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Abstract: It is known that peripheral infections, accompanied by inflammation, represent signifi-
cant risk factors for the development of neurological disorders by modifying brain development or 
affecting normal brain aging. The acute effects of systemic inflammation on progressive and persis-
tent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may 
have beneficial effects on the brain, and the protective properties of a wide range of synthetic and 
natural compounds have been extensively explored in recent years. In our previous review, we pro-
vided an extensive analysis of one of the most important and widely-used animal models of periph-
erally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. 
We addressed the data reproducibility in published research and summarized basic features and data 
on the therapeutic potential of various natural products, nutraceuticals, with known anti-
inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suit-
ability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large 
number of nutraceuticals belonging to different groups of natural products such as flavonoids, ter-
penes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur 
compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these 
molecules are discussed. 
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1. INTRODUCTION 

 Neuroinflammation is an important feature in the patho-
genesis and progression of neurodegenerative diseases such 
as Alzheimer´s disease (AD), Parkinson´s disease (PD), 
frontotemporal dementia, amyotrophic lateral sclerosis and 
multiple sclerosis [1-6]. Epidemiological studies indicate 
that AD and PD risk positively correlates with pro-
inflammatory conditions such as diabetes mellitus, metabolic 
syndrome, hypercholesterolemia and atherosclerosis, sug-
gesting that chronic systemic inflammation may influence 
the development of neurodegenerative diseases [7-9]. It has 
been demonstrated that peripheral infections accompanied by 
inflammation represent significant risk factors for the devel-
opment of neurological disorders by modifying brain devel-
opment or affecting normal brain aging [10-14]. The acute 
effects of systemic inflammation on progressive and persis-
tent brain damage and cognitive impairment are well docu-
mented [15]. 

 Mice treated intraperitoneally (i.p.) with lipopolysaccha-
ride (LPS), an endotoxin from the outer membrane of bacteria  
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known to be a potent trigger of inflammation, are widely 
used to study neuroinflammation and neurodegeneration 
caused by peripheral infection [16-20]. Recently, the suit-
ability of this model for studying inflammation-induced 
cerebral microhemorrhages (CMH) has been proposed [21]. 
In our previous review, we provided an extensive analysis of 
this model and addressed data reproducibility as well as dif-
ferent experimental approaches described in analyzed litera-
ture [22]. It has been demonstrated that peripheral admini-
stration of LPS causes sustained brain damage and has long-
term cognitive consequences [23, 24]. Activated microglia 
and astrocytes, increased brain levels of pro-inflammatory 
cytokines (interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor 
necrosis factor α (TNF-α)), cyclooxygenase-2 (COX-2), re-
active oxygen species (ROS), inducible nitric oxide synthase 
(iNOS), 18 kDa translocator protein TSPO and matrix metal-
loproteinases (MMP-3, MMP-8 and MMP-9), cerebral mito-
chondrial dysfunction leading to up-regulation of Bax pro-
tein and increased levels of cytochrome C, caspase-9 and 
caspase-3 as well as decreased levels of brain-derived neu-
rotrophic factor (BDNF) and synaptic failure were observed 
in response to systemic LPS in the mouse brain [17, 18, 22, 
25-29]. Moreover, disruption of the blood-brain barrier fol-
lowed by the infiltration of NK cells and neutrophils has 
been documented [30]. It has been proposed that LPS ad-
ministration activates mitogen-activated protein kinase 
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(MAPK) family protein p38, c-Jun N-terminal kinase (JNK), 
nuclear factor kappa B (NF-κB) and activator protein 1 (AP-
1) pathways leading to neuroinflammation and neuronal 
apoptosis [31, 32]. Also, it has been demonstrated that nod-
like receptor pyrin domain-containing protein 3 (NLRP3) 
inflammasome activation contributes to long-term behavioral 
alterations in LPS-exposed mice [33]. Importantly, the time-
dependent effects of neuroinflammation after systemic LPS 
administration are well documented, and future studies 
should take into account the influence of the dose and timing 
of the treatment and analysis [34, 35]. 

 Based on current knowledge in the field, suggesting that 
anti-inflammatory approaches targeting peripheral inflamma-
tion may have beneficial effects in the brain, the protective 
properties of a wide range of synthetic and natural com-
pounds with anti-inflammatory action have been extensively 
explored in recent years. In our previous review, we summa-
rized basic features and data on the therapeutic potential of 
various natural products, nutraceuticals, with known anti-
inflammatory effects for reducing neuroinflammation in 
LPS-treated mice (Catorce and Gevorkian, 2016). Here, re-
cent data on the suitability of the LPS-induced murine neu-
roinflammation model for preclinical assessment of nu-
traceuticals are discussed (Table 1). 

2. FLAVONOIDS (FIG. 1) 

 Flavonoids, a large group of polyphenolic compounds 
found in plants, have been shown to possess antioxidant, 
anti-inflammatory and anti-carcinogenic properties [36, 37]. 

LPS-induced murine neuroinflammation model has been 
used to evaluate the anti-inflammatory potential of a large 
number of flavonoids belonging to almost all known sub-
groups: flavonols, flavanones, flavanols, anthocyanins, 
isoflavones and chalcones. It has been proposed that flavon-
oids may exert their anti-inflammatory activity by modulat-
ing the expression of pro-inflammatory cytokines as well as 
COX-2 and inducible nitric oxide synthase (iNOS) and by 
reducing microglial and astrocytes activation [38-40]. 

