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In recent years, powered by state-of-the-art achievements in a broad range of areas, machine learning has received considerable
attention from the healthcare sector. Despite their ability to provide solutions within personalized medicine, strict regulations on
the confidentiality of patient health information have in many cases hindered the adoption of deep learning-based solutions in
clinical workflows. To allow for the processing of sensitive health information without disclosing the underlying data, we propose
a solution based on fully homomorphic encryption (FHE). The considered encryption scheme, MORE (Matrix Operation for
Randomization or Encryption), enables the computations within a neural network model to be directly performed on floating
point data with a relatively small computational overhead. We consider the well-known MNIST digit recognition problem to
evaluate the feasibility of the proposed method and show that performance does not decrease when deep learning is applied on
MORE homomorphic data. To further evaluate the suitability of the method for healthcare applications, we first train a model on
encrypted data to estimate the outputs of a whole-body circulation (WBC) hemodynamic model and then provide a solution for
classifying encrypted X-ray coronary angiography medical images. The findings highlight the potential of the proposed privacy-
preserving deep learning methods to outperform existing approaches by providing, within a reasonable amount of time, results
equivalent to those achieved by unencrypted models. Lastly, we discuss the security implications of the encryption scheme and
show that while the considered cryptosystem promotes efficiency and utility at a lower security level, it is still applicable in certain
practical use cases.

1. Introduction

Over the recent years, machine learning algorithms, with
emphasis on deep neural networks, have delivered re-
markable solutions for personalized medicine, enabling
customized diagnosis, treatment, and prevention [1]. Since
deep neural networks are entirely data-driven systems that
can learn explicitly from past experiences, they are com-
monly used as a way to integrate the knowledge and ex-
perience of medical experts into solutions for computer-
aided detection (CADe).

To deliver results that are sufficiently reliable to be
considered in clinical routines, machine learning-based

solutions have to heavily rely on available medical data
records [2]. However, as patient health information has
some of the highest privacy requirements among all data
types associated with an individual, its usability is greatly
hindered. Moreover, given the fact that machine learning-
based solutions require access to such sensitive information,
concerns have recently been raised regarding data privacy
and security [3]. Furthermore, the confidentiality protection
laws currently adopted for the manipulation of personal data
(e.g., EU GDPR and US HIPAA) demand the use of more
effective privacy protection strategies.

Usually, a proper anonymization must be done in order
to export sensitive data without violating confidentiality.
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Through data masking, some of the information properties
are thus changed, resulting in a trade-off between confi-
dentiality and utility. In certain cases, e.g., genomic data,
the use of anonymized data limits the neural network’s
ability to gain valuable information and insight from the
data. Herein, a method based on homomorphic encryption
(HE) is employed as a way to address the limitations
imposed by conventional methods, and to maintain con-
fidentiality of biometric data. HE is a specific form of
encryption which allows data to be encrypted while it is
being manipulated. By preserving the mathematical
structures that underline the data, HE represents a
promising solution for guaranteeing privacy while still
maintaining full utility. The chosen HE scheme (MORE)
[4] allows for a limited set of operations to be conducted
directly on encrypted data without exposing the underlying
information or the encryption key. In the context of deep
learning-based solutions, this property is especially useful
as it ensures that both data and predictions are kept private
while data are processed. Taking into account the practical
difficulties arising from the use of deep networks on
encrypted data and the inefficiency of current approaches,
we propose a method that improves the effectiveness of
encryption models in real-world applications by facilitating
calculations over rational numbers, faster operations, and
performance close to that achieved with an unencrypted
model.

In order to evaluate the feasibility of the proposed
privacy-preserving deep learning solution to produce re-
liable results, we consider a classic benchmarking appli-
cation from the computer vision realm, ie., digit
recognition, and two personalized medicine applications.
The herein proposed approach has been selected by the
European Commission for the 2018 and 2019 Innovation
Radar Prize Contest, whose goal is to identify Europe’s top
innovators and their innovations. In 2019, our solution has
won the competition in the category “Industrial & En-
abling Technologies” [5]. Parts of the work presented
herein have been previously published in [6, 7]. They have
been considerably extended herein to include a detailed
description of privacy-preserving techniques for machine
learning, homomorphic encryption, and deep learning.
Furthermore, we have also included extensive details on
the deep neural network models developed for the three
applications that were considered, as well as detailed re-
sults in terms of model accuracy and runtime
performance.

The remainder of the paper is structured as follows.
Section 2 discusses the latest achievements in the domain.
Section 3 includes a decryption of the considered homo-
morphic encryption scheme. Section 4 offers a brief overview
of deep learning and neural networks. Sections 5 and 6
address the proposed privacy-preserving pipeline in three
deep learning applications. Section 7 introduces the findings,
with an emphasis on the correlation with the unencrypted
counterpart. Finally, Section 8 draws the conclusions and
outlines a set of issues that remain to be handled in future
work.
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2. Related Work

2.1. Privacy-Preserving Techniques for Machine Learning.
In the past few years, great effort has been invested in the
development of different privacy-preserving techniques with
the potential of bridging the gap between data privacy and
utility, demanded by the recent rise of privacy concerning
scenarios. Among these methods, several privacy-preserving
machine learning techniques, including homomorphic en-
cryption (HE), secure multiparty computation (SMPC), and
differential privacy (DP), have begun to advance rapidly.
Such techniques ensure data privacy and at the same time
allow for machine learning-based analysis to be performed.
While these techniques have shown promising results, their
adoption in modern machine learning applications remains
bounded because they are highly dependent on the scenario.
Moreover, there is always a trade-off involved between
privacy and performance or between privacy and utility
among these techniques, as each comes with specific
strengths and vulnerabilities.

SMPC techniques provide a promising solution for data
privacy by allowing analysis to be performed over sensitive
data, distributed between different data providers, in a way
that does not disclose the sensitive information beyond the
analysis outcome. Although the idea of SMPC is not new,
lately with the technological and hardware advances, more
approaches using SMPC for data privacy guarantees in
machine learning applications have emerged in the field
[8-13]. The first attempt to train a neural network model in a
SMPC setting has been made by Mohassel and Zhang [8],
where the neural network-based analysis was performed
inside a secure two-party computation for Boolean circuits
via secret sharing, oblivious transfer, and garbled circuit. The
greatest challenge in SMPC for machine learning is given by
the computations of nonlinear functions as such operations
introduce a high overhead in the training time. Moreover,
the time needed for communications further limits their
usability. Although great effort has been continuously
invested in improving the technology, SMPC still implies a
large communication overhead which makes it infeasible for
machine learning, where a large amount of data is required.
As the number of involved parties or the model complexity
increases, the communication and computation costs are
greatly affected.

An alternative solution is to use differential privacy
which, as compared to SMP, implies a much lower com-
putational complexity. Methods based on differential pri-
vacy provide good security and have been lately shown to
achieve promising results when combined with machine
learning techniques [14-22]. Such methods treat the pri-
vacy-preserving data analysis concerns by adding random
noise into the algorithm at different stages. However, a
proper noise injection mechanism is required to accomplish
a reasonable trade-oft between privacy and utility. Conse-
quently, the added noise can greatly affect the precision of
the machine learning-based analysis.

A few attempts have been made to address the challenge
of data privacy-preserving in machine learning-based
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analysis through HE. This special type of encryption allows
data to be encrypted while it is being manipulated. Hence, it
aims at keeping the data private by allowing a third party to
process the data in the encrypted form without having to
reveal the underlying information. By preserving the
mathematical structures that underline the data, HE rep-
resents a promising solution for guaranteeing privacy while
still maintaining full utility. As ciphertext data are cen-
tralized to one single entity, it does not imply any com-
munication bottleneck, as compared to SMPC. Although
early work on HE [23] involves highly intensive computa-
tions, making the method infeasible for the machine
learning algorithm, the recent subsequent schemes gave rise
to a series of privacy-preserving machine learning solutions
[24-29]. The first notable work that combines HE with
neural network was proposed by Orlandi et al. [28]. The
method uses a HE cryptosystem known to handle only a few
basic operations directly on the ciphertext data. Therefore, to
perform computations that cannot be completed in the
encrypted domain, an interaction between the data owner
and the server was required. Those operations were carried
out using garbled circuit protocol (e.g., functions expressed
as circuits of logical gates). CryptoNets [25] completely
eliminate the interaction between the involved parties by
using low-degree nonlinear polynomial functions. The
method is based on the idea of using an already trained
neural network on encrypted data to retrieve encrypted
results. The encryption scheme used in CryptoNets, YASHE
[30], does not support floating-point numbers. For this
reason, real numbers were converted to integers. The
computational complexity alongside the performance lim-
itation introduced when handling large networks limits their
usability. To mitigate the problem introduced by the model
complexity, CryptoDL [26] proposed to approximate all
nonlinear functions within a model with low-degree poly-
nomials. However, none of these schemes cover privacy-
preserving training in deep neural network models. The
main drawback of these privacy-preserving neural network
solutions is the computational overhead: deeper networks
require more computations which results in longer running
time. Additionally, the attempt to address the nonlinearity
property in neural network models through an approxi-
mation mechanism does not necessarily result in better
performances. In fact, most of these HE solutions fail to
maintain the highest prediction accuracy due to the poly-
nomially approximated activation functions. Moreover, due
to the HE cryptosystems, these approaches involve an
encoding mechanism, i.e., scaling, that converts floating-
point numbers with fixed precision to integers.
Alternatively, many researchers began to combine these
techniques to improve the level of accuracy and privacy
[31-33]. Chase et al. [32] combined SMPC with DP tech-
niques to enable privacy-preserving collaborative neural
network training. The proposed solution provides data se-
curity guaranties through DP and uses SMPC to allow
machine learning-based analysis when data are distributed
between multiple parties. The experimental results showed
that the performance was affected when larger networks
were used. Barni et al. [31] provided a solution to enable

computations within a neural network to be performed on
homomorphically encrypted data but relied on the SMPC
for the nonlinear functions. Gazelle [33] covers the privacy-
preserving neural network inference phase by using HE for
the linear operations and traditional SMPC (such as garbled
circuits) for the activation function computation.

