were identified as important in nongenomic 
estrogen signaling mechanisms.23‐25 Estrogen receptors are ubiqui‐
tous with distribution in many cell types including hepatocytes.26‐28 

Activation of the GPR30 receptor and interaction with insulin‐like 
growth	factor	1	receptor	(ILG1R)	initiates	a	cascade	of	activation	of	
phosphatidyl	 inositol	 3,4,5,	 triphosphate	 (PI3K)/Akt	 (serine‐threo‐
nine kinase) and mitogen‐activated protein kinases24,25,29 that has 
numerous intracellular effects, including promoting expression of 
Bc1‐2. Bc1‐2 affects apoptosis,26 endocytosis of canalicular trans‐
porters such as multidrug resistance‐associated protein 2 (Abcc2) 
and bile salt export pump (Abcb11),28 and synthesis of high‐density 
lipoprotein cholesterol and liver fat in female but not male rats.27 
These same estrogen signaling pathways, if present in humans, may 
impact pharmacodynamic and/or pharmacokinetic pathways by  
altering similar physiologic processes, such as endocytosis of drug 
transporters. These interactions warrant further study.

2.3 | Sex steroids and pharmacokinetic interactions 
with medications

There are several mechanisms by which sex hormones may interact 
with medications and their metabolic pathways, contributing to ADR 
(Figure 3).

F I G U R E  2   Schematic representation of potential cellular 
mechanisms by which sex steroids influence rapid nongenomic 
signaling and modulation of gene transcription (ie, genomic effects). 
Signaling can occur through surface receptor modulation of ion 
channels and transporters. At the nuclear levels, hormone‐bound 
receptors may compete for the same nuclear coregulators. Taken 
together, acute and sustained treatment of cells with sex steroid 
hormones have the potential to influence all aspects of cellular 
function directly through activation of ion channels, transporters 
and enzymes, and indirectly through genomic regulation for 
expression of enzymes, structural proteins, and membrane 
receptors. AR, androgen receptor; Arom, aromatase; DHEA, 
dehydroepiandrosterone; E2; 17β estradiol; ER, estrogen receptor; 
eNOS;	endothelial	nitric	oxide	synthase;	GPR30,	G	protein‐coupled	
estrogen	receptor;	IGF1, insulin‐like growth factor 1; mRNA, 
messenger	ribonucleic	acid;	NO,	nitric	oxide;	Rm,	membrane	
receptor
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2.3.1 | Absorption

Bioavailability of a drug may depend on mode of delivery and for‐
mulation. For example, transdermal formulations often require ab‐
sorption into subcutaneous adipose tissue. Women typically have 
more subcutaneous adipose tissue than men, which theoretically 
could impact absorption.19	 In	contrast,	orally	administered	medi‐
cations are absorbed through the gastrointestinal tract where sex 
differences in gastric pH, gastric emptying time, intestinal tran‐
sit time, first‐pass metabolism, and other variables may impact 
absorption. For example, when verapamil is orally administered, 
it is cleared faster by men than women; however, this is not the 
case when the medication is administered intravenously.30	Orally	
administered drugs often undergo hepatic first‐pass metabolism, 
where there may be sex differences in enzyme expression, while 
medication administered intravenously or absorbed through the 
skin or other mucus membranes (nasal, vaginal) will reach the cir‐
culation without first past metabolism. Due to sex differences in 
these variables, different routes of administration may theoreti‐
cally be more effective and/or less toxic for individuals of one sex; 
however, currently limited data exist to support or refute this idea.

