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Abstract: The secondary structure of proteins is significant for studying the three-dimensional struc-
ture and functions of proteins. Several models from image understanding and natural language
modeling have been successfully adapted in the protein sequence study area, such as Long Short-term
Memory (LSTM) network and Convolutional Neural Network (CNN). Recently, Gated Convolutional
Neural Network (GCNN) has been proposed for natural language processing. It has achieved high
levels of sentence scoring, as well as reduced the latency. Conditionally Parameterized Convolution
(CondConv) is another novel study which has gained great success in the image processing area. Com-
pared with vanilla CNN, CondConv uses extra sample-dependant modules to conditionally adjust
the convolutional network. In this paper, we propose a novel Conditionally Parameterized Convolu-
tional network (CondGCNN) which utilizes the power of both CondConv and GCNN. CondGCNN
leverages an ensemble encoder to combine the capabilities of both LSTM and CondGCNN to encode
protein sequences by better capturing protein sequential features. In addition, we explore the similar-
ity between the secondary structure prediction problem and the image segmentation problem, and
propose an ASP network (Atrous Spatial Pyramid Pooling (ASPP) based network) to capture fine
boundary details in secondary structure. Extensive experiments show that the proposed method can
achieve higher performance on protein secondary structure prediction task than existing methods on
CB513, Casp11, CASP12, CASP13, and CASP14 datasets. We also conducted ablation studies over
each component to verify the effectiveness. Our method is expected to be useful for any protein
related prediction tasks, which is not limited to protein secondary structure prediction.

Keywords: deep learning; protein secondary structure prediction; learning representation; computa-
tional biology

1. Introduction

The three-dimensional structure of proteins is significant in the studies of proteins
since the specific shape of a protein determines its function [1]. The protein may become
denatured and not function as expected if its tertiary structure is altered due to mutations
in the amino acid structure. Proteins are chains of amino acids linked by peptide bonds.
However, predicting the three-dimensional structure of proteins from amino acid predic-
tions is a challenging task [2]. Protein secondary structure prediction is an important part
of this task [3–8].

Protein secondary structure prediction takes primary sequences as the input, which
are the amino acid sequences of proteins, to predict the secondary structure type of each
amino acid. Q3 accuracy is often used to evaluate the secondary structure: helix (H), strand
(E), and coil (C), where the former two are regular secondary structure states and the last
one is the irregular type [9]. Another definition of secondary structure is extends the three
general states into eight fine-grained classes [10]: 310 helix (G), α-helix (H), π-helix (I),
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β-stand (E), β-bridge (B), β-turn (T), high curvature loop (S), and others (L). Recently, the
studies of secondary structure prediction has focused more on the prediction of 8-state
secondary structure (Q8) instead of the 3-state(Q3) prediction. The reason is that a chain of
8-state secondary structure naturally contains more structural information for a variety of
research and applications [11,12].

The methods of secondary structure prediction can be divided into template-based
and template-free. Although template-based methods usually achieve better results [13],
it does not work well on proteins with very low similarity with those sequences with
known structures in the PDB [14] library. However, these proteins can be considered as
newly discovered proteins, which is more like a real-world scenario. While template-
free methods have used several traditional machine-learning models such as probabilistic
graphical models [15,16], hidden Markov models [17,18], and Support Vector Machines
(SVM) [19,20].

In recent years, deep learning techniques have been widely used in protein secondary
structure prediction task, and achieved remarkable results compared with traditional ma-
chine learning methods. Several work explore the power of feed-forward back-propagation
neural network (BPNN) with traditional machine learning models for protein secondary
structure prediction [21–23], e.g., ref. [21] integrate BPNN with Bayesian segmentation,
ref. [22] designs an architecture of protein secondary structure prediction by combining
BPNN with SVM, etc. Later, DNSS [24] first proposes deep learning based secondary struc-
ture prediction method [7], which utilizes a deep belief network [25] based on restricted
Boltzmann machine (RBM) [26]. Recently, more studies seek to involve more additional fea-
tures such as position-specific scoring matrix (PSSM) features to further improve prediction
performance [4].

In addition, sequence based models such as Recurrent Neural Network (RNN) en-
coder are used on protein sequence to predict protein secondary structures [27] and the
first application of LSTM-BRNN to secondary structure prediction can be found in [28];
and one-dimensional Convolutional Neural Network (1d-CNN) based encoder method
has also been used on such task and obtained some achievements [29]. Moreover, some
studies tackle this problem by combining the superiority of different networks, e.g., Deep-
ACLSTM [30] uses CNN to capture the local feature and bidirectional Long Short-term
Memory Network (bLSTM) to obtain the long-distance dependency information. In such a
manner, DeepACLSTM is able to obtain better amino acid sequence expression and achieve
better prediction performance. Other methods that equipped with DeepCNN network [29]
or ResNet [31] structure can also capture the long-distance dependency information from
the sequence, e.g., CBRNN [11] combines the CNN-based and RNN-based networks.