2.2. Homomorphic Encryption. With Gentry’s first intro-
duction of a fully homomorphic encryption (FHE) scheme
[23], numerous variations of the original strategy were
proposed in the literature [34]. Most of these schemes are
known for their efficiency in terms of security, but they are
computationally intensive and only a limited number of
operations can be performed before decryption is no longer
possible. This clearly restrains their usability in real-world
applications. Aspects like computations being several or-
ders of magnitude slower than the plaintext counterparts
accumulated noise that limits the overall number of op-
erations that can be performed, and all computations being
implemented modulo N pose a great challenge for the
synergy of deep learning and data analysis. While recent
advances in HE led to many variants of encryption
schemes, no currently available scheme can manipulate
rational numbers.

Several open-source HE libraries have emerged in recent
years, each one with different properties based on the
employed encryption scheme [35]. Microsoft’s Simple
Encrypted Arithmetic Library (SEAL) [36] scheme, with
support for the Brakerski/Fan-Vercauteren (BFV) [37] and
the Cheon-Kim-Kim-Song (CKKS) scheme [38], and IBM’s
HELib [39] based on the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme [40] are two of the most widely used HE
libraries. The first noticeable shortcoming of HELID is the
lack of support for floating-point numbers. To allow for
computations to be performed on rational numbers, SEAL
takes advantage of a particular property of the CKKS
scheme: rescaling can be performed without changing the
encrypted value. Since a plaintext is represented as a
polynomial with integer coefficients, floating-point param-
eters of the message are scaled by a parameter that affects the
precision of the computations. Homomorphic operations
performed with both HELib and SEAL introduce noise, thus
limiting the number of operations that can be performed
with ciphertexts. Noise-management techniques have been
integrated to maintain the noise level below a certain
threshold, such that the ciphertext does not become cor-
rupted. While HELib uses the expensive procedure of
bootstrapping to enable unlimited computations, SEAL uses
a scale-invariant error reduction technique which requires
an estimation of the number of operations that will be
performed as an a priori information. Moreover, there are
some limitations on the types of operations that can be
performed on the ciphertext. The schemes used in HELib
and SEAL are fully homomorphic with respect to addition
and multiplication, and only polynomial functions can be
easily performed. As a consequence, there is no implicit
support for division, and nonlinear functions have to be
approximated by low-degree polynomials.



While these schemes are known for their efficiency in
terms of proven security, the above-mentioned restrictions,
alongside their computational overhead, introduce notice-
able constraints in the neural network topology, which in
turn affect the performance of privacy-preserving neural
networks [41].

Other proposed methodologies rely on employing par-
tially homomorphic encryption (PHE) instead of FHE. Since
FHE is currently practically impossible to be used in a real-
world system, a viable approach is a system based on PHE
that is specialized only for certain operations. Such an ap-
proach introduces a clear advantage in terms of running
time and may be used in a practical application with rea-
sonable overhead [42]. Various encryption schemes have
homomorphic properties, out of which we mention the
Paillier scheme [43], an additive homomorphic scheme
where addition in the ciphertext space corresponds to
multiplication in the plaintext space, and the ElGamal
scheme [44], a multiplicative homomorphic scheme, which,
through some modifications, can become additive. Other
PHE with the potential to be used in a practical application
are Goldwasser-Micaly [45] that allows computing the XOR
operation on encrypted data, searchable encryption [46]
with support for keyword search, order-preserving en-
cryption [47] for sorting encrypted values, and deterministic
encryption [43], that allows equality checks on encrypted
values.

Another promising method is the algebra homomorphic
encryption scheme (AHEE) [48], an encryption scheme that
is homomorphic with respect to algebraic addition and
multiplication, i.e., both addition and multiplications can be
performed on encrypted data. A key advantage of this
scheme is that it has a relatively small computational
complexity, same as Paillier and ElGamal, while being ho-
momorphic with both addition and multiplication. The
main limitation of this scheme as well as for Paillier and
ElGamal is that it only allows the encryption of relatively
small integer numbers. More specifically, during the en-
cryption process, an exponentiation operation needs to be
evaluated, where the exponent is the message to be
encrypted. Hence, even with a multiprecision arithmetic
library, the operation can still cause an overflow. Using 1024
bit integers, we found that only numbers with up to about
10° can be encrypted. This limitation becomes even more
important when performing computations on encrypted
data, i.e., one cannot determine if an encrypted number is
too large for performing a certain operation.

In order to facilitate the privacy-preserving deep
learning-based analysis, the cryptosystem must allow the
computations within the model to be performed on rational
numbers. To address this requirement, an encryption
mechanism is typically used to encode a given rational
number as a sequence of integers [49]. As some of the basic
operations are difficult, if not impossible, to apply on
encoded data, such an approach has limited functionality
when applied on real data. Furthermore, the encoding
strategy not only explicitly limits the data utility but also
directly affects the results of the computations.
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Over the past few years, many HE schemes have been
proven to meet the security requirements. Although suffi-
ciently secure, most of these approaches offer poor per-
formance as they suffer greatly from runtime bloat, i.e.,
several orders of magnitude slower than the plaintext
computations. This clearly restrains their usability in real-
world applications. Consequently, simplified encryption
schemes based on linear transformations emerged in the
field as more practical alternatives. Despite the criticism for
weaker security [50, 51], this type of cryptosystems seems to
be the currently only feasible method with the potential to
enable privacy-preserving computations in real-world
applications.

As a consequence, the herein employed methodology
relies on a variant of the matrix-based homomorphic
encryption scheme proposed in 2012 by Kipnis and Hib-
shoosh [4]. In contrast with the currently adopted schemes
in privacy-preserving neural network-based solutions
[25, 26, 29], the MORE (Matrix Operation for Randomi-
zation or Encryption) encryption scheme is noise free and
nondeterministic (multiple encryptions of the same
plaintext data, with the same key, result in different ci-
phertexts). An unlimited number of operations can
therefore be performed on ciphertext data. Moreover, the
MORE scheme enables all four basic arithmetic operations
over encrypted data. Herein, MORE was redesigned to
directly support floating-point arithmetic in order to ad-
dress the floating-point precision constraint of privacy-
preserving deep learning-based analysis on real-world
data.

3. Matrix-Based Data Randomization

A variant of the MORE encryption scheme has been con-
sidered and adapted to directly operate on floating-point
data. Following the MORE encryption strategy, a plaintext
scalar is encrypted as a n x n ciphertext matrix, and matrix
algebra is employed to enable computations on ciphertext
data. All operations performed on ciphertext data are
therefore defined as matrix operations, e.g., the multipli-
cation of plaintext scalars is formulated as the matrix
multiplication of ciphertext matrices. The order of the
matrix used to encrypt a message represents an important
factor that governs the trade-off between security and effi-
ciency. For a 2x2 setup, the MORE cryptosystem is
summarized in Table 1.

The MORE scheme allows for algebraic operations to be
performed on ciphertext matrices, i.e., given two encrypted
matrices C; = SM,;S™! and C, = SM,S™ !, for addition

C,+Cy=SM,S ' +SM,S™ " =S(M, +M,)S", (1)

which is the encryption of M, + M,, and for multiplication
C,C, =SM,S 'SM,S™ ' = SM,M,S". (2)
The same property applies to subtraction and division, as

well as to plaintext scalar operations, making the scheme
tully homomorphic for algebraic operations.
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TaBLE 1: MORE encryption scheme setup over rational numbers.

Message

Scalar value m € R

Secret key generation
Matrix construction
Encryption operation

Decryption operation
Message recovery

Invertible matrix S € R>?

M = (1: (: , where r € R is a random parameter
Encryption (m) = C = SMS™!
Decryption (C) = K = (§1CS)

m= K(U)

3.1. Encryption of Rational Numbers. The original MORE
scheme, like any FHE or PHE approaches, is only applicable
to positive integer numbers modulo N, with all operations
being performed modulo N. To be able to operate on ra-
tional numbers, these schemes rely heavily on an encoding
mechanism. As a consequence, a real number is converted
into an integer or a set of integer numbers, and only af-
terwards the scheme is used to homomorphically encrypt the
encoded number. A typical approach to formulate the
encoding is through continued fractions [49]. Whilst a
precise representation can be obtained, even basic opera-
tions on numbers expressed in this form are difficult to
perform. Alternatively, a simpler encoding can be infused by
multiplying the rational numbers with a large scaling factor.
Although, more permissive, it requires a mechanism that
manages the scaling factor, which is difficult to achieve for
certain operations, e.g., division, where this factor is re-
duced. In addition, noise is typically introduced in the
cryptosystem by extending the methodologies to operate on
rational numbers. Consequently, a noise-management
strategy has to be employed to limit the noise level. Even
though the handling of rational numbers seems to be a
straightforward problem, there is currently no solution that
allows them to be used in the context of HE.