2.3.2 | Competition for transporters

Drugs may compete for transporters into cells, thus affecting 
downstream metabolism or availability at the drug target and al‐
tering	 extracellular	 concentrations.	 For	 example,	 the	 OATP1B1	
transporter, encoded by the gene SLCO1B1, is responsible for 
transport of estrogens including estrone‐3‐sulfate and estra‐
diol 17β‐D‐glucuronide. Statin drugs are also transported by 
OATP1B1.	 Competitive	 inhibition	 of	 this	 transporter	 may	 occur	
when multiple substrates are present.31 Several studies have 
found sex‐specific effects of SLCO1B1 genetic variants on the 
efficacy of statin treatment.32,33	 Increased	 risk	 of	 statin‐related	

myopathy is associated with female sex, particularly among car‐
riers of the SLCO1B1 c.521C allele, suggesting that competition 
for transporters may result in clinically significant drug‐hormone 
interactions.34	In	addition,	there	may	be	sex	differences	in	trans‐
porter expression.35

2.3.3 | Competition and/or regulation of 
expression of drug metabolizing enzymes

The	 pregnane	 X	 receptor	 (PXR)	 and	 constitutive	 androstane	 re‐
ceptor (CAR) regulate expression of cytochrome P450s, including 
CYP3A4, and other genes, and these receptors are activated by 
a variety of compounds, including steroid hormones.36 Hepatic 
CYP3A4 activity is known to be higher among women than men,37 
although sex differences in the oral clearance of CYP3A4 sub‐
strates have not been consistently reported.38 Changes in enzyme 
expression associated with hormones will be described in more 
detail in the sections on pregnancy and hormonal contraception 
below.

2.3.4 | Sex steroids and pharmacodynamic 
interactions with medications

Steroid sex hormone status may also influence pathways contrib‐
uting to the mechanism of action of medications; however, less is 
known	 related	 to	 these	pharmacodynamic	 interactions.	 In	one	ex‐
ample, women were found to require a smaller dose of olanzapine 
in order to achieve 70% occupancy of the dopamine D2 receptor for 
medication efficacy.39 Testosterone and/or estrogen may modulate 
the pharmacodynamics of olanzapine at the D2 receptors as adjust‐
ing for weight, height, age, or concomitantly administered medica‐
tions did not affect olanzapine clearance.40	 In	 addition,	 review	 of	
anti‐obesity drugs suggests that pharmacokinetic, pharmacody‐
namic, and nonpharmacologic sex differences may influence success 
in reaching weight loss goals.41

F I G U R E  3   Schematic representation 
of potential mechanisms through which 
sex steroid hormones can affect drug 
metabolism and actions leading to 
adverse drug reactions. The orange 
circles represent a medication and the 
blue circles represent a hormone that 
is competing with the medication. The 
purple symbol represents a transporter. 
The green symbol represents an enzyme. 
The blue symbol on the cell surface 
represents a receptor. The blue symbol 
interacting with the DNA represents a 
transcription factor
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3  | FEMALE‐SPECIFIC CONSIDER ATIONS: 
INFLUENCES OF ENDOGENOUS AND 
E XOGENOUS SE X STEROIDS HORMONES

Fluctuations in endogenous sex steroid hormones that occur natu‐
rally with the menstrual cycle, pregnancy, and with the transition 
to menopause have the potential to influence drug efficacy and 
ADRs.42 Additionally, women use exogenous hormones as a medi‐
cation for contraceptives, treatments for hot flashes, night sweats, 
vaginal dryness, and a variety of other indications. Thus, these hor‐
monal treatments could be considered both as medication and a 
source of ADRs, as well as modifiers of other drug actions. That is, 
exogenous hormones may affect other medications by altering me‐
tabolism, while at the same time drug metabolism pathways may im‐
pact	exogenous	hormones	used	for	therapy.	Interindividual	variation	
in components of metabolic pathways (ie, pharmacogenetics) may 
lead to differences in response to exogenous hormones. With fur‐
ther research, it may be possible one day to use a pharmacogenetic 
approach, tailoring hormone therapy regimens to the individual.