Although amino acid sequence encoders based deep learning methods have achieved
great success, the relationship among the secondary structures of proteins is rarely studied.
DeepCNF [29] method employs Conditional random field (CRF) as the output layer to
learn the interdependency among adjacent secondary structure labels. However, it does
not take the specific characteristic of protein secondary structure into consideration, and
the improvement of Q8 accuracy is limited. Figure 1 illustrates the secondary structure
and the amino acid sequence of protein 1TIG [14] from CB513 dataset, which is generated
by PDBsum [32]. We can observe that adjacent strings of amino acids generally contain
the same secondary structure. The reason of such well-regulated feature might be caused
by the characteristics of the protein secondary structure. Consequently, this problem is
quite similar to the image semantic segmentation (ISS) [33] problem. However, there exists
two differences: (1) The input data of protein secondary structure task is one-dimensional
sequences, while the images contains two dimensions. (2) For ISS, a pooling layer is widely
used since the pooling of the adjacent pixels can effectively reduce the size of the input
image [33–36]. Such implementation can reduce the network parameters while retain most
of the image information. However, the amino acid information at each position is crucial
for protein sequence, the pooling layer is not adoptable for the amino acid sequence.
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Figure 1. Protein 1TIG: Different symbols in purple represent different secondary structures, and red
characters represent amino acid sequence. This figure is generated by PDBsum [37].

Additionally, even various encoders have been proposed to address ISS, e.g., Fast-
FCN [35], GSCNN [34], and all versions after Deeplab v2 [33,36], the Atrous Spatial Pyramid
Pooling (ASPP) Network Structure [33,38] followed by the encoder still plays an important
role to identify the boundaries of objects in the image.

Recently, CNN-based encoding models have obtained great success on both image and
language processing tasks. Gated Convolutional networks (GCNN) [39] employs a CNN-
based gating mechanism at the channel level to help the language modeling. Conditionally
Parameterized Convolution (CondConv) [40] uses extra sample-dependant modules to con-
ditionally adjust the convolutional network, which has obtained remarkable improvement
over the image processing tasks. In this paper, we present a novel protein sequence encoder,
Conditionally Parameterized Gated Convolutional network (CondGCNN), which not only
exploits a gating mechanism at the channel level, but also establishes a sample-dependent
attention mechanism.

Inspired by previous work about the protein secondary structure prediction task
and the ISS, we propose a protein ensemble learning method with ASP networks, which
contains an ensemble amino acid sequence encoder and Atrous Spatial Pyramid Net-
works. Since CNN-based methods have obtained remarkable performance in language
modeling and image processing tasks, and lstm-based methods are important for protein
prediction [27,30], our amino acid sequence encoder has utilized both CondGCNN model
(a new encoder we proposed) and bLSTM model. Besides, the ASP Network (optimized
ASPP network for our problem) is added following the encoder.

The technical contributions of proposed method can be summarized as: (1) The work
is the first to tackle protein secondary structure prediction task with image segmentation
processing, which utilizes the predominance of those models applied in the segmentation
area to tackle secondary structure prediction problem, e.g., employ ASPP network (opti-
mized as ASP network in our method) to capture fine edge details in secondary structure
labels. (2) We are the first to apply CondConv network on sequence processing problems,
as well as embed it in the GCNN to form a novel amino acid sequence encoder. In specific,
a gating mechanism is equipped at the model channel level and a sample-dependent atten-
tion is employed at the input level. (3) We construct an ensemble encoder with cnn-based
and lstm-based networks, which has acquired more diverse information from amino acid
sequences. (4) Through a set of extensive ablation studies, the significance of different
components of the method, including architecture, features, and results, are carefully ana-
lyzed. Based on our conference version of the paper [41], we design more experiments to
verify the effect of our ASP module on the boundary residues prediction and verify the
effectiveness of our framework on more datasets.

The rest of the paper is organized as follows. In Section 2, we describe the framework
and modules used in our method in detail. Section 3 gives the experimental results to
demonstrate the advantage of our method. Finally, in Section 4, we conclude our paper
and discuss its prospect.
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2. Materials and Methods

In this section, we describe the details of our method. First, we introduce the datasets
and the input feature. Second, we give a brief introduction to the framework of our method.
Then, we propose an ensemble encoder composed of two modules: CondGCNN mod-
ule and LSTM module. Next, we introduce the Atrous Spatial Pyramid Network as the
secondary structure generator (generation module) of our method and explain the improve-
ments to the traditional ASPP network and the output layer of the secondary structure
prediction task. Finally, we illustrate the network structure of the comparative experiment.