One of the main benefits of the MORE encryption scheme
is that it can be directly formulated for rational numbers. The
drawback is that the method becomes vulnerable to known
ciphertext attacks, as described in Section 7.3.

3.2. Performing Operations over Encrypted Data. The MORE
encryption scheme has been shown to be fully homomorphic
with respect to basic algebraic operations. In real-world
applications, including deep learning-based approaches,
nonlinear (e.g., exponential, logarithmic, square root, etc.)
functions need to be handled. Most of the regular ap-
proaches adopted to conduct nonlinear operations are based
on the idea of approximating the specified function with a
finite polynomial series (e.g., truncated Taylor series). Fol-
lowing this approach, nonlinear function computation relies
solely on algebraic operations, being fully compliant with the
MORE encryption setup. However, within the MORE
cryptosystem, a more convenient approach is possible.
Given the properties that govern the encryption scheme,
and knowing that ciphertext-based operations rely on matrix
algebra, nonlinear functions can be computed either (i)
directly as matrix functions or (ii) through matrix decom-
position. While the first method is straightforward, the
second approach is based on the property according to

which a message m, that is to be encrypted, will be always
found among the eigenvalues of the ciphertext matrix C. For
example, in a 2 X 2 setup, one of the eigenvalues corresponds
to the random number r used during the matrix con-
struction, while the other corresponds to the message m. To
ensure that the message can only be identified through
proper decryption and by possessing the secret key, the
random number r is generally chosen to be statistically
indiscernible from the message. Applying a function f on
the ciphertext data C is therefore equivalent to applying f
directly on the eigenvalues of C. Thus, matrix decomposition
VLV~! is first used to decompose the ciphertext matrix C
into eigenvalues L and eigenvectors V. Thereafter, the
nonlinear function that is to be evaluated is applied inde-
pendently on each of the eigenvalues. Finally, the resultant
ciphertext matrix is reconstructed as C; = V f (L)V~! using
the original eigenvectors and the eigenvalues evaluated on
the function f. As compared to the direct matrix function-
based computations, this approach can even be used to
perform comparisons between the ciphertext matrix C and a
plain scalar s. Neither of these two methods support non-
linear binary operations between two ciphertext data.
However, in deep learning, such operations can be com-
pletely avoided.

Starting from these strategies, Algorithm 1 shows how,
given any ciphertext C € R**, the two proposed methods
can be used to formulate the function f(x) = (1/(1+e %))
defined on x € R, under the MORE assumptions. This
function is known as the logistic sigmoid function and is
widely used in neural networks for its nonlinear properties,
as will be outlined in the next sections.

4. Deep Learning

Since their first appearance in 1943 [52], the functionality of
neural networks has been constantly associated with the way
people learn and process information. More specifically,
they were designed to emulate the synaptic connections
between brain neurons and later on became the foundation
of deep learning.

Fueled by the recent hardware advances, the rise of big
data and desire for exceeding human-level performances,
deep neural networks are currently becoming a widespread
technology in data mining. The most notable turn point was
marked in 2012 [53], when a deep learning-based approach,
AlexNet, obtained unprecedented results (11.5% error rate)
in computer vision on the ImageNet Large-Scale Visual
Recognition Challenge [54], surpassing the winning entry of
2011 by an improvement of =~45%. Thereafter, the ImageNet



classification accuracy gradually improved; in 2017, the
lowest reported error rate on ImageNet has dropped to
2.25% [55], being superior to the reported human error rate
of approximately 5% [54]. Since then, deep neural networks
experienced an extraordinary growth rate, leading to an
explosion of research in many fields.

Medical data interpretation is highly subjective, prone to
errors, and most often it depends on the experience of the
medical expert. To automatically capture the high variability
in anatomical structures and features, deeper neural net-
works are required. As compared to traditional machine
learning models, deep networks can model the complex
relationships and capture relevant information and patterns
from different perspectives, representing a much better
candidate for the development of CADe solutions [1]. In
consequence, nowadays, deep learning is being widely used
for tasks that were previously known to represent great
challenges, achieving state-of-the-art performances in dif-
ferent healthcare domains and applications [1].

4.1. Neural Networks. On a high level, a neural network can
be defined as a computational model that maps inputs to
outputs through a composition of layers with interconnected
processing blocks (transformations and activation func-
tions). The architecture of a simple neural network is
depicted in Figure 1. To allow for a complex arbitrary
functional mapping, nonlinear activation functions are
typically added at each processing block. They filter the
information that passes through the network, determining
what input signal is relevant to be forwarded to the following
layer. Essentially, they decide whether a certain neuron
should be activated or not and without them the neural
network becomes a simple linear model. There are several
functions used as activation functions, including but not
limited to logistic sigmoid, hyperbolic tangent (tanh), and
rectified linear unit (ReLU).

In supervised learning, the model automatically learns
the mapping function (parameters of the model) based on
labeled training examples in an iterative fashion by grad-
ually making an adjustment with the effect of minimizing
an error function, i.e., loss, between expected and achieved
outputs. Algorithm 2 describes the typical operations in-
volved in the neural network training phase. The term
epoch refers to the complete processing of the entire
training dataset. Due to computational reasoning, for large
datasets, the processing, and hence the parameter adjust-
ment, is done on subsets of data (batches). In the first
iteration, the forward propagation step provides the pre-
dicted outputs for the input samples given a set of ran-
domly initialized parameters. Thereafter, the error (loss)
between the predicted outputs and the desired ones is
computed and passed backwards through the network to
determine the direction in which each parameter has to be
adjusted to decrease the overall prediction error. Finally,
the obtained gradients are used to update the network
parameters following a numerical optimization method
(e.g., gradient descent). This process is repeated over many
epochs until the network error stops decreasing.

Computational and Mathematical Methods in Medicine

Upon training, the network should be able to provide
results which are statistically similar to the expected ones
even when presented with input data never encountered by
the network during training. Consequently, neural networks
can be used in predicting an output from certain input
features, classifying data and even localizing patterns or
objects in images.

4.2. Going Deeper: Deep Neural Networks. In essence, a deep
neural network is nothing else than a neural network model
composed of several layers of processing blocks and orga-
nized as an input layer, followed by multiple hidden layers,
and an output layer. Over the years, it has been shown that
such an architecture facilitates the modeling of highly
complex functions, allowing for the learning of richer in-
termediate representations. Hence, the key difference be-
tween shallow and deep neural networks is given by the
depth of the models; although not standardized, typically a
network with depth higher than two falls into the deep
learning category.

Over the past few years, we have seen a global trend for
neural networks becoming deeper. Within 3 years, reported
state-of-the-art models experienced a massive increase in
depth, from the 8 layers of the AlexNet [53] to 100+ layers
found in residual networks [56]. This contradicts the uni-
versal approximation theorem according to which a neural
network with a single wide hidden layer is already enough to
approximate any function [57]. While in theory, the same
mapping function between input and output may be learned
by shallow and deep networks, empirical work showed that it
is harder to optimize a shallow network to approximate a
complex function as accurate as deep networks, even when
the same number of parameters is used in both models [58].
By using deep architectures, the learned function is
expressed as a composition of several simple functions. It
was previously shown [59] that the same degree of accuracy
can be achieved by shallow and deep networks in approx-
imating a function using the property of compositionality,
but exponentially lower number of training parameters and
sample complexity were required by the deeper models.
When AlexNet won the ImageNet competition, it has been
reported that removing any of the hidden layers led to a 2%
loss in performance [53]. Moreover, as emphasized by
Goodfellow at al. [57], a deeper model can reduce the
generalization error. This statement is backed by the results
obtained in practice in many fields and tasks where a greater
depth was associated with better generalization [60-63].
These results suggest that deeper networks are more pow-
erful at encoding the multilevel feature representation di-
rectly from the high dimensional input data.

However, the training of deep networks is challenging.
As the network becomes deeper, problems such as vanishing
or exploding gradients may appear, which hamper con-
vergence and degrade the model performance [64]. These
challenges have been largely addressed by the deep learning
community leading to improvements in the architectures by
introducing intermediate normalization layers [65] and
shortcut connections [56]. Moreover, deeper networks
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FIGURE 1: Architecture of a simple neural network described by the input, output, and a hidden layer in between. Information flows through
all layers, starting from the input layer to the output layer. Herein, every neuron receives information from all neurons of the previous layer
(in literature called a fully connected layer). The connections 8 between the processing blocks are the parameters that have to be adjusted in
accordance with data and the formulated problem. Each processing block performs a transformation (herein a weighted sum of the input
parameters) and the result is passed to an activation function f that will be used to add nonlinear properties in the network. Activation
functions are usually selected from a set of limited functions with certain mathematical properties. Nonlinearity is needed to allow for a
complex arbitrary functional mapping between input and the output data.

require substantially more computing power, which
sometimes leads to a trade-off between model complexity
and performance. As in any data-driven model, the training
dataset represents the fundamental resource behind the
achieved performance, and deeper networks require a
considerably larger amount of training examples to gener-
alize well. While the performance of traditional machine
learning approaches saturates once a certain training dataset
size is reached, deep learning models have the capability to
turther improve their performance with more data.