2.1. Anthocyanins 

 Anthocyanins are abundant in flowers, fruits, seeds and 
plant leaves and have been shown to possess antioxidant, 
anti-inflammatory and anti-mutagenic properties [41-43]. 
They have been widely used in studies on the prevention and 
treatment of many chronic diseases, and it has been proposed 
that mixtures of anthocyanins found in food rather than their 
individual anthocyanin components are more beneficial for 
improving human health [42-44]. Peripheral LPS-induced 
murine neuroinflammation model has been widely used for 
the assessment of anti-inflammatory and neuroprotective 
properties of anthocyanins. It has been demonstrated that 
anthocyanins attenuate elevated levels of ROS and oxidative 
stress via reduction of the level of phospho-JNK [45, 46]. 
Also, they inhibited NF-κB activation and reduced pro-
inflammatory cytokines expression, thus leading to inhibi-
tion of microglia and astrocytes activation in the brain of 
LPS-treated mice [45-47]. Furthermore, anthocyanins pre-
vented overexpression of various apoptotic markers (Bax, 
cytosolic cytochrome C, cleaved caspase 3), indicating that 

Table 1. Summary of nutraceuticals tested in LPS-induced mouse neuroinflammation model between 2016 and 2019. 

Classification Nutraceuticals 
Flavonoids 
(Figure 1) 

Anthocyanins [45-47]; Flavanones: Naringenin [50, 51], Hesperidin [57, 58], Eriodictyol [59, 60]; Flavanonols: Ampelop-
sin [62]; Flavonols: Kaempferol [64, 65], Quercetin [48, 67]; Icariin [68-71]; Flavanols: Proanthocyanidin [72]; Isofla-

vones: Tectorigenin [76], Icaritin [71]; Chalcones: Lonchocarpine [79]. 
Non-flavonoid Polyphenols 

(Figure 2) 
Stilbens: Resveratrol [22, 81]; Lignans/Lignins: Honokiol [82], Macranthol [84], Schizandrin [85]; Phenolic acids: Caffeic 

Acid [86], Chicoric Acid [89, 90]; Tannins: Punicalagin [92]. 
Terpenes 
(Figure 3) 

Triterpenes: Lupeol [31], Glycyrrhizic acid [97], Ginsenoside Rg3 [99], 3-Acetyl-11-Keto-Beta-Boswellic Acid [102], 
Gypenoside IX [104], Betulinic Acid [107]; Sesquiterpenoids: Aromatic-turmerone [109], Beta-elemene [110]; Tetrater-

penes: Lycopene [112-114], Crocin [20]; Diterpenoids: Andrographolide [118, 119]. 
Glycosides 
(Figure 4) 

Saponin glycosides: Cantalasaponin [121], Astragaloside IV [123]; Flavonoid glycosides: Yuglanin [125], Baicalin [127]. 

Heterocyclic compounds 
(Figure 5) 

Alcaloids: Trigonelline [129]; Benzopyrans: Imperatorin [132], Esculetin [133,134]; Benzofurans: L-3-n-Butylphthalide 
[136]; Dioxoles: Sesamol [138]; Dioxolanes: Piperlongumine [140]; Xanthons: Alpha-mangostin [28]. 

Other aromatic compounds 
(Figure 6) 

Trans-cinnamaldehyde [144, 145], Curcumine [22, 145, 147], Beta-lapachone [27]. 

Organic acids 
(Figure 6) 

Methyl jasmonate [151-153], Ferulic Acid [155]. 

Organosulfur compounds 
(Figure 6) 

Sulforaphane [157-159] 

Proteins Osmotin [160] 
Lipids Scallop-derived plasmalogens [163] 

Other compounds Xanthophylls (Fig. 6): Astaxathin [164, 165], Fucoxanthin [167].  
Oils: Fish oil [168-170]. 
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they are able to prevent LPS-induced neurodegeneration in 
the mouse cortex [45]. Importantly, anthocyanins prevented 
memory dysfunction in mice exposed to LPS [46, 47]. 

2.2. Flavanones 

2.2.1. Naringenin 

 Naringenin, a trihydroxyflavanone found in citrus fruits 
and tomatoes, has been shown to exert anti-inflammatory 
activity by reducing p38 phosphorylation as well as by inhib-
iting the signal transducer and activator of transcription-1 
(STAT-1) and NF-kB activation [48, 49]. The treatment of 
mice with naringenin for three consecutive days before the 
LPS challenge improved motor coordination and attenuated 
microglia activation [50]. Also, naringenin significantly re-
duced the mortality rates in LPS-treated mice [51]. 

2.2.2. Hesperidin 

 Hesperidin, another flavanone from citrus fruits, has been 
shown to possess antioxidant, neuroprotective and anti-
inflammatory properties in various in vitro and in vivo stud-
ies [52-56]. The results of these studies indicated that hes-
peridin inhibits NF-kB and suppresses pro-inflammatory 
cytokines expression [52, 53]. In addition, hesperidin has 
been shown to enhance the heme oxygenase 1 (HO-1) and 
nuclear factor erythroid 2-related factor 2 (Nrf2) expression 
[53]. 

 It is well documented that peripheral LPS administration 
leads to depression-like behavior in mice [57]. Recently, Li 

and collaborators demonstrated that hesperidin treatment 
attenuates LPS-induced increased immobility time in forced 
swimming test and reverses LPS-induced reduction in glu-
cose preference test [58]. In addition, hesperidin reduced 
serum corticosterone levels and brain pro-inflammatory cy-
tokines levels [58]. Finally, hesperidin prevented LPS-
induced reduced expression of miRNA-132, a regulator of 
cholinergic anti-inflammatory signaling [58]. 

2.2.3. Eriodictyol 

 Eriodictyol, a flavanone present mainly in citrus fruits, is 
gaining interest as an anti-inflammatory, antioxidant and 
anti-cancer agent. Recently, the protective effect of eriodic-
tyol on LPS-induced neuroinflammation in mice was docu-
mented [59, 60]. It has been shown that eriodictyol sup-
presses microglial activation and modulates inflammatory 
mediators and pro-inflammatory cytokines by inhibiting the 
NF-kB and MAPK pathways [59]. Also, eriodictyol attenu-
ated LPS-induced oxidative stress via the Nrf2/Keap1 path-
way and reduced synaptic dysfunction via increasing the 
expression of silent mating type information regulation 2 
homolog 1 (SIRT1) in the mouse brain [60]. 

