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Abstract

Experiential diversity promotes well-being in animal models. Here, using geolocation tracking, 

experience sampling, and neuroimaging, we found that daily variability in physical location was 

associated with increased positive affect in humans. This effect was stronger for individuals who 

exhibited greater functional coupling of the hippocampus and striatum. These results link diversity 

in real-world daily experiences to fluctuations in positive affect and identify a hippocampal-striatal 

circuit associated with this bidirectional relation.

Experiential diversity confers substantial benefits for cognitive and affective function1. 

Animals able to roam freely within “enriched” environments that offer diverse and 

variable experiences exhibit greater affective well-being relative to those reared in standard 

laboratory environments1. In rodents, exposure to enriched environments facilitates play2, 

social affiliative behavior3, optimistic evaluative biases4, and stress resilience5. Each of 

these behavioral phenotypes in rodent models is characteristic of positive affective states in 

humans6, underscoring the benefits of experiential diversity for psychological well-being. 
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The behavioral effects of environmental enrichment are paralleled by pronounced changes 

in brain structure and function across a number of regions7. In particular, plastic synaptic 

changes in the hippocampus and striatum of animals reared in complex environments7 

highlight these brain regions as potential mediators of the beneficial consequences of 

experiential diversity.

Increased exposure to novelty may be a central mechanism through which enriched 

environments promote positive affect. While the increased physical activity and social 

interaction afforded by enriched environments facilitates positive behavioral outcomes7, 

environmental novelty alone is sufficient to produce many benefits of enrichment8. 

Behavioral and neural data suggest that exposure to novelty has subjectively rewarding 

and reinforcing properties9,10. For example, novel stimuli can effectively reinforce action10, 

elicit activity in reward-sensitive dopaminergic neurons9, and promote a preference for the 

contexts in which they are encountered11. The same hippocampal-striatal circuit implicated 

in the effects of environmental enrichment is also centrally involved in novelty detection 

as well as the encoding of reward and positive affective states9,10,12. Collectively, these 

empirical findings corroborate a longstanding theoretical proposal that novel experiences 

may function as intrinsic rewards and generate positive affect13. However to date, no 

study has examined whether variation in real-world experiential diversity is associated with 

positive affective states in humans.

Because humans live in a complex and dynamic environment, daily living ostensibly affords 

limitless opportunity for experiential diversity. However, exposure to novel experiences, and 

their rewarding effects, depends on the degree to which individuals exploit this opportunity 

by exploring their environment. Roaming entropy (RE), which indexes the variability in an 

individual’s physical location over the course of a day, is a quantitative location-derived 

metric of experiential diversity14. In rodents, increased levels of RE reproduce the key neural 

and cognitive effects of environmental enrichment14. In the present study, we examined 

whether daily RE might serve as an ecologically valid measure of experiential diversity in 

humans, and accordingly, whether day-to-day variation in RE might relate to fluctuations in 

positive affect.

We conducted geolocation tracking on a sample of 132 human participants (90 female, 

aged 18–31, mean = 23, SD = 3.4) recruited in three cohorts in New York and Miami. 

Participants’ locations were tracked continuously for 3–4 months (mean 104.6 days, SD = 

22.1). During geolocation tracking, participants were prompted to provide assessments of 

positive (PA) and negative (NA) affect via a questionnaire sent to their mobile phones. 

Affect assessments were delivered at random times every other day. Ten participants 

responding to fewer than 20 ecological momentary assessments (EMA) were excluded 

(Supplementary Fig. 1), leaving 122 (84 female, mean age = 22.75, SD = 3.36) participants.

Each day with adequate geolocation data (Supplementary Figures 2 & 3) was downsampled 

to one-minute temporal resolution and converted into a measure of daily RE, previously used 

to quantify rodent exploratory behavior14:
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RE = ∑
j = 1

n
(pij × (log2pij))/log(n)

In this equation, pij is the within-day historical probability that location j was visited by 

participant i (i.e., the proportion of the day spent in each unique location) and n is the total 

number of unique locations in the environment (at four decimal degrees of GPS resolution). 

Thus, RE is higher for days in which one visits a greater number of locations and exhibits 

greater uniformity in the distribution of her time across visited locations. A minimum RE 

value would be achieved by spending all day in a single location, whereas maximum entropy 

would, theoretically, be achieved by spending an equal proportion of the day in each unique 

location in an environment (Figure 1).

We examined whether RE was associated with day-to-day variation in self-reported PA 

and NA (Supplementary Figs. 4 & 5), with the following potentially confounding factors 

included in the model: distance travelled for that day, city (Miami or New York), day of 

the week, time of day the EMA survey was completed, and temperature and precipitation at 

modal location for that day. Across participants, self-reported positive affect was higher on 

days when RE was greater (B = 0.79, t(3834) = 2.464, p = 0.014; Supplementary Table 1). 