4.3. Deep Learning Models. The deep learning model that
won the ImageNet competition in 2012 was not a traditional
deep neural network. Instead, a deep convolutional neural
network (CNN) architecture was proposed to enable feature
learning directly from the input images, completely miti-
gating the need for hand-designed features as in traditional
learning-based models. In a CNN, the meaningful contents
for a specific task, usually described as high-level features,
are learned from the lower ones in a fully automatic manner
incorporated in the backpropagation-based training pro-
cedure. Since its inception, CNN remains one of the most
popular types of deep learning approaches used in data-
driven medical imaging analysis [66].

Compared to a traditional deep neural network, where
all layers are fully connected, a CNN relies extensively on
convolution and pooling layers (downsampling units). The
operation performed inside a convolutional layer is a dot
product between the input of the layer and a small learnable
filter (kernel). To cover the entire input, a sliding window
strategy is adopted. During training, the parameters of the
filters are adjusted to extract relevant information for the
given task directly from the input data. Pooling layers have
no learnable parameters and are used to reduce the spatial
dimension of the data by reducing the information in a small

area to a single value (by performing an averaging or maxi-
mum operation). By using a combination of such layers, the
network exploits local connectivity making the model in-
variant to scaling or shifting transformations. By increasing the
number of layers, the network’s receptive field is expanded,
which in turn forces the model to progressively capture more
complex patterns, from edges to shapes or objects. Moreover,
the use of local receptive fields, sparse connectivity, and pa-
rameter sharing drastically reduces computational overhead
and the number of parameters that have to be learned, as
compared to traditional neural networks.

Over the past few years, based on the connection pattern
between layers, many neural network architectures have
been proposed for specific tasks: fully connected neural
networks (FCNNs) are primarily used for classification or
regression tasks where a global relationship between the
input features is required and spatial information can be
discarded, CNN specialized on data that pose a certain
spatial relationship (e.g., images), and recurrent neural
networks (RNNs) are used for sequence or time-series data
processing.

Motivated by the input data types, the amount of
available data, and the formulated problems, herein we focus
on a FCNN for solving a regression task and on a CNN for
image-based analysis. The general architectures of the deep
neural networks underlying the studied methods are rep-
resented in Figures 2 and 3.

5. Deep Neural Networks over Encrypted Data

In this section, aspects of privacy-preserving deep neural
networks are described. The proposed method relies on the
MORE homomorphic encryption scheme and enables both
the training and the exploitation of classical neural network
models directly on homomorphically encrypted data.
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FIGURE 2: General structure of a deep fully connected or feed-forward neural network (FCN). The data are fed through a stack of fully
connected layers, where each neuron is connected to all neurons of the following layer. The network is typically used on tabular data or on

handcrafted features.
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FIGURE 3: General structure of a deep convolutional neural network (CNN). The network involves two main parts: a feature extractor and a
classifier. The feature extractor is composed of multiple alternating convolutions and pooling layers. Each convolution layer performs a full
scan of its input by gradually analyzing small regions (k x k) and extracting a number N of distinctive features. The extracted information is
further passed to the pooling layer where its dimensionality is reduced based on the pooling size (I x ). With each additional layer, the
network learns to extract higher-level features while the dimensionality of each feature is continuously reduced. The classifier takes the final
extracted features as input to a fully connected neural network that combines the information to produce the final output. Such a network is

primarily used for processing images or videos.

5.1. Method. Over the past few years, we have seen re-
markable performances being obtained by deep learning-
based analysis in the medical field. The complex mathe-
matical formulation of deep learning models ultimately
breaks down to a series of repeating blocks of computations
that rely on a limited set of simple operations over rational
numbers. In fact, many of the deep learning-based state-of-
the-art results have been achieved by deep neural network
models that were using only limited types of operations (e.g.,
multiplication, addition, division, subtraction, exponential
and logarithm). By leveraging the homomorphic property of
the MORE scheme, the functionality of neural network
models can be further formulated to account for operations
on ciphertext data.

The proposed workflow, based on HE and deep learning,
is outlined in Figure 4. Before being processed, training data
are encrypted with a secret key that is never shared (Al-
gorithm 3). Thereafter, the deep learning-based model will

have access only to the encrypted version of the data (ci-
phertext), while the actual data (plaintext) are detached from
the processing unit and remain private on the side of the data
provider. Finally, with the homomorphic property under-
lying the MORE encryption scheme, the direct support for
floating-point arithmetic, and with all operations performed
inside the network formulated to ensure applicability on
ciphertext data, the network can be trained directly on ci-
phertext data following the classical pipeline described in
Algorithm 2. This results in a model that provides encrypted
predictions, which can only be decrypted by the owner of the
secret key, following Algorithm 4. Once the training phase is
finalized, the encrypted form of a model can be employed to
predict new encrypted instances (inference phase), where
input samples are encrypted with the same key as the one
used during the training phase. The MORE cryptosystem
relies on symmetric keys. Hence, a secret key, generated
following the approach presented in Algorithm 5, is used for
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FiGure 4: Workflow of the proposed privacy-preserving deep
learning-based application relying on homomorphic encryption.

both the encryption of the plaintext data and the decryption
of the ciphertext data.

The proposed deep learning-based ciphertext data
analysis framework is presented in Algorithm 6. For the sake
of comparison and validation, we also provide the pipeline
used for plaintext data analysis (Algorithm 7). Note that in
Algorithm 6, all operations performed during training and
prediction are formulated in accordance with Sections 3.1
and 3.2.

Following this approach, data privacy is retained during
both training and inference, as the external party operates
explicitly on ciphertext data and delivers results as ciphertext
data. Consequently, the secure processing of medical data is
performed in such a way that the external party cannot
derive knowledge from the patient data, and the user is
unable to obtain information regarding the machine
learning model [7].

6. Experiments

To validate the proposed method, we focused on solving
three types of deep learning applications: regression, bi-
nary, and multiclass classification. We first addressed a
well-known benchmarking application (digit classification)
and then aimed at addressing the privacy issue in two
healthcare related applications by training neural network
models on encrypted data (i) to assess whole-body he-
modynamics and (ii) to distinguish coronary artery an-
giographic views.

The aim of the conducted experiments was not to achieve
deep learning-based state-of-the art results for the proposed
problems but to investigate the possibility of maintaining
data privacy while still allowing for computations within a
neural network to be successfully performed over the
encrypted version of the data.

This section describes the datasets and the experimental
setup, including the proposed deep neural network models
and the common hyperparameters used for each of the
above formulated problems.

6.1. Problem Formulation

6.1.1. MNIST: A Typical Dataset for Neural Networks. A
typical problem studied in the context of neural networks is
that of classification. More specifically, the problem of image
categorization is in accordance to the information depicted
in the image. The MNIST (Modified National Institute of
Standards and Technology) database [67] contains images
representing handwritten digits and is typically employed as
reference for benchmarking image classification algorithms.

The choice for the digit recognition task as a first ex-
periment that addresses the challenges of privacy-preserving
computations in neural network models was made with the
intention of providing valuable insights about the strengths
and vulnerabilities of the proposed method in a task that is
already considered solved.

The approaches used in the literature to solve the digit
recognition problem range from the classical linear classifier,
to support vector machine (SVM), and more recently to
deep neural network models. However, deep CNN models
have been shown to perform significantly better than other
types of classifiers on MNIST, leading to the lowest reported
test error rates [68]. Moreover, when corresponding shallow
networks were employed, the error rate has increased [68],
reemphasizing the need for deeper models.

The digit recognition problem is framed as predicting the
probability of an image belonging to each of the 10 classes
(0-9 digits). Hence, target labels are typically represented as
one-hot vectors with only the associated class having the
value 1 and 0 for the rest. This example is a typical case of a
multiclass classification problem (C = 10 classes) that can be
solved by a neural network model trained to minimize a
cross entropy error between the predicted (¥) and expected
() probability distributions:

c=10
CE(y.3) =~ ). yilog (7). (3)
c=1

(1) Dataset. The MNIST dataset consists of 70,000 gray-scale
images of relatively small dimension, 28 x 28, each image
being labeled with the digit it depicts (Figure 5). The digits
are size-normalized and centered in the images. The MNIST
samples were partitioned into three datasets resulting in
50,000 cases used for training a neural network classifier,
10,000 for validating the trained model, and 10,000 for
assessing the classifier’s performance. The training samples
were balanced over the ten classes to avoid class imbalance
problems that commonly arise in classification.

In MNIST images, pixel values range from 0 to 255. In
order to improve training convergence, pixel values were
scaled to [0, 1] based on the minimum and maximum pixel
intensity. To perform the neural network training, the
MNIST labels represented by numerical values from 0 to 9
were encoded into categorical values as one-hot vectors.
Therefore, each digit was represented by a vector of length
equal to the number of classes, and where the digit position
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FIGUure 5: Example images from MNIST dataset.

was marked in the vector with a value of 1, all other values
being set to 0.

6.1.2. Whole-Body Circulation Model. In the following we
showcase the use of the considered approach in a person-
alized medicine application, based on a whole-body circu-
lation model (WBC). The cardiovascular system is a closed
loop system and cannot be modeled using spatial hemo-
dynamic models (3D models especially) due to the associ-
ated large computational complexity. Thus, the typical
approach is to employ lumped parameter models, which rely
on the analogy between electricity and hydraulics. The model
considered for this study is depicted in Figure 6 and is
composed of the left and right ventricles and atria, the ar-
teries, capillaries, and veins of the systemic circulation, and
the arteries, capillaries, and veins of the pulmonary circu-
lation [69].