2.3. Flavanonols 

2.3.1. Ampelopsin (Dihydromyricetin) 

 Dihydromyricetin has been demonstrated to have anti-
oxidant, anti-inflammatory, anti-cancer and anti-microbial 
properties [61]. In LPS-treated mice, dihydromyricetin inhib-

 

Fig. (1). Chemical structure of flavonoids revised in this paper. 
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ited neuroinflammation, enhanced the levels of BDNF in the 
hippocampus and reduced immobility time in the tail suspen-
sion and forced swim tests, indicating its suitability for pa-
tients with depression [62]. 

2.4. Flavonols 

2.4.1. Kaempferol 

 Kaempferol, a flavonol widely distributed in fruits, vege-
tables and different medicinal and edible plants, has been 
shown to possess potent anti-inflammatory properties [63]. 
Suggested mechanisms of action of kaempferol are: inhibi-
tion of the NF-kB and MAPK pathways, enhancement of 
Nrf2 and HO-1 expression and suppression of iNOS, COX-2 
and pro-inflammatory cytokines expression [63]. Studies in 
LPS-treated mice showed that kaempferol inhibits the pro-
duction of pro-inflammatory cytokines, including IL-1β, IL-
6, TNF-α, and reduces the level of monocyte chemotactic 
protein-1 (MCP-1), iNOS and COX-2 in the brain [64, 65]. 
Furthermore, kaempferol protected the integrity of the blood-
brain barrier (BBB) by reducing the level of ICAM-1 and by 
increasing the level of tight junction-associated proteins oc-
cludin-1 and claudin-1. The authors suggested that 
kaempferol may suppress the activation of the Myeloid Dif-
ferentiation Primary-Response Protein 88 (MyD88)/toll-like 
receptor 4 (TLR4) inflammatory pathway, induced by LPS 
in the mouse brain [64, 65]. 

2.4.2. Quercetin 

 Another flavonol with known anti-inflammatory proper-
ties is quercetin [66]. First studies in LPS-treated mice dem-
onstrated that quercetin inhibits the activation of NF-kB and 
STAT-1, leading to a reduction of iNOS and NO expression 
[48]. Recently, the protective effect of quercetin against 
LPS-induced neuroinflammation, neurodegeneration and 
synaptic/memory dysfunction in adult mice has been docu-
mented [67]. Quercetin reduced gliosis as well as inflamma-
tory and apoptotic markers expression in the cortex and hip-
pocampus of adult LPS-treated mice [67]. Moreover, quer-
cetin reversed the LPS-induced synaptic loss in the adult 
mouse brain and improved memory tasks performance [67]. 

2.4.3. Icariin 

 Icariin, a flavonoid with well-documented anti-
inflammatory, anti-oxidant and anti-aging properties, has 
been shown to reduce pro-inflammatory cytokines expres-
sion, microglia activation and neuronal death through inhib-
iting NF-kB and JNK/p38 MAPK pathways and activating 
Nrf2 signaling pathway in LPS-induced neuroinflammation 
model [68-70]. A recent study suggested that icariin could 
attenuate neuroinflammation in the LPS-treated mouse hip-
pocampus via suppressing high mobility group protein box 1 
(HMGB1)-receptor for advanced glycation endproducts 
(RAGE) signaling [71]. 

2.5. Flavanols 

2.5.1. Proanthocyanidin 

 Proanthocyanidin, obtained mainly from grape seed ex-
tract and shown to possess strong anti-inflammatory activity, 
has been used in LPS-induced neuroinflammation and de-

pressive-like behavior model [72]. Proanthocyanidin reduced 
the immobility time in forced swimming (FST) and tail sus-
pension (TST) tests in LPS-treated mice [72]. Furthermore, 
proanthocyanidin reversed LPS-induced overexpression of 
iNOS, COX-2 and pro-inflammatory cytokines in the hippo-
campus, prefrontal cortex and amygdala of these mice via 
modulation of NF-κB [72]. 

2.6. Isoflavones 

2.6.1. Tectorigenin 

 Tectorigenin, an isoflavone isolated from various me-
dicinal plants, has been shown to inhibit LPS-induced in-
flammatory responses in vitro and in vivo [73-75]. In the 
LPS-induced neuroinflammation mouse model, the admini-
stration of tectorigenin effectively decreased the levels of 
iNOS in the hippocampus and reduced the levels of TNF-α 
and IL-6 in the serum. Also, tectorigenin attenuated micro-
glial activation in LPS-treated mice [76]. Furthermore, pre-
treatment of mice with tectorigenin inhibited LPS-activated 
TLR4/MyD88 inflammatory pathway [76]. 

2.6.2. Icaritin 

 Icaritin is an active ingredient of Herba Epimedii, a me-
dicinal herb in Chinese traditional medicine and has been 
shown to possess a potent anti-inflammatory activity [77]. 
Like icariin, icaritin also attenuated neuroinflammation in 
the LPS-treated mouse hippocampus via suppressing 
HMGB1-RAGE signaling [71]. 

2.7. Chalcones 

2.7.1. Lonchocarpine 

 Lonchocarpine is a flavonoid with anti-bacterial, antioxi-
dant and anti-inflammatory properties, isolated from the 
tropical medicinal plant Abrus precatorius [78]. Treatment 
with lonchocarpine inhibited the expression of iNOS, COX-
2, TNF-α, IL-1β, IL-6, TLR2 and TLR4 in LPS-induced neu-
roinflammation mouse model [79]. 

3. NON-FLAVONOID POLYPHENOLS (FIG. 2) 

3.1. Stilbenes 
3.1.1. Resveratrol 
 Resveratrol, a polyphenol abundant in grape skin and 
seeds, has been shown to possess potent antioxidant, anti-
inflammatory, anti-aging and anti-cancer properties [39, 80]. 
The protective effect of resveratrol in LPS-induced neuroin-
flammation mouse model is revised in our previous study 
[22]. A recent study showed that resveratrol ameliorates 
LPS-induced sickness behavior in mice, suppresses LPS-
evoked pro-inflammatory M1 marker expression in micro-
glia by inhibiting the NF-κB activity, and increases M2 
marker expression by activation of the STAT6 and STAT3 
pathways [81]. 