3.1 | Pregnancy

Changes in endogenous hormones associated with pregnancy will 
influence drug efficacy and some medications may have adverse ef‐
fects	on	fetal	development.	Indeed,	developmental	defects	associ‐
ated with use of thalidomide resulted in the exclusion of pregnant 
women from drug testing trials.43 However about 64% of pregnant 
women take a medication (other than vitamin supplements), 2/3 of 
which may not have been tested in pregnant women.44,45

Pregnancy does not simply increase the volume of blood and ex‐
tracellular fluid that influence distribution and clearance of drugs, 
but the hormonal changes also influence enzyme activity. For ex‐
ample, activity of CYP1A2 is decreased during pregnancy affecting 
metabolism of caffeine and theophylline.46	In	addition,	the	CYP2C19	
enzyme may be inhibited by endogenous sex steroids during preg‐
nancy.46	On	 the	 contrary,	 activity	 of	 other	 enzymes	 increase,	 pri‐
marily through the second and third trimesters, including CYP2C9, 
CYP3A4, and UGT1A4. Activity of other enzymes, such as CYP2D6, 
vary throughout the pregnancy and may differ by trimester.47 The 
effect of hormonal changes with pregnancy on drug transporter 
genes is not well understood, but may involve activation of estrogen 
and androgen receptors.48

3.2 | Menopause

With menopause, circulating estrogen decreases to about 90%. 
Conversion of androgens to estrogen by aromatase (encoded by 
CYP19A1) in adipose tissue and skin becomes the predominant 
source of estrogen. With the decrease in estrogen, changes in other 
drug metabolizing enzymes are also observed. For example, CYP3A4 
activity in the intestine is reduced by about 20%,49 thus, medications 
utilizing this pathway would be impacted over the menopause transi‐
tion and aging past menopause.

Exogenous hormones used to treat symptoms of menopause 
(hot flashes, night sweats, vaginal dryness, sleep disturbances) 
may affect medications by altering metabolism; at the same time, 
drug metabolism pathways may impact exogenous hormones used 
for therapy. The genes encoding drug metabolizing enzymes and 
transporters are highly polymorphic, which is the basis of pharma‐
cogenomics. Although the influence of genetic variation on meno‐
pausal physiology is not well understood, heritability estimates of 
age at menopause ranges from 31%‐78%. Thus, the question arises 
as to whether a pharmacogenomic approach, that is, studying the 
impact on exogenous hormones of genetic variation in genes en‐
coding pathways of drug metabolism, could be applied to optimize 
menopausal hormone therapy or hormone therapy for other indi‐
cations. This question is especially important to optimize hormone 
therapy for women who might undergo bilateral oophorectomy 
prior to the age of natural menopause and require menopausal hor‐
mone therapy to reduce the risk of multimorbidity of aging.50‐52

Our	 group	 has	 taken	 a	 candidate	 gene	 approach	 to	 begin	 to	
evaluate how genetic variants in enzymes involved in estrogen 
metabolism might be related with response to estrogen therapies. 
One	variant	 in	SULT1A1, which encodes an enzyme that sulfates 
estrone, 17β‐estradiol, and 4‐methoxy‐estradiol might be asso‐
ciated with serum hormone levels of estrogen and menopausal 
symptoms. The SULT1A1 gene is polymorphic with both single 
nucleotide variants (SNVs) and whole gene deletions and duplica‐
tions (copy number variation, CNV). When evaluating this gene, it 
is critical to consider the impact of both SNV and CNV simultane‐
ously. Some of the SNVs decrease enzyme activity, while others 
impact transcription; gene duplication also leads to increased ac‐
tivity.53,54	In	the	Kronos	Early	Estrogen	Prevention	Study	(KEEPS)	
of recently menopausal women randomized to either placebo, oral 
conjugated equine estrogen, or transdermal 17β‐estradiol, women 
with increased number of G alleles at rs9282861, which would be 
expected to increase SULT1A1 activity, experienced menopause 
at a younger age, and reported less severe night sweats but in‐
creased frequency of insomnia at baseline prior to the initiation 
of the hormone treatment.54 When randomized to active drug, 
there was no significant relationship between the genotype and 
menopausal symptoms. However, in women randomized to oral 
conjugated equine estrogen, variants in SULT1A1 affected circu‐
lating levels of sulfated estrone and the ratio of sulfated estrogen 
to estrogen.54