Each of the four heart chambers is represented by a time-
varying elastance model:

P(t)=E(t)- (V(1) - V,) - RQ(1), (4)

where the time-varying elastance is E, the chamber volume is
V, the dead volume of the chamber is Vj, and an additional
term accounts for the relationship between cavity pressure

and flow, parameterized by R, [70]
(R, =KE(t)(V(t) -V,), K, — constant). The chamber
volume is computed as

dv

E = Qin — Qour- (5)

The four heart valves (aortic, mitral, pulmonary, and
tricuspid) are modeled using a diode, a resistance, and an
inertance. The valve closure and opening is triggered by the
upstream-downstream pressure difference. The following
hemodynamic relationship is employed when the valve is
open (flow is zero when the valve is closed):

v (6)

Pin - Pout = Rvalve Q+ Lvalve dr >

where P;, is the pressure at the inlet of the valve and P, is
the pressure at the outlet of the valve. The valve is opened
when P;, becomes larger than P_, and is closed when a
negative flow rate is encountered. The systemic circulation is
represented by a three-element Windkessel model:

dP,, _ dQy, Py =Py QAO(RsyS*p - Rsysfd)
dt P dr Ry, 4-Cyy Ry Cyy
(7)
where the distal and proximal resistances are R, , and

R;,_g» respectively, the compliance is C,,, and the venous
pressure is P,,,. The systemic venous circulation is repre-
sented by a two-element Windkessel model:

dp ven _ Qven dp ven — p RA

= - - (8)
dt CsysVen RsysVen : CsysVen

The pulmonary circulation is modeled analogously.

When run under personalized conditions, this hemo-
dynamic model can determine different quantities which are
clinically relevant, namely, the arterial compliance, the ar-
terial resistance, the dead volume of the heart chambers, the
stroke work, the arterial/ventricular/atrial elastance, the
ventricular-arterial coupling, the PV loop, etc. To person-
alize the model, its parameters need to be calibrated, to
ensure that patient-specific measurements are matched by
the model outputs.

The personalization procedure considered herein has
been previously introduced in [71]. It relies on two steps: (i) a
number of parameters are computed from the input mea-
surements and (ii) an automated calibration method, relying
on an optimization based iterative workflow, tunes the
remaining parameter values.

The input measurements are as follows:

(i) Pulmonary circulation: systolic pressure in the
pulmonary artery, end-diastolic pressure in the
pulmonary artery, end-diastolic and end-systolic
volumes of the right ventricle, and ejection time of
the right ventricle.
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(ii) Systemic circulation: systolic pressure in the aorta,
end-diastolic pressure in the aorta, end-diastolic and
end-systolic volumes of the left ventricle, and ejec-
tion time of the left ventricle.

The patient-specific outputs computed after finalizing
the personalization are as follows:

(i) Pulmonary circulation: right ventricular dead vol-
ume, resistance and compliance of the pulmonary
arterial circulation, and ratio between proximal and
distal resistance in the pulmonary arterial
circulation.

(ii) Systemic circulation: left ventricular dead volume,
resistance and compliance of the systemic arterial
circulation, and ratio between proximal and distal
resistance in the systemic arterial circulation.

The automated personalization procedure described
above is formalized as an optimization problem, having as
goal the determination of a set of parameter values which
minimize the difference between computed and reference
objective values. The number of objectives is chosen to be
equal to the number of parameters to be personalized; hence,
we are solving a system of nonlinear equations. Concretely,
the dogleg trust region method is employed for finding the
root of the system of equations [71].

Although one WBC forward run is very efficient in terms
of computation time, the hundreds of runs required for the
calibration procedure lead to a runtime of up to one minute
on a standard desktop hardware configuration. Hence, a
solution capable of determining in real time the personalized
hemodynamic measures of interest of the WBC model
would be very valuable, even when considering only the
plaintext version.

In the context of deep neural network, this problem is
framed as predicting real-valued quantities from a set of
input parameters. By modeling this regression task using
neural network models, the parameters are adjusted during
training to minimize the squared differences between the
predicted (¥) and expected target (y) values:

1< -
MSE(y, y) = n Y (- 7% 9)
ni3
where 7 is the number of real-valued quantities.

(1) Dataset. A large training database is required for the
deep learning based approach. Since such a database was
not available, we have resorted to an approach that we have
successfully employed in the past for diagnosing in real
time coronary stenoses from computer tomography data
[72]: synthetic data are generated, and the training of the
deep neural network is based only on synthetic data. The
calibration framework is run for each synthetic dataset and
the hemodynamic model is employed to compute the
measures of interest. In the prediction phase, actual patient
data are used as input and the patient-specific measures of
interest are determined by employing the learned model
(Figure 7).

We generated a training dataset containing 10000 syn-
thetic samples, covering a wide range of functional and
anatomical variations that can be identified in patients and
in a healthy population [73]. For each sample, the input data
were represented by 9 parameters, and the WBC model
computed 12 measures of interest as described above. The
10000 synthetic samples were divided as follows: 7000 for
training, 1000 for validation, and 2000 were used for the final
test.
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FIGURE 7: Proposed workflow of the deep learning-based model.

6.1.3. X-Ray Coronary Angiographies. The main imaging
modality for the diagnosis of coronary artery disease (CAD)
is invasive X-ray coronary angiography (ICA) [74]. It allows
for a comprehensive assessment of both the function and the
structure of the heart. During the invasive procedure, a dye
with radio opaque characteristics is inserted in the coronary
vessels and a set of images is recorded in succession by an
X-ray scanner. This offers a comprehensive overview of the
coronary trees, allowing for an evaluation of the coronary
stenosis severity, which may be performed either quanti-
tatively (QCA—quantitative coronary angiography) or
qualitatively (visual assessment) [75].

However, a solely anatomical evaluation of the stenoses
has limited accuracy, and hence a diagnostic index per-
forming a functional assessment (FFR—fractional flow re-
serve) has been proposed as a superior approach in terms of
long-term outcome [76]. Recently, methods for computing
FFR directly from the angiographic images have been also
introduced [72, 77, 78]. In all cases, angiographic images are
acquired independently for the left and the right coronary
artery (LCA and RCA) (Figure 8).

Thus, an active research topic in the coronary artery
assessment is the automated processing of angiographic
images [79], having as goals

(i) Automated assessment of the coronary stenosis
degree.

(ii) Image-based computation of functional diagnostic
indices [72, 78].

(iii) Automated composition of medical reports starting
from the findings in the angiographic images.

These represent just a subset of the use cases based on
coronary angiography, where an accurate LCA/RCA view
classification is a crucial prerequisite for the subsequent
processing steps.

The X-ray coronary angiography view recognition can be
formulated as a binary classification problem, where a neural
network model learns to predict the probability of an image
belonging to the positive class (represented by the value 1).
Hence, the two categories, LCA and RCA, can be encoded as
0 and 1, respectively. This translates to training a deep neural

network in a supervised manner, to minimize a binary cross
entropy error:
c=2
BCE(y,7) == yilog(7:) =~(ylog(7)+(1-y)log(1-7),
c=1

(10)

where y represents the expected class label and 7 is the
predicted probability (as output by the classifier) of the input
image as being an RCA image. Hence, the output value of the
classifier must reside between 0 and 1 (Figure 9).

(1) Dataset. To investigate the feasibility and effectiveness of
deep learning-based analysis for X-ray coronary angiogra-
phy view classification, an in-house database was used. The
available database consisted of 3378 coronary angiographies
with 512 x 512 pixel resolution. A manual annotation of the
images was performed to determine the ground truth LCA/
RCA view information. One frame, well contrasted by the
injected dye, was considered for each angiographic image
[9].

To conduct learning-based experiments, the database
was split at patient level into training, validation, and test
sets. Thus, the training set consisted of 1996 images, the
validation set of 680 images, and the testing set, employed
only for the end evaluation of the model, consisted of 702
images. Balancing was performed in all 3 sets (prevalence of
1:1 for the RCA and LCA images).

Due to privacy considerations, there is a well-known lack
of publicly available databases in the medical field. There-
fore, to increase the amount of training samples, we opted to
synthetically infuse new images through data augmentation.
Offline augmentation was employed, leading to a four-fold
increase of the training dataset size. The considered strat-
egies relied on transformations like rotation ( + 10 degrees),
zooming, and shifting. Moreover, the coronary angiography
images were downsampled by a factor of 2, resulting in a
256 x 256 pixel resolution. The range of the input pixel
values was rescaled to [0, 1] based on the min-max nor-
malization strategy. Hence, given a pixel value x and the
minimum and maximum pixel values across the image
(min,, max,), the normalized value was computed as
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((x —min,)/(max, — min )). Based on annotations, the databases have been used: images of handwritten digits

output, i.e,, target, was assigned with one of the two values: 1~ (MNIST), X-ray coronary angiographies, and synthetically

for RCA and 0 for LCA. generated WBC samples. A brief overview of these databases
is given in Table 2. More details can be found in Sections
6.1.1, 6.1.2, and 6.1.3.