2.1. Datasets

We use CullPDB [42] publicly available dataset for training and validation. 501 proteins
in CullPDB dataset are randomly sampled for validation, then the remaining proteins are
used for training. Proteins in the CullPDB dataset share no more than 25% sequence
identity [29] with our other datasets (CB513, CASP11, CASP12, CASP13, CASP14) for
testing. CB513 [5] dataset is commonly used for testing and comparing the performance
of the protein secondary structure prediction methods [29,30,43]. The dataset contains
513 proteins and is obtained from [5]. As the critical assessment of protein structure
prediction since 1994, the CASP datasets have been also widely used in the protein studying
community [44]. The 85 proteins in CASP11, 40 proteins in CASP12, 10 proteins in CASP13,
and 15 proteins in CASP14 are used as our CASP datasets (http://predictioncenter.org,
accessed on 3 March 2022). Note that we only use the template-free proteins for CASP13 and
CASP14, which are obtained from the official websites http://predictioncenter.org/casp1
3/domains_summary.cgi and http://predictioncenter.org/casp14/domains_summary.cgi
(accessed on 3 March 2022). The secondary structure labels for datasets are generated by
DSSP [10]. More details of the Q8 secondary structures in these datasets are listed in Table 1.

Furthermore, we explore larger test datasets to thoroughly evaluate the performance of
our method. SPOT-1D [45] announces a benchmark dataset which contains 10,200 proteins
for training; 1000 proteins for validation; and two independent test sets test2016 and
test2018 with 1213 and 250 proteins, respectively. More details about the SPOD-1D bench-
mark can be found at [45]. We conducted extensive experiments on the provided datasets
follow our settings. In specific, we take the protein and PSSM sequences as the input,
and the protein 8-state secondary structure as the labels to form a SPOT-1D benchmark
dataset. Extensive experiments of ours and baseline methods are conducted over SPOT-1D
benchmark dataset to compare the prediction performance.

Table 1. The percentage of each secondary structure type and protein number on the training and
test dataset.

Label Cullpdb CB513 CASP11 CASP12 CASP13 CASP14

H 0.345 0.309 0.305 0.335 0.089 0.118
B 0.01 0.014 0.011 0.011 0.017 0.028
E 0.217 0.213 0.248 0.211 0.175 0.129
G 0.039 0.037 0.035 0.03 0.024 0.045
I 0.0 0.0 0.005 0.004 0.003 0.005
T 0.113 0.118 0.111 0.109 0.2 0.201
S 0.083 0.098 0.085 0.091 0.175 0.155
L 0.193 0.211 0.2 0.209 0.317 0.318

Protein # 5926 513 85 40 10 15

# represents the number of proteins.

2.2. Input Feature

Our input feature consists of two parts: sequence one-hot vectors and position-specific
scoring matrix (PSSM). Each amino acid in the protein sequence is represented by a one-
hot vector with length as 21, which refers to 20 kinds of amino acids plus one unknown
amino acid. PSSM represents the distribution of amino acid types on each position in

http://predictioncenter.org
http://predictioncenter.org/casp13/domains_summary.cgi
http://predictioncenter.org/casp13/domains_summary.cgi
http://predictioncenter.org/casp14/domains_summary.cgi
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the protein sequence [46]. Following the same procedure in [5,41,47], we get the PSSM
matrix by searching Uniref50 database [48], and concatenate it with the one-hot vectors. As
shown in Figure 2, the input feature size is n × 2l where l = 21 and n is the length of the
protein sequence.

Figure 2. Our ensemble learning with ASP networks framework contains ensemble encoder module
and generation module. For ensemble encoder, we use several CondGCNN blocks and bLSTM layers
in the networks; for generation module, a modified ASPP is applied in the module.

2.3. Deep Learning Framework Overview

The framework of our method is constructed by the ensemble encoder module and
the generation module. We will introduce each component in this section. The overall
workflow is illustrated in Figure 2. First, the input sequence features are fed into the
CondGCNN and the LSTM modules respectively. Next, the outputs of two network are
concatenated as the feature vectors to feed into the generation module. Last, the loss is
calculated by the output prediction and secondary structure label, and back-propagated to
the networks for parameters adjustment.

2.4. Ensemble Encoder

The ensemble encoder module includes one CondGCNN module and one LSTM
module. The CondGCNN module contains M × Conditionally Parameterized Gated
Convolutional blocks, while the LSTM module is constituted by N stacked bLSTM. These
two modules generate output feature vectors respectively.

2.4.1. CondGCNN Module

Figure 3a,b demonstrate our CondGCNN blocks. 32 CondGCNN blocks are used to get
the feature vectors in the CondGCNN encoder. Each CondGCNN block contains two layers
of Conditionally Parameterized Gated Convolutional network. We build our CondGCNN
layers follows [39,40]. Figure 3c illustrates the architecture of each CondGCNN layer. A
protein sequence is represented by a n × 2l vector, where n is the length of the protein
sequence and l is the number of amino acid types. The details about the input features are
discussed in Section 3.1. For each CondGCNN layer, we set up two CNN_1D_3 networks,
one is used for gating, and the other one is a one-dimensional Conditionally Parameterized
Convolutional network. We calculate the output vector of the CondGCNN layer follows:

Vh(X) = (X ∗ Wcond + b)⊗ σ(X ∗ Wg + bg), (1)

where Wcond and b are the parameters of the CondConv network, Wg and bg are the
parameters of the gated convolutional network, σ is the Sigmoid function, and ⊗ refers
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to the element-wise product between vectors. More details of the GCNN network can be
found in [39]. Specifically, we parameterize the convolutional kernels in CondConv by:

Wcond = α1 · W1 + α2 · W2 + · · ·+ αn · Wn, (2)

where each αi = ri(X) means an example-dependent scalar weight computed using a rout-
ing function with learned parameters, and n stands for the number of experts. The routing
function is able to meaningfully differentiate between the input examples. CondConv [40]
computes the example-dependent rounting weights αi from the layer input in three steps:
global average pooling, fully-connected layer, and Sigmoid activation.

r(X) = Sigmoid(GlobalAveragePool(X) R) (3)

where R is a matrix of the routing weights mapping the pooled inputs to n expert weights.
Overall, our CondGCNN encoding module utilizes the predominance of both Cond-

Conv and GCNN, which not only provides a gating mechanism at the channel level, but
also implements an attention mechanism in a sample-dependant fashion.

Version May 30, 2022 submitted to Journal Not Specified 5 of 13
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Figure 3. (a) CondGCNN encoder contains 32 blocks to get the feature vectors. (b) Each block contains
2 layers of Conditionally Parameterized Gated Convolutional network. The input vector of Input
block is added to the output vector of the Block Output, the combination then input to the next block.
(c) One layer of CondGCNN contains two parallel convolutional layers, one is the conditionally
convolutional layer (A) and the other one is the gated layer (G). The output V is obtained by the
element-wise production of A and σ(G).

2.4. Ensemble Encoder 183

The ensemble encoder module includes one CondGCNN module and one LSTM 184

module. The CondGCNN module contains M × Conditionally Parameterized Gated 185

Figure 3. (a) CondGCNN encoder contains 32 blocks to get the feature vectors. (b) Each block
contains 2 layers of Conditionally Parameterized Gated Convolutional network. The input vector of
Input block is added to the output vector of the Block Output , the combination then input to the next
block. (c) One layer of CondGCNN contains two parallel convolutional layers, one is the conditionally
convolutional layer (A) and the other one is the gated layer (G). The output V is obtained by the
element-wise production of A and σ(G).

2.4.2. LSTM Module

Some studies about language modeling with the GCNN [39] claim that unlimited
contextual information is unnecessary for language models, and GCNN is proved to be
able to represent enough contextual information in practice. However, in the area of protein
study, several works have proved that capturing the long contextual information (relation
from the first atom to the last one) is necessary. Therefore, RNN-based approaches are
crucial for protein studies [11,30]. Recurrent neural networks (RNNs) have been applied in
sequence-process modeling and achieved remarkable performance, however the gradient
vector may fluctuate exponentially over long input sequences during training process.
Therefore, LSTM network introduce gate structure to handle the problem [49]. LSTM
implements three gates: input gate it, forget gate ft and output gate ot and a memory cell
ct, where t is the time step. Formally, one unit of LSTM can be computed as:

it = σ(XtWi + ht−1Wi + bi) (4)

ft = σ(XtW f + ht−1W f + b f ) (5)
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ot = σ(XtWo + ht−1Wo + bo) (6)

gt = tanh(XtWg + ht−1Wg + bg) (7)

ct = σ( ft ⊗ ct−1 + it ⊗ gt) (8)

ht = ot ⊗ tanh(ct) (9)

where σ is the Sigmoid function; W and b represent the corresponding weight matrix and
bias term; ⊗ is the element-wise multiplication. In Equation (9), the ht is the hidden vector,
which is computed by the current input xt and the previous ht−1, where t is the current
time step.

In this fashion, our proposed method implements two stacked bLSTM layers with a
hidden 512 within the LSTM module to capture more long-distance interdependencies of
amino-acid residues.

A bLSTM neural network consists of two LSTM neural networks in parallel, one of
them runs on the input features and the other one runs on the reverse of the input features.
The two corresponding output vectors are then concatenated as the feature vector for LSTM
module. More details regarding stacked bLSTM network can be referred in [30,50].

2.5. ASP Generation Module

As shown in Figure 2, we feed the concatenated feature vector from Ensemble encoder
into the generation module for the protein secondary structure prediction. The generation
module contains the Atrous Spatial Pyramid Network and the output layer.