The RE metric corresponds closely to the number of unique locations visited in a day (mean 

within-subjects correlation: 0.85; Supplementary Note 1 & Supplementary Figure 6) and 

both RE and this simpler metric were significantly predictive of PA. Of the other variables in 

the model, only day of the week was significantly associated with PA (Supplementary Table 

1), with PA lower early to mid-week relative to the weekend (Extended Data Fig. 1). There 

was no relation between RE and negative affect (B = −0.19, t(3835) = −0.66, p = 0.509; 

Supplementary Table 2).

This finding suggests that increased diversity in one’s daily spatial environment is associated 

with greater positive affect. We next sought to test whether this relation might reflect 

increased exposure to novel and diverse experiences on higher RE days. Our limited 

geolocation tracking period does not allow us to determine whether an individual has never 

previously visited a specific location and it is truly novel. However, we derived a putative 

measure of location novelty by calculating the number of unique locations an individual 

visited each day that had not previously been visited during the tracking period. Number 

of novel locations correlated positively with RE (B = 0.0005, t(9697) = 141.03, p < .001; 

mean within-subjects correlation: 0.79), and was also significantly associated with PA (B = 

1.60, t(3473) = 4.676, p < .001). Moreover, when both RE and number of novel locations 

were included in the model, the latter remained associated with PA (B = 2.44, t(3472) = 

4.40, p < .001), whereas RE was no longer significantly associated with PA (B = −1.06, 

t(3472) = −1.94, p = 0.053). These analyses suggest that increases in RE may indeed be 

associated with heightened exposure to novelty, and that daily novelty exposure is associated 

with positive affect. However, given our limited temporal window of observation, this result 

should be corroborated in a study in which absolute location novelty can be accurately 

determined.
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We next tested whether RE was associated with diversity in specific dimensions of the 

experiences that an individual has in a given day. We extracted US Census Bureau 

data capturing sociodemographic features of each location visited by a participant (e.g., 

population density, median age, total businesses, educational attainment, unemployment 

rate, race, gender; Supplementary Appendix 1). We used principal component analysis 

(PCA) to reduce the dimensionality of the data (Supplementary Table 3). We discretized the 

values for the first three components into high and low values and recoded each location 

as one of eight possible locations in this 2 × 2 × 2 (PC1 (low/high) x PC2 (low/high) x 

PC3 (low/high)) sociodemographic feature space. Consistent with our hypothesis that RE 

might be associated with greater diversity in one’s daily experiences, RE was significantly 

correlated with entropy over this sociodemographic feature space (B = 5.55, t(9697) = 

78.56, p < .001). As large spatial extents of both New York and Miami contain a limited 

range of values in this sociodemographic space (Figure 2), this correlation is not a trivial 

consequence of each visited GPS location having a unique location in the PCA-derived 

sociodemographic feature space. Greater entropy over sociodemographic environmental 

features was also associated with increased PA (B = 1.14, t(3834) = 3.48, p = .0005; 

Supplementary Table 3). Moreover, when both RE and sociodemographic feature entropy 

were included in the model, the latter remained significantly associated with PA (B = 0.94, 

t(3833) = 2.21, p = 0.027), whereas RE was no longer associated with PA (B = 0.35, 

t(3833) = 0.870, p = 0.384). Collectively, these analyses suggest that the RE measure of 

location variability is associated with exposure to diverse sociodemographic features of the 

environment, and that increases in such experiential diversity, above and beyond location 

variability, are associated with day-to-day variation in positive affect.

While it is possible that the novel and diverse experiences associated with high roaming 

entropy days facilitate positive affect, another possibility is that individuals are more 

motivated to explore their environments during days in which they feel better. To examine 

the potential directionality of our observed effect, we conducted analyses of the temporal 

relationship between roaming entropy and positive affect. We first tested whether the 

previous day’s RE influenced PA on a given day. When including both the previous (REt-1) 

and current (REt) day’s RE in a model predicting the current day’s PA (PAt), only REt 

significantly predicted PAt (B = 0.87, t(3367) = 2.498, p = 0.0125), whereas REt-1 did not 

(B = 0.31, t(3367) = 0.957, p = 0.339). We also examined whether positive affect on a given 

day (PAt) predicted roaming entropy the following day (REt+1). There was no significant 

relationship between PAt and REt+1: B = 0.0008, t(3396) = 1.029, p = 0.3037, in a model 

which also included REt.