6.2. Ciphertext Database Preparation. To evaluate the per- To address the challenge of privacy-preserving compu-

formance of the proposed privacy-preserving method, three ~ tations and to evaluate the use of deep neural network
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Input: Ciphertext C € R*?
Output: Ciphertext R € R>2

(3) return R
(4) end function

(7) L ;«—Diag(Exp (L))
(8) Cexp<—V X Lf x V!
9) R—Lx(I,+C
(10) return R

(11) end function

-1
exp)

(1) function Sigmoid (C) \\ Using direct matrix operations
(2) R<1, x (I, + MatrixExp (~C))" ' \\I, represents the identity matrix

(5) function Sigmoid (C) \\ Using eigen decomposition
(6) L,V<—EigenDecomposition (—C)

ALGORITHM 1: Implementation of the sigmoid function under the MORE encryption scheme.

models over encrypted data, for each dataset, the input
samples, i.e., image or feature vectors, were encrypted fol-
lowing the MORE encryption strategy, as described in Al-
gorithm 3. Similarly, the target values, i.e., class labels or
real-valued quantities, were also encrypted, except for the
binary classification problem where the target was given as
plaintext. We chose to encrypt only the input data, i.e., the
coronary angiography images, and leave the target, ie.,
binary label 0 or 1, as plaintext to show that training can as
well be performed if labels are formulated as plaintext. For
each experiment, a different secret key was generated fol-
lowing Algorithm 5. In the preprocessing step, the input and
output features were normalized, i.e., using mean and
standard deviation or minimum and maximum values, to
achieve faster convergence.

6.3. Deep Neural Network Model Architecture. To assess the
feasibility and effectiveness of deep neural networks to
operate directly on homomorphically encrypted data, we
conducted three experiments and trained (i) a CNN for digit
recognition on encrypted handwritten images, (ii) a tradi-
tional FCNN for real-time hemodynamic analysis, where
both the input feature vector and the ground truth outputs
were encrypted, and (iii) a CNN for encrypted X-ray cor-
onary angiography view classification. For a comparison of
model performance and convergence, we also trained the
counterpart models on plaintext data.

Although more efficient alternative deep neural network
models (e.g., improved activation functions and greater
depth) can be adopted to ensure better convergence and
superior performance, herein the purpose of the experi-
ments was to assess the correctness and effectiveness of
different deep neural network models operating on ci-
phertext data, as compared to the counterpart models
trained on plaintext data.

6.3.1. Deep Neural Network for Handwritten Digit
Classification. Starting from the latest results obtained by
CNN models on the MNIST digit recognition task, a CNN
was employed on encrypted input-output value pairs. The

topology of the proposed privacy-preserving CNN is de-
scribed in Table 3.

The input image represented as ciphertext data is passed
through a stack of 2 convolution layers where 8 and 16 filters
with small 3 x 3 receptive fields were used to extract hier-
archical image features. Through averaging, the pooling
layer downsamples the images by a factor of two. The last
two fully connected layers cover 100 and 10 nodes, re-
spectively, and all activation functions employed in the
network, except for the ones in the last layer, are sigmoid
functions. Although more efficient options exist to introduce
nonlinearities in the network, herein we focused on sigmoid
as it is one of the most frequently used activation function.
To convert the two-dimensional matrix of features into a
vector, a flat layer has been added between the last con-
volutional layer and the first fully connected layer. A softmax
activation function was considered in the output layer to
provide class probabilities. Given an input value y;, the
softmax function converts the value into a probability and
ensures that output probabilities sum to 1

S(y) = (/Y2 ).

6.3.2. Deep Neural Network for Real-Time Hemodynamic
Analysis. Given the nature of the input data, ie., infor-
mation represented as a feature vector, and driven by the
need to model the decision of the network based on a global
dependency between input features, a fully connected neural
network with 3 hidden layers was employed. The topology of
the proposed privacy-preserving FCNN is described in
Table 4.

Although deeper and wider networks could have been
considered, in the absence of a larger training dataset, this
would have led to overfitting. Hence, the number of layers
and units was chosen to facilitate the generalization capa-
bility of the network. Both the logistic sigmoid and the
hyperbolic tangent (tanh) functions were chosen as non-
linearities, with all 3 hidden layers holding the same number
of neurons [40]. Herein, a hyperbolic tangent activation
function was used to facilitate training and decrease the risk
of vanishing gradients. Moreover, we show that neural
networks over ciphertext data are not bounded to only one
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Input: neural network model Ny~ with h hidden layers, training set {xin}Zp number of training epochs M, batch size b,
learning rate A € R, and loss function L
Output: parameters 0,,, of the trained model

(1) procedure Train (x,y)
(2)  Initialize network parameters: 0, ,
(3) for epoch € M do
(4) for batch € (N/b) do
(5) Sample a batch of b training samples: (xs,ys)<—{x,-,yi}f.\:’1
(6) Compute predictions by feeding x, forward through the network: y,«—Nj (x,)
(7) Compute loss: L(y,, V)
(8) Compute gradient of the loss w.r.t. the parameter in the output layer: V6,,,«— (dL(y,, ¥,)/00,,,)
9) for l € h do
(10) Compute gradient of the loss w.r.t. current parameters 0, of each hidden layer I via backpropagation, following the chain
rule: VO;«— (dL(y,, ¥,)/06;)
) end for
12) forleh+1do
(13) Update the model: 6, = 6, - AV0,
(14) end for
(15) end for
(16)  end for
(17) end procedure

ALGORITHM 2: General training algorithm.

Input: Plaintext data m € R
Input: Secret key S € R¥?

Output: Ciphertext C € R¥?
(1) function Encryption (m, S)
(2) M e R¥2——zero matrix
(3) M(0,0)—m
(4) M(1,1)«—RandomUniform (min val, max val)
(5) C—SxMxS!
(6) return C
(7) end function

ArcoriTHM 3: MORE encryption.

type of nonlinear functions, i.e., sigmoid, and that more
functions can be adopted if the involved operations are
supported by the MORE encryption scheme. Since the
problem being solved is formulated as a regression task, no
activation function was specified in the output layer, every
output value being a linear combination of the outgoing
values of the last hidden layer. This ensures that the outputs
are real values ranging from [-00, +00].

6.3.3. Deep Neural Network for View Classification in X-Ray
Coronary Angiography. Motivated by the latest results in
data-driven image-based analysis, a deep CNN was adopted
to solve the coronary angiography image recognition task.
The topology of the proposed privacy-preserving CNN is
described in Table 5.

To solve the classification problem, the network has to
perceive the overall shape of the coronary artery and not just
individual pixels. Therefore, to capture features of increas-
ingly higher order, we opted for a deeper convolutional

network that expands the model’s receptive field and au-
tomatically learns relevant features. As the receptive field
becomes larger, the layers can capture features with vast
semantic meaning. Moreover, to model the global rela-
tionship between the extracted features, fully connected
layers have been added. Hence, 4 convolutional layers were
used to capture relevant features and 2 fully connected layers
were used to capture feature dependencies. We gradually
increased the number of features by a factor of 2 with the
intention of capturing more complex semantic information.
To limit overfitting, a dropout layer was employed for
regularization, to randomly ignore 25% of the neurons
during the training phase. A sigmoid activation function was
used in the latest layer to squash the values between [0, 1]
and formulate the prediction of the model as a probability.

6.4. Setup of the Deep Neural Network Models. To train the
deep neural network models on ciphertext data, we used the
approach described in Algorithm 7. The hyperparameters



16 Computational and Mathematical Methods in Medicine

Input: Ciphertext C € R¥?
Input: Secret key S € R**?
Output: Plaintext data m € R
(1) function Decryption (C, S)
(2) K—S!xCxS
(3) m«—K(0,0)
(4) return m
(5) end function

ALGORITHM 4: MORE decryption.

Output: secret key S € R>?
(1) function Keygeneration( )

(2)  while True do

(7)  end while
(8) return S
(9) end function

(3) S«—RandomUniform (size = (2, 2), min val, max val)
(4) if det(S) #0 then \\ Ensure matrix invertibility

(5) break

(6) end if

ALGORITHM 5: MORE secret key generation.

considered for each experiment are presented in Table 6. To
avoid slow convergence and mitigate the chances of van-
ishing or exploding gradients, especially when using sigmoid
or tanh as activation functions, we initialized all weights
following Xavier’s method [64] with random values chosen
from a truncated uniform distribution  within
[\/(6) /A/(n; + n;,,) ] where n; and n,, | represent the number
of input and output units of the layer. We chose a variant of
gradient descent to update the model’s parameter across
minibatches of training examples to avoid storing the entire
dataset into memory and to speed up training in the context
of large datasets.

During the data-driven model optimization, it is nec-
essary to closely monitor the training phase to ensure an
optimal performance. An inadequate optimization may lead
to a network that can neither model the training data nor
generalize on new data. Overfitting and underfitting are the
two well-known learning-based problems that greatly affect
the performance of the model on an unseen dataset.
Therefore, these issues can be avoided by knowing when to
stop the training. A commonly adopted strategy to prevent
the degradation of the model’s performance is to define early
stopping criteria based on the error on a validation dataset.
More specifically, if the error on a held-out dataset does not
improve over time or the gap between the training and
validation errors widens, the training can be interrupted. In
both strategies, the stopping criteria are set upon the error
analysis. Although easily adopted during the training phase
on plaintext data, these strategies are becoming highly
impractical when operating on ciphertext data. Due to the

adopted cryptosystem, and the fact that the error metric is in
turn a ciphertext, it cannot be used within a conditional
statement. To overcome this limitation, the privacy-pre-
serving models are trained for a predefined number of
iterations.

As the overall goal of the study is to assess the feasibility
of the deep neural network to operate directly on ciphertext
data, i.e., demonstrate that the performance does not drop
compared to the plaintext setting, a proper stopping cri-
terion can be predefined. Hence, for usability and sim-
plicity, we have chosen an arbitrarily large number of
epochs to conduct the experiments and report the
performance.