2.5.1. Atrous Spatial Pyramid Network

As we have mentioned before, the secondary structure prediction task for proteins is
similar to the semantic segmentation tasks for images. For ISS, the model needs to classify
each pixel with one of the predetermined classes. Similarly, in protein secondary structure
prediction, we need to classify eight secondary structures of amino acids for each position.
In addition, the labels of protein secondary structure behave consistently for adjacent
positions too. Our generation model is inspired by the ASPP network, which is widely used
in image segmentation [33–35]. The ASPP network is proposed by Deeplab [33], which uses
dilated convolutions with different rates instead of regular convolutions, as an attempt of
classifying regions of an arbitrary scale. Specifically, the essence of ASPP network is the use
of atrous convolutions, which originally developed for the undecimated wavelet transform
efficient computation [51]. The algorithm is a powerful tool which allows us to compute
responses of any deep convolutional layer and adjust filter’s view to capture information
at any desirable resolution. It can be applied to a model has been trained, but can also be
seamlessly embedded into training process. Considering one-dimensional signals in our
task, the output feture map y on each location i of atrous convolution of a one-dimension
input signal x[i] with a convolution filter w of length K is defined as follow:

y[i] =
K

∑
k=1

x[i + r · k]w[k] (10)

where the rate parameter r determines the stride with the input signal we sampled. We
refer [33] for more details. Note that when r = 1, it is a special case which is the standard
convolution. Figure 4 demonstrates an example of one layer Atrous Spatial Pyramid
network, as shown, the dilation rate of each Atrous (dilated) convolutional layer is set as 2,
the rate of the normal Convolutions is 1.

However, ASPP based networks have rarely been applied to sequence problems, espe-
cially in the prediction of secondary structure of proteins. Down-sampling is a commonly
used method to reduce the size of feature map in the image processing field, ASPP networks
use two down-sampling mechanism: one is the convolution striding, and the other one is
using pooling operations (max-pooling or average-pooling). ASPP sets the stride equal to 8
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for each convolutional layer in the networks, and processes the image-level features via
Global Average Pooling (GAP) [52].

In our work, protein sequences are usually short in length (around one hundred)
and each position in the sequence is important, we set the convolution stride to 1 and
concatenate the ensemble feature vector with the outputs from four convolutional layers in
the networks directly in stead of a pooling layer. Since very high dilation rate is not needed
for our task, we set (2, 4, 8) as the dilation rates.

Figure 4. An example of Atrous one-dimensional convolutions (one layer) with dilation rate equal to
2: A 3 × 1 kernel with a dilation rate of 2 has the same field of view as a 5 × 1 kernel, which provide
a wider field of view with the same computational cost.

2.5.2. Output Layer

As shown in Figure 2, after the Atrous Spatial Pyramid network, we feed the result to
a one dimension convolution with window size 1, to produce the final predicted secondary
structure logits. Fully connection layer (FC) is widely used in LSTM-based secondary
structure prediction methods. However in our task, since the Atrous Spatial Pyramid
networks apply multiplication on the channel of the feature vector, the network would
contain too many parameters if we implement Fully connected layers as the output layer,
which makes the entire model hard to train. Thus, we replace the output layers with a one-
dimensional convolutional layer. To prove the effectiveness of this change, we report the
extensive experimental results in Section 3. The learning objective function is to minimize
the cross-entropy loss function.

3. Results

In this section, we first introduce the experimental settings, such as the the applied
neural network structures, hardware and software settings, boundary evaluation settings.
Then we report the Q8 accuracy of two encoders respectively: lstm-based and cnn-based
secondary structure prediction, as well as the improvement of existing methods by ASP
network. Finally, by comparing with the state-of-the-art methods, we prove the superiority
of our method.

3.1. Experiments Set Up
3.1.1. Neural Network Structure and Learning Hyper-Parameters

In the CondGCNN module, we use 32 Conditionally Parameterized Gated Convolu-
tional blocks. Each block contains two layers of CondGCNN with a window size 3 and a
node size 64, the number of experts is 3. In the LSTM module, we use the two stacked layers
bLSTM networks with hidden size equals to 512. In the ASP network, we utilize three paral-
lel dilated convolutional layers with window size 3, node size 100, dilation rates = (2, 4, 8),
and a parallel one-dimensional convolutional layers with window size equals to 1. We use
a one-dimensional convolutional layer with window size to 1 and node size is equal to
100 as the output layer.
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3.1.2. Training Strategy

We use multi-step learning rate scheduler descent with [30,50] for epoch indices. The
multiplicative factor of LR decay (learning rate) is 0.1. For optimizer, we use Adam [53]
optimizer in our method. The initial LR for training is 0.001.