3.2. Lignans/Lignins 

3.2.1. Honokiol 
 Honokiol, a biphenolic neolignan with potent antioxidant 
and anti-inflammatory properties, has been shown to abro-
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gate LPS-induced depressive-like behavior in mice by inhib-
iting pro-inflammatory cytokines expression and oxido-
nitrosative stress and by increasing BDNF levels [82]. 

3.2.2. Macranthol 

 Macranthol, a triphenyl lignan isolated from Illicium 
dunnianum, has been shown to exhibit anti-depressant prop-
erties after chronic but not acute treatment [83]. Recently, 
Weng and collaborators found that macranthol alleviates 
depressive-like behaviors in mice induced by peripheral LPS 
[84]. The authors suggested that the protective effect of mac-
ranthol may be mediated, in part, by suppressing microglia-
related neuroinflammation in the prefrontal cortex [84]. 

3.2.3. Schizandrin A 

 Schizandrin A is a polyphenol lignin demonstrated to 
possess antioxidant, anti-inflammatory and neuroprotective 
properties. In peripheral LPS-challenged mice schizandrin A 

inhibited microglia activation by interfering with the 
TRAF6-NF-κB and JAK2-STAT3 signaling pathways [85]. 

3.3. Phenolic Acids 

3.3.1. Caffeic Acid 

 Caffeic acid, a polyphenol with anti-oxidant and anti-
inflammatory properties, has been shown to reduce the LPS-
induced expression of pro-inflammatory and oxidative stress 
markers in the brain as well as signs of sickness in peripheral 
LPS-treated animals [86]. 

3.3.2. Chicoric Acid 

 Chicoric acid, the most active compound in Echinacea 
pupurea, demonstrated antioxidant and anti-inflammatory 
activities in vitro and in vivo [87, 88]. In a mouse model of 
peripheral LPS-induced neuroinflammation, chicoric acid 
ameliorated LPS-induced oxidative stress, inhibited pro-

 

Fig. (2). Chemical structure of non-flavonoid polyphenols revised in this paper. 
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inflammatory cytokines expression and prevented memory 
impairment and amyloidogenesis [89, 90]. 

3.4. Tannins 

3.4.1. Punicalagin 

 Punicalagin, a polyphenol found in pomegranate, has 
been shown to exert antioxidant, anti-inflammatory and anti-
apoptotic effects [91]. A recent study demonstrated that in 
LPS-treated mice, punicalagin inhibited memory impairment 
via anti-inflammatory and anti-amylogenic mechanisms 
through inhibition of NF-κB activation [92]. The authors 
proposed that punicalagin directly binds to NF-κB subunit 
p50, evidenced by a docking model and pull-down assay 
[92]. 

4. TERPENES (FIG. 3) 

 Terpenes, the most widespread group of natural products 
found in plants, have been widely used since ancient times. 
Terpenes are classified into sub-groups based upon the num-

ber of isoprene units incorporated in the basic molecular 
skeleton [93]. 

4.1. Triterpenes 

4.1.1. Lupeol 

 Lupeol, a pentacyclic triterpene, has been demonstrated 
to possess anti-inflammatory and anti-tumor activities [94, 
95]. The protective effect of lupeol against LPS-induced 
neuroinflammation has also been documented [31]. It has 
been observed that lupeol attenuates LPS-induced increase in 
pro-inflammatory cytokines expression via inhibition of 
JNK/p38-MAPK pathways [31]. 

4.1.2. Glycyrrhizic Acid 

 Glycyrrhizinic acid is a triterpene with anti-
inflammatory, antioxidant, anti-tumor and anti-viral proper-
ties, found in the roots of licorice [96]. A recent study dem-
onstrated that glycyrrhizinic acid suppresses peripheral LPS-
induced pro-inflammatory cytokines expression by inhibiting 
TLR4 signaling pathway [97]. Also, glycyrrhizinic acid alle-

 

 

 

Fig. (3). Chemical structure of terpenes revised in this paper. 
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viated LPS-induced memory loss and cognitive deficit in 
mice [97]. 

4.1.3. Ginsenoside Rg3 
 Ginsenoside Rg3, a principle active ingredient in Panax 
ginseng, is a triterpenoid saponin shown to possess anti-
inflammatory properties [98]. A recent study demonstrated 
that ginsenoside Rg3 ameliorates depressive-like behavior 
induced by peripheral LPS administration [99]. Authors 
showed that ginsenoside Rg3 decreases the expression of 
pro-inflammatory cytokines and indoleamine-2,3-
dioxygenase (IDO) mRNA in the mouse brain [99]. Also, 
ginsenoside Rg3 attenuated microglia activation and the dis-
turbed turnover of tryptophan and serotonin in the hippo-
campus [99]. 

4.1.4. 3-Acetyl-11-Keto-Beta-Boswellic Acid 
 Boswellic acids are the main biologically active compo-
nents of the gum resins of Boswellia serrata, that have been 
used for a variety of pathological conditions such as cancer, 
asthma, inflammation, arthritis, colitis, Crohn's disease and 
hyperlipidaemia [100]. Among different boswellic acids, 
3-‐Acetyl-‐11-‐keto-‐β-‐boswellic acid (AKBA) proved to be the 
most potent 5-‐lipoxygenase inhibitor, and AKBA-loaded 
polymeric nanomicelles exerted anti-inflammatory and anti-
arthritic activity [101]. In a recent study, AKBA exhibited 
anti-apoptotic and anti-amyloidogenic effects and alleviated 
the symptoms of neuroinflammation in LPS-treated mice 
[102]. 