For each of the tasks, we computed both the unen-
crypted and the counterpart encrypted version. While the
first experiment implies regular training and inference
operations, for the encrypted version, the neural network
exclusively operates on ciphertext data, with all trainable
parameters being completely encrypted. To enable a fair
comparison, all networks (plaintext and ciphertext) were
trained using the same training strategy, hyperparameters,
and initialization method, as outlined in Table 6. More-
over, for consistency, the models trained on both ci-
phertext and plaintext data started from the same set of
initial values.

To measure the performance of the neural network
models trained on ciphertext data on the held-out testing
set, all evaluation metrics are computed on the decrypted
results, where decryption is performed as shown in
Algorithm 4.
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7. Results

To evaluate the performance of the proposed privacy-
preserving deep neural network models, two criteria have
been examined: reliability and applicability in medical
scenarios.

Consequently, for each of the use cases, the perfor-
mances, and hence the results, of the data-driven models
were analyzed by applying the models on both encrypted
(ciphertext) and unencrypted (plaintext) data. By comparing
the outcomes of the two scenarios, we analyzed and mea-
sured the privacy-preserving models’™ ability to retain the
performances.

Besides reliability, another factor that plays an important
role in determining the viability of the privacy-preserving
models to operate in clinical routines is the runtime.
Therefore, a detailed analysis of the runtime was performed,
and both the inference and the training times were reported.

The analyses showed that data security can be ensured on
the basis of homomorphic encryption, and that, at the same
time, deep learning-based data analysis can be efficiently
performed. Furthermore, experiments have indicated that in
both encrypted and unencrypted versions, the data-driven
models are similarly optimized, as outlined in the following.

7.1. Performance. To showcase the ability of the network to
learn from ciphertext data, the training loss for the re-
gression task, as resulted after decryption, is depicted in
Figure 10(a). Similarly, the evolution of the training and
validation accuracy of the privacy-preserving CNN model
fed with encrypted X-ray coronary angiographies, obtained
after decryption, is depicted in Figure 10(b).

The training evolution demonstrates the capability of the
proposed method to preserve the correctness of the com-
putations. Moreover, after decryption, the parameters
learned by the model when trained on ciphertext data were
found to be identical up to machine precision to those
learned by the unencrypted model. Therefore, the overall
performance of the deep learning models on the held-out
testing samples has been proven to be consistent regardless
of whether the model was previously trained with or without
encryption. Hence, all performance metrics reported here-
after are based on the results obtained by the encrypted deep
neural network models.

7.1.1. MNIST Binary Classification. The default metric used
to assess the performance of a classifier on the MNIST
dataset is given by the absolute accuracy of the classification
models, i.e., the percentage of correctly labeled digit images.
The unencrypted network achieved a classification accuracy
of 98.2% on the testing dataset, which was preserved by the
encrypted network. In the MNIST database, the class dis-
tribution in the held-out testing set is well balanced across
the 10 labels, and hence accuracy can be seen as a reliable
metric for assessing the classification performance.

For a more detailed evaluation of the performance, we
used three additional criteria defined as follows:
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(i) Precision: (TP/(TP + FP))
(ii) Recall: (TP/(TP + EN))

(iii) F1—score: (2-precision-recall/ (precision+recall))

where TP represents the number of images correctly
predicted as being positive, TN is the number of images
correctly predicted as being negative, FP shows the
number of images incorrectly predicted as positive, and
FN is the number of images incorrectly predicted as
negative. Being a multiclass classification problem, the
evaluation metrics were computed following the one-vs-
rest strategy. More specifically, to compute the metrics,
each label was individually considered positive while the
others were set as being negative. The precision, recall, and
Fl1-score for each digit class are reported in Table 7. To
evaluate the digit recognition performance of the pro-
posed CNN model, we show the confusion matrix in
Figure 11.

Although 98.2% is an acceptable accuracy for the MNIST
digit recognition task, the proposed model did not reach the
reported state-of-the-art accuracy of 99.77%. This was to be
expected as the classifier proposed to solve the problem of
digit recognition was primarily adopted to assess the cor-
rectness of the privacy-preserving computations within a
traditional convolutional neural network.

The performance of any neural network model can be
generally improved by tuning the architecture of the net-
work or by adopting more favorable activation functions and
optimization algorithms. Additionally, training data aug-
mentation techniques, e.g. elastic distortions, can be
employed to further decrease the classification error rate, as
shown in [80]. However, optimizing the model or the
hyperparameters to achieve maximum performance on the
MNIST digit recognition task was beyond the scope of this
work.

7.1.2. Hemodynamic Analysis. The performance of the deep
neural network model predicting the outputs of the WBC
model was evaluated based on the Pearson correlation and
the average absolute relative error: Table 8 shows the results.
Figure 12 depicts scatter plots of the predicted vs. measured
quantities, having the smallest (ratio of proximal to distal
resistance in the systemic circulation) and the largest
(systemic resistance) Pearson correlation.

7.1.3. X-Ray Coronary Angiography Classification. For the
binary classification problem, i.e., coronary angiography
view recognition, the predicted value is the probability of a
given input image to represent a right coronary artery
(RCA). Thus, the threshold can be chosen to favor a certain
problem specific behavior. It introduces flexibility in in-
terpretation, allowing for a trade-off between false negative
and false positive findings, by varying a probability
threshold. The ROC (receiver operator characteristic) curve
is widely used as a way of interpreting the performance of a
classifier by describing the trade-off between true and false
positives as the threshold is varied.
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FIGURE 10: (a) Evolution of the training loss for encrypted and unencrypted networks: differences between the learning curves, caused by
floating-point arithmetic, are unnoticeable. (b) Evolution of the accuracy when training on ciphertext data.

(1) function TrainOnCiphertext( )

(2)  Xiain> Yirain < LoadDataset

(3)  Xiin<—Normalize (X,,,i,)

(4) S<—KeyGeneration

(5) Xirain,, < Encryption (X in» S)
(6) Ytrainem(_Encryption (Ytrain’ S)

(7)  BuildModel ()
(8) Train (X‘trainm’ Ytrainem)
(9) return model
(10) end function
(11) function PredictOnCiphertext( )
(12)  X<—LoadSamples
(13)  Xq—Normalize (X.i)
(14) S<LoadKey

enc

@15) Xiest,, —Encryption (Xiest>S)
(16) IioadModel
17) Yiesi,,. «—Predict (Xte_&tenc)

(18) Y e~ Decryption (Ytestenc’ S)
(19) return Y,
(20) end function

ALGORITHM 6: Deep learning-based analysis on ciphertext data.

To assess the accuracy of the coronary angiography view
recognition model, the obtained ROC curve is shown in
Figure 13. Table 9 lists the precision, recall, and F1-score for
both the LCA and RCA labels. Figure 14 shows the confusion
matrix, portraying measures of association between the true
labels and the deep neural network predictions of LCA and
RCA.

In the angiographic view classification use case, the CNN
network trained on ciphertext data classified 96.2% of the
samples correctly when evaluated on the held-out testing
angiographies. When compared to the unencrypted model,
accuracy was identical.

7.2. Execution Time. All runtimes reported in the current
section were measured on a machine equipped with an
Intel(R) Xeon(R) CPU running at 2.10 GHz. The deep
learning library which integrates the MORE encryption
scheme was written in C++. The library is still under active
development, with minimal multithreading support.

A detailed comparison of the runtime for each of the
applications is given in Tables 10 and 11. All reported results
were obtained by employing data parallelism (8 threads),
both during training and inference. Although deep learning
models run directly on MORE, homomorphically encrypted
data are significantly slower (up to one order of magnitude)
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F1cure 11: Confusion matrix of the MNIST digit classification task on the test set. The number on the diagonal indicates the number of
correctly classified images, while the rest represent the misclassified ones.

(1) function TrainOnPlaintext( )
(2)  Xirain> Yiain < LoadDataset
(3)  Xiain<—Normalize (X,,,,)
(4)  BuildModel
(5) Train (Xtrain’ Ytrain)
(6)  return model
(7) end function
(8) function PredictOnPlaintext( )
(9)  XgLoadSamples
(10)  Xgq—Normalize (X.s)
(11)  LoadModel
(12) Yo Predict (X,.y)
(13)  return Y
(14) end function

ALGORITHM 7: Deep learning-based analysis on plaintext data.
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FIGURE 12: Predicted vs. ground truth. (a) Ratio of proximal to distal resistance in the systemic circulation and (b) systemic resistance.
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FIGURE 13: ROC curve of the view classification task in X-ray coronary angiography.

TaBLE 2: Overview of databases used for experimental evaluation.

MNIST WBC Angio
Normalization method Min-max Mean-std Min-max
Input dimension (28, 28) 1,9) (256, 256)
Output dimension (1, 10) 1, 12) 1, 1)
Data augmentation — — Rotation/shifting/zooming
Number of training samples 50000 7000 1996 (7984*)
Number of validation samples 10000 1000 680
Number of testing samples 10000 2000 702

* After augmentation.

Confusion matrix

LCA

True label

RCA

LCA RCA
Predicted label

FiGure 14: Confusion matrix of the X-ray coronary angiography view classifier.

TaBLE 3: CNN-MNIST: the topology of the CNN for handwritten digit classification.