3.1.3. Comparison Methods

To evaluate our method, we compare it with five following state-of-the-art methods:
ICML2014, DeepCNF, MUFOLD-SS, CBRNN, and DeepACLSTM. Chosen either for their
state-of-the-art performances or because they represent a class of prediction networks
for secondary structure. ICML2014 [5] presents a method based on GSN (generative
stochastic network) to globally train the deep generative model. We use the public dataset
they provided, the CullPDB dataset containing 5926 Program database (PDB) files, and
CB513 contains 513 proteins. DeepCNF (Deep Convolutional Neural Fields) [29] utilizes
the power of CNN and Conditional Random Fields (CRF): five CNN layers are used to
extract the sequence feature of proteins, and CRF is used as the output layer to catch
the relationship between the predicted target. MUFOLD-SS [44] is a deep inception-
inside-Inception (Deep3I) network architecture that extends deep inception networks
through nested inception modules. Stacked inception modules can extract non-local residue
interactions at different ranges. CBRNN [11] extracts the local context information of protein
sequence by two-dimensional convolutional neural networks (2dCNNs), and long-distance
information by bidirectional gated recurrent units (bGRUs) or bidirectional long short-term
memory (bLSTM). DeepACLSTM [30] using 1-dimension CNN and 2-dimension CNN to
extract the discriminational local interactions between amino-acid residues and bLSTM to
capture long-distance interactions between amino-acid residues.

3.1.4. Evaluation Metric

Following the [45,50] instruction, we use Q8 accuracy (higher is better) as the evalua-
tion metric for the prediction task of secondary structure. We use the Train-Valid-Test split
method to evaluate the performance.

3.1.5. Boundary Evaluation Set Up

In addition to reporting the experimental results compared with state-of-the-art meth-
ods, we also design an boundary evaluating criteria. Since the Atrous Spatial Pyramid
Pooling (ASPP) networks was designed to help with identifying the boundary of objects
in the image segmentation task [33,36], the ASP networks (a modified version of ASPP)
in our model is aimed to identify the boundary of successive amino acids having the
same secondary structure. In addition, prediction of boundary residues is always more
challenging in secondary structure task in protein prediction, and we demonstrated this
property in the subsection of extension experiments. We define a residue as a boundary
residue if the secondary structure label of a residue is different from that of its adjacent
residue (left adjacent or right adjacent). As shown in Figure 5, the amino-acid residues
in the red box are boundary residues, and we will calculate the boundary Q8 accuracy
for those part of residues to evaluate the boundary identifying ability of our model. The
first line in the example is the amino-acid sequence, and the second line is the secondary
structure (ss) label sequence, which is the ground truth value of the secondary structure at
the position of the corresponding residue. We report the extensive experimental result of
boundary residue in Section 3.4.

Figure 5. An example of boundary residue: the amino-acid residues in the red box. The first line is
the amino acid sequence, and the second line is the secondary structure (ss) label sequence, which is
the ground truth value of the secondary structure at the position of the corresponding residue.
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3.1.6. Infrastructure and Software

Our model is implemented through Pytorch package. And our models is trained in a
self-hosted 2-GPU server platform with Intel i7 6700K @ 4.00 GHz CPU, 64 Gigabytes RAM
and two Nvidia GTX 2080Ti GPUs.

3.2. Ablation Study on Each Component

In this subsection, we report and analyse the various components of our framework
contribute to final performance, including optimization and architectural choices. Unless
stated otherwise, all experiments for the ablation studies follow the training strategy
described in Section 3.1.4.

Table 2 shows the prediction results of Conv, CondConv, GCNN, and CondGCNN
with different structures on CB513 dataset. First, we compare the results between the
regular Convolutional network (Conv) and the Conditionally Parameterized Convolutional
network (CondConv) on CB513 dataset to prove the effectiveness of the CondConv. We
follow the settings of [29] to build a model with 5 layers of 1-dimdimension Convolutional
networks, then apply the CondConv structure on the regular Convolutional networks
directly. However, the improvement on accuracy is only 0.02. The reason is that when
CondConv is applied, it will use more parameters to focus on distinguishing different
samples compared with the traditional convolutional network since the attention mecha-
nism works in a sample-dependant manner. This will lead to the overfitting problem. To
overcome this disadvantage, we adjust the dropout rate and conduct extensive experiments
with different number of experts. Furthermore, we report the prediction results of Gated-
CNN (GCNN) with different numbers of res-blocks on the protein secondary structure
prediction task. As observed, the best result is 0.698 when using 32 GCNN blocks. Since
we do not have quite a large training dataset, the over-fitting problem would be severe
if the network is too deep. Hence, with the increase of blockes, the accuracy results of
the validation and test sets are reduced significantly. Last, we compare our CondGCNN
method with the above CNN-based methods, and the application of CondConv on the
basis of GCNN can achieve 0.702 of Q8 accuracy on CB513 dataset.

Table 2. Q8 accuracy of CNN, CondConv, GCNN and CondGCNN on cb513 dataset with different
structural settings.

Network Experts Num Blocks Num Dropout Rate Q8 acc

Conv - - 0.0 0.678
CondConv 3 - 0.0 0.680
CondConv 3 - 0.2 0.685
CondConv 5 - 0.2 0.684
CondConv 8 - 0.2 0.681
GCNN - 16 0.1 0.696
GCNN - 32 0.1 0.698
GCNN - 64 0.1 0.677
CondGCNN 3 32 0.2 0.702

Best models and best scores are marked as bold.