Next, we repeated these temporal analyses with the measures of daily novelty exposure and 

sociodemographic experiential diversity, each of which was more strongly related with PA 

than RE itself. Both the concurrent (B = 1.66, t(3031) = 4.476, p < .001) and the prior 

day’s (B = 0.73 t(3031) = 2.121, p = 0.034) number of novel locations and the concurrent 

(B = 1.12, t(3367) = 3.219, p = 0.0013) and prior day’s (B = 0.61, t(3367) = 2.085, 

p = 0.037) sociodemographic entropy significantly predicted a given day’s PA. We also 

observed a significant effect in the opposite temporal direction, such that a given day’s 

positive affect significantly predicted both the following day’s number of novel locations 

(B = 0.003, t(3079) = 3.477, p = 0.0005) and entropy over sociodemographic features 
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of the environment (B = 0.002, t(3396) = 3.066, p = 0.002 ), with the concurrent day’s 

value for each variable included in the models. These analyses suggest a bidirectional and 

temporally extended interaction in which novelty and experiential diversity are associated 

with greater subsequent positive affect, which, in turn, is associated with more novel and 

diverse experiences on the subsequent day. This is consistent with theoretical proposals that 

behaviors that promote positive emotions can engender self-reinforcing “upward spirals”15, 

fostering subsequent repetition of those same behaviors. Nonetheless, future studies that 

directly manipulate positive affect, or exposure to novel and diverse experiences, will be 

critical in order to provide causal evidence for such bidirectional effects.

To better understand the neural mechanisms associated with the relation between roaming 

entropy and positive affect, we performed a resting-state fMRI scan in approximately half 

of the participants (n = 58) at the end of the geolocation tracking period. We used the 

random-effects estimates from the multilevel model for each individual as an index of the 

strength of coupling between RE and PA. We defined an anatomical seed region in the 

ventral striatum, an area widely associated with the subjective experience of positive affect 

as well as the processing of reward and novelty12. We conducted a whole-brain analysis, 

corrected for multiple comparisons, to identify regions of the brain in which resting-state 

functional connectivity with the ventral striatum was associated with a stronger relation 

between RE and PA (controlling for mean PA, mean RE, mean framewise displacement, and 

cohort; Figure 3). This analysis identified a cluster within the right posterior hippocampus 

([x = 34, y = −24, z = −8], B = 0.08, t(52) = 4.51, p < 0.001; Supplementary Table 5, 

Supplementary Fig. 7). This finding suggests that functional integration of the striatum 

and the hippocampus, regions centrally implicated in the processing of reward and 

environmental novelty, is associated with the strength of the relation between experiential 

diversity and positive affect.

Our findings demonstrate that objectively measured increases in the diversity of one’s 

physical environment are associated with increases in positive affect, and link connectivity 

within a hippocampal-striatal circuit to the strength of this effect. The hippocampus is 

centrally implicated in both the representation of spatial location as well as the detection 

of novelty9,10. Exposure to novel spatial environments elicits hippocampal activity that 

drives dopamine release in the nucleus accumbens via glutamatergic projections9,10. These 

projections play a necessary role in the formation of associations between spatial locations 

and primary rewards16 and are also proposed to underpin the rewarding properties of 

novelty9,10. Consistent with this proposal, individuals with greater hippocampal-ventral 

striatal tract strength also exhibit higher levels of trait novelty-seeking17. Collectively, 

this literature suggests that hippocampus-nucleus accumbens functional connectivity might 

influence the degree to which novelty and diversity in one’s spatial environment are 

experienced as subjectively rewarding, which in turn may promote subsequent exploratory 

or novelty-seeking behavior. While these data do not afford a direct test of this hypothesis, 

future studies might examine whether changes in the magnitude of hippocampal-striatal 

functional coupling mediate the strength of the relation between roaming entropy and 

positive affective states.
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By harnessing data that objectively quantifies defining features of locations, we found that 

exposure to diverse social and demographic features of visited locations was also associated 

with positive affect. This same approach could be leveraged to examine whether experiential 

diversity across other environmental feature dimensions (e.g., developed versus natural 

environments18) relates to fluctuations in affective state. While our analysis focused on 

location-related diversity in daily experience, diverse experiences that occur independent of 

any change in physical location (e.g., social interactions, professional or leisure activities) 

have also been related to positive affect19. Future studies seeking to link real-world daily 

activities to emotional well-being might assay such behaviors, as well as examine whether 

the relation between experiential diversity and positive affect depends on the degree to 

which one’s movements or activities are volitional or subject to external constraints20.