Layers Parameters Dimensions
Input — (1,28,28)
Convolution (8,3,3) (8,28,28)
Activation (sigmoid) — —
Average pooling (2,2) (8,14,14)
Convolution (16,3,3) (16,14,14)
Activation (sigmoid) — —
Average pooling (2,2) (16,7,7)
Flatten — (784)
Fully connected 100 (100)
Activation (sigmoid) — —
Fully connected 10 (10)

Activation (softmax) —
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TaBLE 4: FCNN-WBC: the topology of the FCNN for hemodynamic analysis.
Layers Parameters Dimensions
Input — )
Fully connected 40 (40)
Activation (tanh) — —
Fully connected 40 (40)
Activation (tanh) — —
Fully connected 40 (40)
Activation (sigmoid) — —
Fully connected 12 (12)
Activation (linear) — —
TaBLE 5: CNN-Angio: the topology of the CNN for view classification in X-ray coronary angiographies.
Layers Parameters Dimensions
Input — (1,256,256)
Convolution (4,3,3) (4,256,256)
Activation (sigmoid) — —
Average pooling 2,2) (4,128,128)
Convolution (8,3,3) (8,128,128)
Activation (tanh) — —
Average pooling (2,2) (8,64,64)
Convolution (16,3,3) (16,64,64)
Activation (tanh) — —
Average pooling (2,2) (16,32,32)
Convolution (32,3,3) (32,32,32)
Activation (tanh) — —
Average pooling (2,2) (32,16,16)
Flatten — (8192)
Fully connected 64 (64)
Activation (tanh) — —
Dropout 25% —
Fully connected — 1)
Activation (sigmoid) — —
TaBLE 6: Hyperparameters considered for the learning algorithms.
Hyperparameters CNN-MNIST CNN-Angio FCNN-WBC
Objective function CE BCE MSE
Weight initialization method Xavier Xavier Xavier
Optimizer Minibatch gradient descent
Momentum 0.9 0.9 0.9
Learning rate 0.01 0.01 0.01
Batch size 32 16 32
Dropout rate — — 25%
Epochs 100 100 4500
TABLE 7: Precision, recall, and F1-score of the deep neural network based MNIST digit classification.
Digit Precision (%) Recall (%) Fl1-score (%)
0 97.9 99.0 98.5
1 98.8 99.2 99.0
2 98.5 98.3 98.4
3 98.1 98.5 98.3
4 98.4 98.3 98.4
5 98.2 98.6 98.4
6 98.4 98.0 98.2
7 97.3 97.9 97.6
8 98.3 97.2 97.7
9 97.5 96.4 97.0
Average 98.1 98.1 98.1
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TaBLE 8: Results of the deep neural network for real-time hemodynamic analysis on the testing dataset.
Circulation Parameters MAPE (%) Pearson correlation (%)
Dead volume 7.03 0.9997
Svstemic Time at max. elastance 0.13 0.9995
¥ Resistance 0.17 0.9999
Compliance 2.45 0.9867
Dead volume 9.88 0.9991
Pulmona Time at max. elastance 0.10 0.9994
ry Resistance 0.32 0.9998
Compliance 0.67 0.9983
TABLE 9: Precision, recall, and F1-score of deep neural network for hemodynamic analysis.
Label Precision (%) Recall (%) Fl1-score (%)
LCA 96.0 96.5 96.3
RCA 96.5 96.0 96.2
Average 96.2 96.2 96.2

TaBLE 10: Runtime analysis: mean values and standard deviation of the encrypted and plaintext CNNs for MNIST digit recognition.

Runtime (s) on plaintext data Encrypted-unencrypted ratio

Operation Runtime (s) on ciphertext data
Data encryption and key generation 2.44 + 0.016
Training (1 epoch) 444.59 + 8.53
Data encryption 0.39 + 0.009
Inference (10K images) 20.42 + 0.32

Data decryption 0.001 + 0.0005

1298 £ 1.17 34.25

0.54 £ 0.08 37.81

TaBLE 11: Runtime analysis: mean values and standard deviation of the encrypted and plaintext networks for the two personalized medicine

use cases.
Task Operation Runtime (s) on ciphertext Runtime (s) on plaintext Encrypted- .
data data unencrypted ratio

Training (1 epoch) 1075.47 + 45.54 3448 + 1.12 31.19

Angiographic view classification Infe.rence (702 26.36 + 1.98 08 + 006 32,95

images)
Whole-body circulation TE:;;I;%IC(; (e;(;z)coh) 0.66 + 0.09 0.021 + 0.001 31.4
hemodynamic analysis 0.102 + 0.01 0.006 + 0.0009 17

samples)

during both training and inference, and the scheme is
currently outstandingly faster compared to classic fully
homomorphic encryption schemes where the difference is of
around 6 to 7 orders of magnitude, even when performing
very basic algebraic operations.

7.3. Security Concerns. Despite the fact that the considered
MORE encryption scheme has some advantages in terms of
simplicity, clearness, and practicability, with properties
tailored to privacy-preserving machine learning, it offers
limited security compared to other HE schemes.

The most significant security concern is given by the
linear nature of MORE [50, 51], whereas typical encryption
schemes are based on strongly nonlinear functions and
modular arithmetics over large numbers. This linearity may
allow one to determine the secret key by having access to a

large enough number of pairs of encrypted and unencrypted
values. Otherwise stated, if a sufficiently large number of
plaintext-ciphertext data pairs {C;,m;}, are available, the
secret key S can be determined through an optimization
problem. The key search attack can be formulated as finding
the best fit of a matrix S1 such that (S C;S/), , = m; for each
known pair s.

Although less secure than other homomorphic en-
cryption schemes, the MORE scheme remains a viable so-
lution for certain privacy-preserving applications.
Consequently, it can be employed in scenarios where the key
is never disclosed, e.g., ciphertext data are uploaded to an
external computing service while the raw data remain pri-
vate on the side of the data provider. For example, personal
medical data can be uploaded to a dedicated service, i.e.
patient-level encryption, that provides a personalized risk
factor or other health-related indicators [81].
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8. Discussion and Conclusions

The growing concern over recent years to preserve the
privacy of sensitive patient health information, while pro-
moting the development of personalized medicine, has in-
creased the demand for cryptographic techniques suitable
for addressing privacy-related issues in data-driven models.

The current work was focused on designing fully au-
tomatic data-driven personalization-based medicine solu-
tions by protecting the integrity of patient health data. A
variant of a noise-free matrix-based homomorphic en-
cryption scheme (MORE) was proposed for privacy-pre-
serving computations within deep learning models.
Although a homomorphic cryptosystem is governed by a
private key to encrypt and decrypt data, it greatly varies from
other forms of encryption as it preserves the algebraic
properties to allow a variety of operations to be performed
directly on the encrypted data (ciphertext data) without
requiring access to the decrypted information (plaintext
data) or the encryption key.

We have showcased the applicability of incorporating
the MORE encryption scheme into deep learning models by
tackling three different problems: digit recognition, whole-
body hemodynamic analysis, and coronary angiography
view classification. The first application focused on a stan-
dard benchmarking application from the computer vision
realm (MNIST digit recognition) to evaluate the feasibility of
a network to operate directly on encrypted data, whereas the
latter two models target clinically realistic problems.
Therefore, one model was designed to estimate the outputs
of a whole-body circulation (WBC) hemodynamic model.
The second clinically realistic application was responsible for
classifying encrypted X-ray coronary angiography medical
images.

For each application, we have addressed both the
training and the inference phase and showed that both can
be performed on MORE homomorphically encrypted data.
The reported results indicate that the proposed solution has
great potential: (i) computational results are indistin-
guishable from those obtained with the unencrypted variants
of the deep learning-based applications and (ii) runtimes
increase only marginally. The encryption scheme incurs a
reasonably small computational overhead and, importantly,
allows for operations to be performed directly on floating-
point numbers, which represents a critical property for
artificial neural networks.

Although the MORE encryption scheme offers lower
security compared to standard schemes, it is one of the few
schemes with the potential to be used in practical appli-
cations. Consequently, it can be incorporated in two deep
learning-based scenarios. The first scenario refers to the
training of a model with encrypted input-target data and is
suited for problems where the requirements are targeted on
keeping both the data and the model private. This scenario
implies that the unseen data on which the trained model
will be applied will have to be encrypted with the same key
as the data used for training. The second scenario covers the
training of a model on plaintext input-target data, which
can then be applied on encrypted data. This facilitates the
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use of existing deep learning models but also the idea of
transferring the knowledge from one problem to another.
Although the neural network will not be private, it will be
applied on private data, resulting in private results, and
more importantly will not be dependent on the key, e.g., if
two data owners, with different keys, want to use a deep
learning model trained on X-ray coronary angiographies,
they can encrypt the data with the private key, feed the
encrypted image to the network, and obtain encrypted
results which will be interpreted only by the owner of the
key.

In conclusion, we showed that a class of homomorphic
methods based on linear transformations has a great po-
tential towards facilitating data sharing and outsourcing to
third parties for data analytics in regulated areas, but it
comes at a cost of weaker security. The security compromise
is caused by changing the original homomorphic encryption
scheme to enable computations to be performed directly on
rational numbers, a fundamental requirement for machine
learning models. While the preliminary proposed solution is
promising, for practical applications, further improvements
are needed to strengthen the security of the scheme.

Data Availability

The MNIST database used to validate the methodology is
available at http://yann.lecun.com/exdb/mnist/. The coro-
nary angiography data used to support the findings of this
study have not been made available because they were ac-
quired in a research grant (heart.unitbv.ro) which does not
allow the publication of the data.
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