We report the experimental results of the bLSTM of different layer number, and the
experimental settings are entirely in accordance with [27]. As shown in Figure 6, the
prediction accuracy of two stacked layers bLSTM is higher than that of one layer and three
layers bLSTM.
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Figure 6. Q8 accuracy of bLSTM on cb513 dataset with different number of LSTM layers.

In order to prove the effectiveness of our Atrous Spatial Pyramid networks (ASP)
module, we employ ASP module with LSTM method and DeepACLSTM method. We have
noted that the performance is not as expected when directly insert the ASP module between
the encoder and the output layer. The reason is that these two methods have used fully
connected (FC) layer as the output layer, along with the augmented output of ASP network,
leads to overfull parameters. The model is then too hard to train and easily to overfit. To
reduce the overhead, we replace the output layer with a one-dimensional convolutional
layer with a window size 1 and re-do the experiments. The extensive corresponding
results are shown in Tables 3 and 4. bLSTM-FC represents the original two stacked layers
bLSTM networks structure [27], and ACLSTM-FC represents the DeepACLSTM network
structure with FC as the output layer [30]. We use bLSTM-ASP-FC and ACLSTM-ASP-FC
to indicate the methods that our ASP networks are inserted between the original encoders
(bLSTM and DeepACLSTM) and FC layer. bLSTM-ASP-Conv1 and ACLSTM-ASP-Conv1
represent that FC layer is replaced by a 1d-cnn with window size 1 as the output layer
after the ASP network. The results demonstrate that applying ASP directly to bLSTM and
DeepACLSTM networks does not perform well for prediction. Nonetheless, after replacing
the output layer with 1d-CNN, we promote the performance of LSTM method by 0.4%
and DeepACLSTM method by 0.6%. The results prove that our ASP network can boost
the existing state-of-the-art methods of protein secondary structure prediction. In addition,
the hidden size (HS) of FC and the node size (NS) of ASP and Conv1 are also shown in
Tables 3 and 4.

Table 3. The results of before and after inserting the ASP network into the bLSTM network on
CB513 datasets.

Network FC-HS ASP-NS Conv1-NS Q8 acc

bLSTM-FC 128 - - 0.699
bLSTM-ASP-FC 128 64 - 0.625
bLSTM-ASP-Conv1 - 64 100 0.703

Best model and best score are marked as bold.
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Table 4. The results of before and after inserting the ASP network into the ACLSTM network on
CB513 datasets.

Network FC-HS ASP-NS Conv1-NS Q8 acc

ACLSTM-FC 128 - - 0.705
ACLSTM-ASP-FC 128 64 - 0.706
ACLSTM-ASP-Conv1 - 64 100 0.711

Best model and best score are marked as bold.

3.3. The Results of Ensemble Learning with ASP

After conducting a series of experiments to prove the effectiveness of each component,
we then combine them to build our network: Ensemble learning with Atrous Spatial
Pyramid networks. To demonstrate the effectiveness of our model, we report the results of
CB513, CASP11, CASP12, CASP13, CASP14 datasets to compare with several state-of-the-
art methods.

Although we report extensive hyper-parameter search for each module, we perform
the search space, as well as the parameters of our ensemble model with highest Q8 accuracy
on the validation set. Table 5 shows the hyper-parameter space and best values for our
Ensemble-ASP model. The “fc” represent the fully connected layer and the conv1 represent
the convolutional layer with window size one.

Table 5. Hyper-parameter space and best values.

Hyper-Parameter Values Best

CondGCNN blocks num 16, 32, 64 32
CondGCNN node size 32, 64, 128 64
CondGCNN experts num 3, 5, 8 3
bLSTM stacked layer 1, 2, 3 2
bLSTM hidden size 256, 512, 1024 512
Output layer fc, conv1 conv1
Initial learning rate 0.01, 0.001, 0.0001 0.001
Dropout rate 0.0, 0.1, 0.2, 0.3, 0.4 0.2

Folowing the best hyper-parameter above, we report the overall experimental result.
As shown in Table 6, the “Ensemble” represents our method without the ASP network, the
“Ensemble-ASP” illustrates the result of Q8 accuracy after inserting the ASP network. Our
method achieve more than 1% accuracy improvement over other state-of-the-art methods
on CB513, CASP11, CASP13 and CASP14 datasets, and get around 0.7% higher on CASP12.
The proposed model has not only utilized the power of CondGCNN and bLSTM, but also
successfully applied the ASP network on protein secondary structure prediction task to
obtain significant improvement.

Table 6. The comparison between the Q8 results (the mean and standard deviation measured over
the proteins within each test set) of our method and the results of state-of-the-art methods.