A second candidate gene SLCO1B1 encodes the transporter 
(OATP1B1)	 for	 many	 endogenous	 and	 xenobiotic	 compounds.	
In	 the	 context	 of	 this	 paper,	 this	 transporter	 transports	 estradi‐
ol‐17β‐glucuronide, estrone‐3‐sulfate, and statins from the blood 
into hepatocytes. Variants in SLCO1B1 associated with breast can‐
cer risk and statin‐induced myopathy in postmenopausal women 
using oral conjugated equine estrogen with medroxyprogesterone 
acetate.	 In	 KEEPS,	women	with	 normal	 transporter	 activity	 had	
lower circulating levels of estrone and 17β‐estradiol sulfate than 
those with lower activity, while those with reduced transporter 
activity demonstrated a greater decrease in night sweats among 
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women on active treatment.55 Additional research using larger co‐
horts of women is needed in order to utilized a pharmacogenomic 
approach to maximize hormone treatments. Research using a 
pharmacogenomic approach is also needed to examine declines in 
testosterone (andropause/androdrift) in age‐matched men.

3.2.1 | Hormonal contraception

Exogenous hormones may be prescribed for a variety of purposes, 
including contraception. These exogenous hormones also impact 
metabolism of other medications. While the underlying mechanism 
of decreased CYP activity in the presence of exogenous hormones, 
such as those in oral contraceptives, is thought to be a competitive 
inhibition, there is some evidence that estradiol may downregulate 
CYP2C19 expression through the interaction of estrogen receptor 
(ER) α with a binding site in the CYP2C19 promoter.48	Oral	contra‐
ceptives are examples of exogenous hormones that modulate drug 
metabolism through inhibition of multiple cytochrome P450 en‐
zymes including CYP1A2, CYP3A4, CYP2C19, and CYP2C9‐medi‐
ated metabolism.56‐59

Genetic variation may also influence the concentrations of the 
exogenous hormones used for contraception and other indications. 
A study of 350 healthy, reproductive‐age women using etonoges‐
trel implants for 12‐36 months were genotyped for 14 genes en‐
coding proteins involved in steroid hormone‐related pathways.60 
Carriers of the CYP3A7*1C allele were more likely to have serum 
etonogestrel concentrations falling below the threshold of 90 pg/
mL required for consistent ovulatory suppression. This allele results 
in adult expression of the fetal CYP3A7 enzyme, which is in the 
same family as the CYP3A4 enzyme known to metabolize estro‐
gens.	In	addition,	nongenetic	variables	of	body	mass	index	and	du‐
ration of implant use also impacted estrogen levels. This example 
further highlights the importance of understanding individual varia‐
tion in steroid hormone metabolism in ensuring efficacy of therapy.

4  | TR ANSGENDER

Changes in outward appearance, physiology, and metabolism re‐
sulting from treatment with sex steroid hormones for clinically 
defined gender incongruence61 reflect activational effects of the 
hormones. However, these activational effects are expressed on 
the background of the sex chromosomes present at birth (Figure 4). 
Prescription guidelines for dosing, mode of delivery, and timing of 
this type of therapy have evolved based, in part, on reports of ad‐
verse events associated with certain formulations.62 For trans men, 
(XX	with	 testosterone	 treatment),	general	physiological	and	meta‐
bolic effects include increases in body mass index, modest increases 
in blood pressure, and increases in serum triglycerides and low‐
density lipoprotein cholesterol.63,64 Adverse cardiovascular events 
include increased risk for venous thromboembolism, but this has 
been attributed to an oral formulation of testosterone,61 and in 
some cases increased risk of myocardial infarction.63,65 For trans 