4.1.5. Gypenoside IX 
 Gypenoside IX, a dammarane-type triterpene oligoglyco-
side obtained from the leaves and stems of Panax notogin-
seng, has been demonstrated to possess anti-inflammatory 
activities by suppressing LPS-induced NO production and 
pro-inflammatory cytokines expression [103]. It also allevi-
ated the astrogliosis and decreased the production of in-
flammatory mediators via inhibition of Akt/p38 
MAPK/NFκB signaling pathways in the brain cortex of LPS-
treated mice [104]. Authors proposed that gypenoside IX 
might be a promising drug candidate for neurodegenerative 
conditions accompanied by neuroinflammation and astrogli-
osis [104]. 

4.1.6. Betulinic Acid 
 Betulinic acid is a naturally occurring pentacyclic triter-
penoid with anti-staphylococcal, antimalarial, anti-cancer 
and anti-inflammatory properties [105, 106]. A recent study 
showed that betulinic acid enhances AMP-activated protein 
kinase (AMPK) activation and promotes microglia polariza-
tion to the M2 anti-inflammatory phenotype in the cerebral 
cortex of LPS-treated mice [107]. 

4.2. Sesquiterpenoids 

4.2.1. Aromatic-turmerone 
 Aromatic-turmerone is one of the main components 
abundant in turmeric essential oil and has been widely used 
for diseases caused by chronic inflammation [108]. Chen and 
collaborators demonstrated that oral administration of aro-
matic-turmerone reduces LPS-induced microglia activation, 

brain damage and memory impairment as well as normalizes 
glucose intake and metabolism in the brains of mice [109]. 
The authors proposed that aromatic-turmerone targets TLR4-
mediated downstream signaling and lowers the release of 
inflammatory mediators [109]. 

4.2.2. Beta-elemene 
 β-Elemene, a sesquiterpenoid with demonstrated anti-
inflammatory, antioxidant and anti-tumor properties, has 
been used recently in peripheral LPS-induced neuroinflam-
mation model by Pan and collaborators [110]. The authors 
showed that β-elemene improves the learning and memory 
abilities of mice in the water maze and fear conditioning 
tests [110]. Moreover, it reduced the expression of the mi-
croglial marker Iba-1, significantly increased RAC1 Ser71 
phosphorylation and suppressed the RAC1/MLK3/p38 sig-
naling activation and inflammatory response in the hippo-
campus [110]. 

4.3. Tetraterpenes 

4.3.1. Lycopene 
 Lycopene, a carotenoid found in tomato and many fruits, 
has been demonstrated to possess various health benefits 
[111]. It has been shown that oral administration of lycopene 
prior to intraperitoneal LPS challenge attenuates LPS-
induced expression of pro-inflammatory cytokines in the 
hippocampus and ameliorates depression-like behavior in 
mice [112]. Moreover, lycopene inhibited systemic inflam-
mation-induced amyloidogenesis and memory impairment in 
mice treated intraperitoneally with LPS [113]. Also, lyco-
pene effectively attenuated LPS-caused synapse loss, neu-
ronal damage, insulin resistance and mitochondrial dysfunc-
tion in the mouse brain [114]. 

4.3.2. Crocin 
 Crocins, the main biologically active constituents of saf-
fron, are water-‐soluble carotenoids shown to exert protective 
effects against various inflammatory conditions [115]. In a 
recent study, Zhang and collaborators showed that crocin 
attenuates LPS-induced anxiety and depressive-like behav-
iors through suppressing NF-kB and NLRP3 signaling path-
ways [20]. 

4.4. Diterpenoids 

4.4.1. Andrographolide 
 Andrographolide, a diterpenoid isolated from the medici-
nal plant Andrographis paniculata, is known to possess im-
munomodulatory and anti-tumor properties [116, 117]. An-
drographolide easily gets through the blood-brain barrier 
(BBB) and has been reported to have a potent anti-
inflammatory effect on leukocytes (neutrophils, macro-
phages and T-cells) and endothelial cells [118, 119]. 

5. GLYCOSIDES (FIG. 4) 

5.1. Saponin Glycosides 

5.1.1. Cantalasaponin 
 Cantalasaponin-1is a glycoside with anti-inflammatory 
and anti-tumor properties, isolated from various agave spe-
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cies [120]. In a mouse model of peripheral LPS-induced neu-
roinflammation, cantalasaponin-1 reduced brain concentra-
tion of pro-inflammatory cytokines IL-6 and TNF-α and in-
creased the brain level of the anti-inflammatory cytokine IL-
10 [121]. 

5.1.2. Astragaloside IV 

 Astragaloside IV, a glycoside, purified from the Chinese 
medicinal herbs, demonstrated anti-inflammatory properties 
in in vitro and in vivo studies [122]. Recently, the protective 
potential of astragaloside IV was evaluated in the peripheral 
LPS-induced mouse neuroinflammation model [123]. The 
authors showed that astragaloside IV reverses LPS-induced 
increase in TNF-α and IL-1β expression in the mouse hippo-
campus [123]. Moreover, the administration of astragaloside 
IV significantly increased PPARγ expression and GSK3β 
phosphorylation and decreased NF-κB phosphorylation and 
NLRP3 inflammasome activation [123]. Finally, astraga-
loside IV ameliorated LPS-induced depressive-like behavior 
in mice [123]. 

5.2. Flavonoid Glycosides 

5.2.1. Juglanin 

 Juglanin is a flavonoid glucoside containing the 
kaempferol moiety and shown to inhibit the inflammatory 
response and tumor cells growth in vitro and in vivo [124, 
125]. In a mouse model of systemic LPS-induced neuroin-
flammation juglanin treatment attenuated LPS-caused mem-
ory impairments, ameliorated synaptic dysfunction through 

promoting the expression of synaptic markers, such as SYP, 
PSD-95 and SNAP-25, and significantly reduced LPS-
induced production of pro-inflammatory cytokines by inhib-
iting TLR4/NF-κB pathway in the hippocampus [125]. 