Methods CB513 CASP11 CASP12 CASP13 CASP14

ICML2014 0.664 - - - -
DeepCNF * 0.683 ± 0.128 0.707 ± 0.105 0.681 ± 0.117 0.639 ± 0.118 0.527 ± 0.114
BLSTM * 0.699 ± 0.123 0.711 ± 0.097 0.681 ± 0.118 0.646 ± 0.117 0.556 ± 0.121
CBRNN 0.702 - - - -
DeepACLSTM * 0.705 ± 0.133 0.715 ± 0.099 0.678 ± 0.121 0.647 ± 0.119 0.551 ± 0.148
MUFOLD-SS * 0.704 ± 0.135 0.717 ± 0.107 0.684 ± 0.114 0.651 ± 0.128 0.558 ± 0.130
Ensemble (ours) 0.717 ± 0.131 0.721 ± 0.097 0.686 ± 0.114 0.652 ± 0.107 0.567 ± 0.114
Ensemble-ASP (ours) 0.719 ± 0.135 0.728 ± 0.096 0.691 ± 0.115 0.664 ± 0.104 0.572 ± 0.112

* Data is generated by our experiment. Best model and best scores are marked as bold.
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3.4. Comparison Results on SPOT-1D Benchmark Dataset

In order to thoroughly evaluate the performance of our method in real-world ap-
plication, we conduct comparison experiments using a much larger benchmark dataset,
SPOT-1D, which contains a large test dataset with 1213 proteins. We follow the same
experimental settings as our other experiments, where the protein sequences and PSSM
features are used as input, and the protein 8-state secondary structure are used as the labels.
We run all the comparison experiments follow the provided dataset splits, where the model
is trained on the training dataset, and tested on two test sets (test2016 and test2018) with
the model obtains best validation score. As shown in Table 7, our method achieves 0.5%
and 0.6% improvement on test 2016 and test 2018, respectively.

Table 7. The comparison between the Q8 results on SPOT-1D benchmark dataset (the mean and
standard deviation measured over the proteins within each test set) of our method and the results of
state-of-the-art methods.

Methods test2016 test2018

DeepCNF * 0.717 ± 0.099 0.707 ± 0.129
BLSTM * 0.719 ± 0.099 0.712 ± 0.114
MUFOLD-SS * 0.726 ± 0.100 0.710 ± 0.133
DeepACLSTM * 0.729 ± 0.098 0.717 ± 0.121
Ensemble-ASP 0.734 ± 0.098 0.723 ± 0.128

* Data is generated by SPOT-1D benchmark. Best model and best scores are marked as bold.

3.5. Extension Experiments on Boundary Evaluation

In the above sections we report the overall results of applying Atrous Spatial Pyramid
(ASP) networks to BLSTM, ACLSTM, and our Ensemble method. We define a residue as a
boundary residue if the secondary structure label of the residue is different from that of
its adjacent position (left adjacent or right adjacent). Here we only record the Q8 accuracy
of boundary residues. Due to the small number of boundary residues in the whole amino
acid sequence, we chose a relatively large test set CB513 to report the boundary validation
results. As shown in Table 8, the Q8 accuracy of boundary residues is indeed much lower
than the overall accuracy, and our ASP module can significant improve the performance of
bLSTM, ACLSTM, and our Ensemble encoders in boundary residue prediction. Q8 acc is
used as the evaluation metric which the higher is better.

Table 8. The boundary residue Q8 accuracy of before and after using the ASP network for the bLSTM,
ACLSTM and ensemble (ours) network on CB513 datasets.

Network Without ASP Module With ASP Module

bLSTM 0.543 0.581
ACLSTM 0.563 0.591
Ensemble (ours) 0.582 0.604

Best scores are marked as bold.

4. Discussion

Extensive experiments illustrate that our method outperforms the state-of-the-art
methods on 8-state secondary structure prediction. Furthermore, we prove the efficiency
of our model on boundary residue prediction task. The prediction of boundary residues
proposed in this paper provides a new idea for protein sequence study and it also promotes
the understanding and application of deep learning for specific tasks of protein. In the
future, we will apply our model to more protein related tasks, such as dihedral angles and
solvent accessibility.
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5. Conclusions

In this paper, we propose an ensemble learning encoder with Atrous Spatial Pyramid
deep learning model (Ensemble-ASP) for protein secondary structure prediction. The
framework contains ensemble learning encoder network and ASP network(modified Atrous
Spatial Pyramid Pooling network). Extensive experiments demonstrate that our ensemble
encoder has surpassed the state-of-the-art methods on 8-state prediction performance. In
addition, boundary residue experiments confirm that our ASP network is able to obtain
better prediction performance, and the final results show that the ASP model can further
improve the performance of our encoding network. Although there is the possibility of
further improvement in hyper-parameters and details, this is a novel attempt for specific
protein prediction tasks, which helps the scientists understand the characteristics of proteins.
As one of the most important part of our work, our well defined ASP module reveals that
specific network design can be helpful for addressing particular bioinformatics problem.
Other than developing novel deep learning algorithms, it is equally important to learn
and adapt interdisciplinary research ideas from other fields. Our method is expected to
be useful for any protein related prediction tasks, such as dihedral angles and solvent
accessibility, which is not limited to protein secondary structure prediction.
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