women, in addition to risks for venous thromboembolism associated 
with oral formulations of the steroids, there is also increased risk 
for stroke and myocardial infarction.65,66 A challenge in evaluating 
risks and adverse outcomes associated with transgender therapy is 
accounting for the appropriate reference population, for example, 
adverse events in trans men compared to cis women or cis men and 
vice versa for trans women.66 This challenge is also confounded by 
differences in formulations of hormone therapy, age at initiation of 
therapy, and comorbid conditions that, by themselves, may present 
as risk factors for adverse cardiovascular events. To date, there are 
no published longitudinal studies that have included data on trans 
persons prior to and serially after treatment into older age, how‐
ever, the Gender Dysphoria Treatment in Sweden (GETS) study is 
designed to do so.67

Few studies have specifically addressed potential hormone‐
drug interactions except for managing trans patients with sickle 
cell disease,68	 and	 treatments	 for	HIV.69 Although both trans men 
and trans women report reductions in anxiety, depression and per‐
ceived stress when treated with hormone therapy,61 individuals 
using pharmaceutical treatments for other conditions prior to ini‐
tiation of the steroid hormones may require adjustment for those 
medications. This adjustment may be due to the drug‐hormone 
interactions involving metabolic pathways discussed previously or 
due to interactions of steroids hormones with molecular targets for 
those drugs.70 Hormone‐drug interactions for other medications, 
statins, for example, are unknown in the trans population given the 

F I G U R E  4   Depiction of activational effects of sex steroids 
in individuals undergoing treatment for gender incongruence. 
Endogenous production of hormones defined by the presence of 
sex chromosomes are suppressed (or the gonads removed) with 
the subsequent administration of hormones from the nonbiological 
gonads. Thus, the genetic sex of the individual remains the same 
and the exogenous hormones can be considered as a medication 
that carry pharmacological and physiological risks with the 
potential to interact and modify efficacy of other medications 
given for a nonreproductive condition, that is, depression, 
hypercholesterolemia, arthritis, cancer, etc. 
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age of the individuals when therapy was initiated and the impact of 
the hormones on metabolic factors that influence development of 
atherosclerosis with aging in cis men. These considerations need to 
be addressed in future studies.

5  | SUMMARY

Although there are data supporting sex differences in ADRs, there 
are few systematic analyses of these adverse events by drug class 
that take into account stages of life (age), and hormonal status. 
Given that sex hormones may alter the pharmacokinetics and phar‐
macodynamics of medications, it is important to note that these 
hormones naturally fluctuate throughout the lifespan. Among fe‐
males, hormones change at puberty, with menstrual cycles, during 
pregnancy, and at menopause; in addition, exogenous hormones 
may be used for contraception or to alleviate menopausal symp‐
toms. Among males, hormones change at puberty as well as with 
aging, and exogenous hormones may be used. However, many pre‐
clinical basic pharmacology studies to define mechanisms of dis‐
ease (with a potential to identify a new drug target) do not identify 
the sex of the experimental material, age or hormonal status of the 
source of cells or tissues.71‐73 While males are disproportionately in‐
cluded in studies, the impact of aging (which influences sex steroid 
hormone levels) and exogenous hormone use are not necessarily 
specifically studied. Large databases exist that should allow dis‐
cernment of types of adverse reactions between men and women 
but these should consider age, hormonal status, specific medica‐
tion/probe drug used, and interindividual variation in enzyme activ‐
ity	due	to	genetic	variation.	In	addition,	analysis	of	large	databases	
is often limited by lack of other information that might affect the 
outcome including interactions with over‐the‐counter medications, 
environmental exposures, and cultural or psychosocial influences 
that affect compliance.74 Even with these limitations, newer clini‐
cal studies need to consider reporting outcomes by sex, age, and 
hormonal status even if the study is not powered to determine a 
statistical difference. Understanding clinical parameters together 
with genetic information for complex disease and drug response 
phenotypes within the context of biological sex and hormonal sta‐
tus is critical for individualized medicine.
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