5.2.2. Baicalin 

 Baicalin, a flavonoid glycoside isolated from Radix 
Scutellariae, possesses potent anti-inflammatory, antioxidant 
and anti-apoptotic properties [126]. A recent study by Guo 
and collaborators demonstrated that baicalin ameliorates 
systemic LPS-induced neuroinflammation and depressive-
like behavior in mice [127]. The authors suggested that the 
mechanism of baicalin action may involve the inhibition of 
TLR4 expression via the PI3K/AKT/FoxO1 pathway [127]. 

6. HETEROCYCLIC COMPOUNDS (FIG. 5) 

6.1. Alkaloids 

6.1.1. Trigonelline 

 Trigonelline is a naturally occurring alkaloid, commonly 
isolated from coffee beans and fenugreek seeds. It has been 
shown that trigonelline possesses anti-tumor, anti-bacterial, 
anti-viral, hypoglycemic and neuroprotective properties 
[128]. Recently, Chowdhury and collaborators demonstrated 
that trigonelline reverses LPS-induced memory disturbances 
by significantly decreasing the oxidative stress and acetyl-
cholinesterase (AChE), TNF-α and IL-6 levels in both the 
hippocampus and cortex [129]. Also, trigonelline pretreat-
ment increased BDNF levels [129]. 

 

Fig. (4). Chemical structure of glycosides revised in this paper. 
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6.2. Benzopyrans 

6.2.1. Imperatorin 

 Imperatorin, a furanocoumarin derivative found in many 
fruits and medicinal herbs, has been shown to have anti-
tumor, anti-viral, anti-bacterial and anti-inflammatory prop-
erties [130, 131]. A recent study demonstrated that impera-
torin ameliorates systemic LPS-induced memory impair-
ment, decreases AchE, TNF-α and IL-6 levels in the brain of 
LPS-treated mice and upregulates BDNF levels [132]. 

6.2.2. Esculetin 

 Esculetin, a hydroxycoumarin with potent antioxidant 
and anti-inflammatory activities has been recently evaluated 
in a mouse model of neuroinflammation induced by periph-
eral LPS treatment [133, 134]. It has been shown that es-
culetin attenuates LPS-induced neuroinflammation and de-
pressive-like behavior in mice [133, 134]. The authors dem-
onstrated that esculetin exhibits an anti-inflammatory effect 
by inhibiting the NF-kB pathway and by activating 
BDNF/TrkB signaling [134]. 

6.3. Benzofurans 

6.3.1. L-3-n-butylphthalide 

 L-3-n-butylphthalide (L-NBP) is a naturally occurring 
antioxidant isolated from celery oil and found to have potent 
neuroprotective effects by decreasing oxidative damage, 
inhibiting inflammatory responses, improving mitochondrial 

function and reducing neuronal apoptosis [135]. In a mouse 
model of peripheral LPS-induced neuroinflammation, L-
NBP treatment significantly suppressed the expression of 
pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, 
as well as the activation of microglia in the brain [136]. 
Also, L-NBP inhibited the JNK MAPK-signaling pathway 
and upregulated the expression of HO-1 in LPS-treated mice, 
pointing thus to its’ anti-inflammatory and antioxidant po-
tential [136]. 

6.4. Dioxoles 

6.4.1. Sesamol 

 Sesamol, a predominant active component of sesame 
seed oil, has previously been demonstrated to possess potent 
antioxidant, anti-inflammatory, anti-cancer and anti-aging 
properties [137]. In a recent study, Liu and collaborators 
demonstrated that dietary supplementation of sesamol pre-
vents systemic LPS-induced neuroinflammation, memory 
impairment and amyloidogenesis by inhibiting MAPK and 
NF-kB signaling [138]. 

6.5. Dioxolanes 

6.5.1. Piperlongumine 

 Piperlongumine, a heterocyclic compound found in long 
pepper (Piper longum), has been reported to inhibit NF-kB 
activation [139]. In a murine model of peripheral LPS-
induced neuroinflammation, piperlongumine reversed LPS-

 

Fig. (5). Chemical structure of heterocyclic compounds revised in this paper. 
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induced memory impairment and prevented beta-amyloid 
(Aβ) accumulation by inhibiting β- and γ-secretase activities 
[140]. Furthermore, piperlongumine decreased pro-
inflammatory cytokines expression in LPS-treated mice 
[140]. To get a further inside into the mechanism of action of 
piperlongumine, Gu and collaborators carried out a docking 
model analysis and pull-down assay and found that piper-
longumine binds to NF-κB family protein p50 [140]. 

6.6. Xanthons 

6.6.1. Alpha-mangostin 

 Alpha-mangostin (α-MG), a natural xanthone isolated 
from Garcinia mangostana, has been shown to have antioxi-
dant and anti-inflammatory activity in numerous in vitro and 
in vivo studies [141, 142]. We demonstrated that α-MG re-
duces brain levels of IL-6, COX-2 and TSPO in a mouse 
model of peripheral LPS-induced neuroinflammation [28]. 

7. OTHER AROMATIC COMPOUNDS (FIG. 6) 
7.1. Trans-cinnamaldehyde 
 Trans-cinnamaldehyde, an aromatic compound isolated 
from a medicinal herb Cinnamomum cassia, has been shown  
 

to attenuate cerebral ischemia-induced brain injury by inhib-
iting iNOS and COX-2 expression and NF-κB activation 
[143]. Recently, Zhang and collaborators demonstrated that 
trans-cinnamaldehyde decreases the levels of iNOS and 
ERK1/2 in the hippocampus of mice challenged with LPS 
[144]. Moreover, trans-cinnamaldehyde significantly re-
duced memory deficit and improved synaptic plasticity in 
LPS-treated mice [144]. In another study, in peripheral LPS-
induced neuroinflammation mouse model authors showed 
that trans-cinnamaldehyde modulates hippocampal Nrf2 and 
restores levels of anti-oxidant enzymes superoxide dismutase 
(SOD) and glutathione-S-transferase (GST) in the hippo-
campus [145]. In addition, cinnamaldehyde attenuated LPS-
induced increase in hippocampal content of IL-1β, caspase-3 
and malondialdehyde [145]. Finally, trans-cinnamaldehyde 
was able to inhibit amyloid beta aggregation in LPS-treated 
mice [145]. 

7.2. Curcumin 

 Curcumin, the main ingredient of the Indian spice tur-
meric, has been shown to display anti-inflammatory, anti-
oxidant, anti-cancer and anti-bacterial properties by multiple 
mechanisms [146]. The protective effect of curcumin has been  
 

 

Fig. (6). Chemical structure of organic acids, organosulfur compounds, xanthophylls and other organic compounds, revised in this paper. 
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documented in numerous studies in a mouse model of neu-
roinflammation induced by peripheral LPS [22]. Recent 
studies demonstrated that curcumin inhibits neuroinflamma-
tion and prevents long-term memory impairment in LPS-
treated mice, after oral or intraperitoneal administration [145, 
147]. Authors suggested that curcumin, shown to be able to 
enter brain tissue in biologically relevant concentrations, 
could be of interest in treating the long-term consequences of 
brain inflammation, such as memory dysfunction and cogni-
tive deficits [147]. 

7.3. Beta-lapachone 

 β-Lapachone, a natural naphthoquinone isolated from the 
lapacho tree, has been used for the treatment of rheumatoid 
arthritis, infection and cancer [148, 149]. Lee and collabora-
tors demonstrated that β-lapachone inhibits microglia activa-
tion and the expression of pro-inflammatory cytokines, iNOS 
and matrix metalloproteinases MMP-3, MMP-8 and MMP-9 
in the brains of peripheral LPS-treated mice [27]. 

8. ORGANIC ACIDS (FIG. 6) 

8.1. Methyl Jasmonate 

 Methyl jasmonate, a vital cell regulator in plants, has 
been shown to display antioxidant, anti-inflammatory, anti-
tumor and neuroprotective action [150]. In a mouse model of 
peripheral LPS-induced neuroinflammation, methyl jas-
monate reduced brain levels of pro-inflammatory cytokines 
TNF-α and IL-1β, prostaglandin E2 (PGE2), COX-2 and 
iNOS, and ameliorated LPS-caused memory deficits [151, 
152]. Moreover, methyl jasmonate attenuated LPS-induced 
depressive-like behavior in mice by suppressing oxidative 
stress and neuroinflammation [153]. 

8.2. Ferulic Acid 

 Ferulic acid, an abundant phenolic phytochemical found 
in plant cell walls, has been shown to exhibit antioxidant, 
anti-inflammatory, anti-apoptotic and anti-tumor activities 
[154]. Recently, Rehman and collaborators reported that 
ferulic acid rescues peripheral LPS-induced neurodegenera-
tion by inhibiting microglia activation and synaptic dysfunc-
tion [155]. The authors demonstrated that ferulic acid inter-
feres with LPS-induced NF-kB activation and mitochondrial 
apoptotic signaling [155]. 

9. ORGANOSULFUR COMPOUNDS 

9.1. Sulforaphane 

 Sulforaphane, a known activator of Nrf2 with antioxidant 
and anti-inflammatory activities, is obtained from crucifer-
ous vegetables [156]. Three recent studies demonstrated that 
sulforaphane elevates the Nrf2 target genes and synaptic 
proteins, reduces the expression of pro-inflammatory media-
tors and regulates the BDNF-mammalian target of rapamy-
cin (mTOR) signaling pathway in the hippocampus in mice 
after peripheral LPS treatment [157-159]. Also, sulforaphane 
prevented LPS-induced activation of microglia in the pre-
frontal cortex [159]. Although LPS-induced sickness behav-
ior was not changed after sulforaphane treatment in one 
study [157], others showed that sulforaphane does alleviate 

LPS-caused learning and memory dysfunction and depres-
sion-like behavior in mice [158, 159]. 

10. PROTEINS 

10.1. Osmotin 
 Osmotin is a plant hormone shown to inhibit LPS-
induced TLR4 downstream signaling, including activation of 
NF-κB and the release of inflammatory mediators, such as 
COX-2, TNF-α, iNOS, and IL-1β [160]. Also, osmotin re-
duced LPS-caused activation of microglia and astrocytes in 
the hippocampus after intraperitoneal LPS challenge [160]. 
In addition, osmotin prevented LPS-induced loss of synaptic 
function and increased the expression of pre- and post-
synaptic markers, like PSD-95 and SNAP-25 [160]. Fur-
thermore, osmotin reduced LPS-induced neuronal apoptosis 
via inhibition of PARP-1 and caspase-3 [160]. Finally, it has 
been demonstrated that osmotin reverses LPS-induced be-
havioral and memory disturbances and attenuates LPS-
caused increase in the expression of Aβ, APP, BACE-1 and 
p-Tau [160]. 

11. LIPIDS 

11.1. Scallop-derived Plasmalogens 

 In the elderly, the brain and blood levels of glycerophos-
pholipids, known to possess neuroprotective and anti-
inflammatory properties, are decreased [161]. It has been 
demonstrated that oral administration of scallop-derived pu-
rified plasmalogens may improve cognitive functions in pa-
tients with mild AD [162]. Recently, scallop-derived plas-
malogens have been shown to inhibit LPS-induced NF-kB 
activation and pro-inflammatory cytokines expression by 
attenuating the increased expression of protein kinase C delta 
(PKCd) in the brains of peripheral LPS-challenged mice 
[163]. 

12. OTHER COMPOUNDS 

12.1. Xanthophylls 

12.1.1. Astaxanthin 

 Astaxanthin, a xanthophyll carotenoid compound pos-
sessing potent antioxidant, anti-inflammatory and neuropro-
tective properties, has been shown to cross the blood-brain 
barrier in rodents, which may be important for its application 
for various neurological pathologies [164]. Astaxanthin ame-
liorated peripheral LPS-induced neuroinflammation, oxida-
tive stress, memory dysfunction and depressive-like behavior 
in mice [164, 165]. 

12.1.2. Fucoxanthin 

 Fucoxanthin, another xanthophyll carotenoid found in 
edible brown seaweeds, has been shown to have antioxidant 
and anti-inflammatory effects both in vivo and in vitro [166]. 
Fucoxanthin inhibited LPS-induced overexpression of pro-
inflammatory cytokines (IL-1β, IL-6 and TNF-α), as well as 
iNOS and COX-2 in the hippocampus, frontal cortex and 
hypothalamus, via the modulation of AMPK-NF-κB signal-
ing pathway [167]. Importantly, fucoxanthin prevented LPS-
induced depressive-like behavior in mice [167]. 
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12.2. Oils 

12.2.1. Fish Oil 

 Omega-3 polyunsaturated fatty acids (PUFAs), well-
known antioxidant and anti-inflammatory agents, have been 
shown to ameliorate peripheral LPS-induced neuroinflam-
mation and depressive-like behavior in mice [168, 169]. It 
has been demonstrated that fish oil attenuates LPS-induced 
dysregulation of the kynurenine pathway and serotoninergic 
alterations after peripheral LPS challenge [170]. 

13. PROSPECTS FOR THE USE OF NUTRACEU- 
TICALS IN HUMANS 

 In recent years, nutraceuticals have gained growing inter-
est for their medical properties. Many compounds, described 
in this review, have been tested in healthy individuals and in 
patients with different pathologies, in order to assess their 
safety, bioavailability and protective effects [171- 179]. The 
dose used in clinical trials was close to the dose applied in 
LPS-treated mice. Thus, 30-100 mg/kg/day dose of antho-
cyanins, applied during 14 days in mice, attenuated LPS-
induced neuroinflammation [45-47]. In clinical trials, antho-
cyanin supplementation (Medox, 300 mg/day for 3 weeks) 
decreased the level of pro-inflammatory cytokines [171]. 
Icariin improved spatial learning and memory after 17 days 
of administration (30-120 mg/kg/day) in LPS-treated ani-
mals. In human studies, icariin decreased depressive symp-
toms after administration for 8 weeks at a dose of 300 
mg/day [174]. Another nutraceutical, naringenin, has been 
tested in LPS-treated mice and in healthy adults at similar 
doses (2-12 mg/kg) without any adverse effect [51, 178]. 
Resveratrol has been shown to be safe and efficient in clini-
cal trials at a dose of up to 5 g [174]. It modulated inflamma-
tion and improved anti-oxidant capacity, although a moder-
ate (450 mg/day) but continuing intake was considered to be 
better than a single, higher dose administration [175]. How-
ever, low solubility, poor absorption in the gastrointestinal 
tract and rapid metabolism of nutraceuticals are important 
obstacles that we need to overcome. Lyposomal formulations 
containing quercetin and luteolin or flavonoids nanoparticles 
with increased oral absorption and bioavailability have been 
shown to be safe and well-tolerated [172, 173, 179]. 

 An important emerging concept in medicine is that of 
metabolic endotoxemia, characterized by chronic low-level 
elevations of gut-derived endotoxin, that was suggested to 
contribute to the development of a wide range of chronic 
pathological conditions [180]. Clinical studies demonstrated 
that optimizing the intake of phytonutrients and using nutri-
tional supplements, such as resveratrol, is beneficial for re-
ducing inflammation and other negative effects caused by 
metabolic endotoxemia [180, 181]. Findings in the LPS-
induced mouse neuroinflammation model may have impor-
tant implications for further research on the potential use of 
nutraceuticals in patients with acute (sepsis) or chronic 
(metabolic endotoxemia) elevated endotoxin levels. 

CONCLUSION 

 It is known that peripheral infections accompanied by 
inflammation represent significant risk factors for the devel-
opment of neurological disorders by modifying brain devel-

opment or affecting normal brain aging [10-14]. The acute 
effects of systemic inflammation on progressive and persis-
tent brain damage and cognitive impairment are well docu-
mented [15]. Anti-inflammatory therapies may have benefi-
cial effects in the brain, and the protective properties of a 
wide range of synthetic and natural compounds have been 
extensively explored in recent years. 

 In the present review, we discussed recent data on the 
suitability of the LPS-induced murine neuroinflammation 
model for preclinical assessment of nutraceuticals with 
known anti-inflammatory action. Many of these compounds 
have been shown to pass across the BBB and may directly 
inhibit inflammatory pathways in the brain. Some nutraceu-
ticals do not cross the BBB but rather inhibit the inflamma-
tory response in the periphery, thus leading to the attenuation 
of neuroinflammation. Researches proposed that anti-
inflammatory nutraceuticals may inhibit the activation of 
JNK/p38 MAPK, NF-kB, STAT-1 and MyD88/TLR4 path-
ways and interfere with mitochondrial apoptotic signaling 
[31, 32, 48, 49, 59, 63-65, 68-70, 76, 134, 140, 155]. Also, it 
has been demonstrated that nutraceuticals are potent activa-
tors of SIRT-1 and Nrf2/HO-1 pathway [53, 60, 63, 71, 145, 
156]. In addition, nutraceuticals have been shown to increase 
the expression of BDNF [62, 82, 129, 132, 134, 157-159]. 
All these mechanisms may explain the ability of nutraceuti-
cals to prevent the synaptic loss, neurodegeneration, memory 
dysfunction, depression, motor coordination disturbances as 
well as amyloidogenesis observed in LPS-treated mice. 
Clinical trials for assessing the safety and efficacy of many 
nutraceuticals, discussed in this review, are underway. 
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