Evidence from rodent models indicates that diversity of daily experience alters the function 

of neural circuits and increases behavioral indices of affective well-being. Here we 

demonstrated that objectively measured increases in the daily diversity of one’s physical 

location were associated with corresponding increases in positive affect, an effect that 

was related to greater functional coupling of a hippocampal-striatal circuit. Collectively, 

these findings translate a broad literature on the beneficial consequences of environmental 

enrichment across species, demonstrating a relation between real-world exposure to novel 

and diverse experiences and increases in positive affect in humans, and linking this 

bidirectional association to the engagement of hippocampal-striatal neural circuitry.

Methods:

Participants

132 young adult participants (90 female, mean age: 23, sd = 3.4, range=18–31) were 

recruited in three cohorts from the New York City and Miami areas via fliers and 

posted advertisements. Participants were required to have a smartphone that could receive 

text messages and that met system requirements to run the study application. A subset 

of participants recruited in New York City (the first cohort) were not screened for 

magnetic resonance imaging (MRI) eligibility and only completed the geolocation and affect 

sampling assessments (n = 31). An additional group of MRI-eligible (right-handed, no MRI 

contraindications) participants were recruited both in New York City (second New York City 

cohort; n = 60) and Miami (third cohort; n = 41). All participants provided informed consent 

and were paid for their participation in the study. There was no randomization of subjects to 

experimental conditions, and thus, data collection and analysis did not require blinding. This 

study was approved by the Weill Cornell Medicine and University of Miami Institutional 

Review Boards.

Procedure

During an initial session in the lab prior to the start of geolocation tracking, participants 

completed a series of baseline questionnaires including measures of depression (Beck 

Depression Inventory [BDI])21 and trait anxiety (State-Trait Anxiety Instrument [STAI-

T])22. A geolocation application (Moves; ProtoGeo, Helsinki, Finland) was installed on 

each participant’s phone to passively acquire geolocation data whenever the phone’s 
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accelerometer sensed motion. Geolocation data was synced to a participant-specific account 

on the application’s online servers. Following the initial in-lab session, participants’ 

geolocations were tracked continuously for 3–4 months (mean 104.6 days, sd = 22.1) via the 

Moves application.

During this period, participants were prompted to provide assessments of their mood via 

a questionnaire sent by SMS to their mobile phones (MRI-eligible cohort) or via an 

app (first cohort only) installed on their phones. Participants rated their current mood in 

response to the following 10 adjectives taken from the Positive and Negative Affect Scale 

(PANAS-X)23: Positive Affect (PA): happy, excited, strong, relaxed, attentive; Negative 

Affect (NA): nervous, jittery, upset, irritable, sluggish. Participants were also asked to rate 

their previous night’s sleep on a scale of “slept poorly” to “slept well.” SMS assessments of 

mood and sleep were delivered at random times every other day during daytime hours. Due 

to technological limitations, the first cohort used a mood recording application (T2 Mood 

Tracker; DHA Connected Health, Joint Base Lewis-McChord, WA, USA) instead of SMS 

assessment, and were queried to report their mood every other day at the same time of day. 

PA and NA were operationalized as the mean of the adjectives for that assessment. Ten 

participants who responded to fewer than 20 SMS EMA assessments during the 3–4 month 

tracking period were excluded from analyses, leaving 122 participants (Supplementary Fig. 

1; mean age = 22.75 years, SD = 3.36, 84 females). Of the included participants, the number 

of completed affect assessments ranged from 22 to 78 (mean=42.8; SD=9.4), minimum (22) 

and maximum (78). PA and NA exhibited an inverse relationship across subjects (B = −0.60, 

t(5080) = −28.39, p < .001), with a mean correlation of −0.54.

Following the mobile tracking period, participants completed a second session in the lab. 

During this session, participants again completed the BDI and STAI-T. The depression and 

trait anxiety measures obtained prior to (mean (SD) BDI: 6.99 (6.38); STAI: 40.86 (11.25)) 

and following the 3–4 month sampling period (mean (SD) BDI: 5.78 (5.31); STAI: 38.83 

(11.06)) did not differ (BDI: B = 0.46, t(110) = 0.50, p = 0.62; STAI: B = −1.11, t(110) 

= −0.48, p = 0.63, in a model that included cohort number to control for potential effects 

of seasonality), and mean RE (see formula below) was not correlated with self-reported 

depression (r = −0.02) or trait-anxiety (r = 0.01).

At both sites, the subset of participants in the MRI-eligible cohort who were willing to 

undergo an fMRI scan completed a third session that involved scanning no later than 4 

weeks after the second lab session. During this session, a 15-minute resting-state scan 

(2.0s TR, Flip Angle = 75, TE: 29 ms, 3.4 × 3.4 × 3.4 mm, 38 slices) as well as T1- (1 

mm3) and T2-weighted anatomical scans were collected on each participant. 38 participants 

were scanned at Weill Cornell on a 3T Siemens Trio and 25 participants were scanned at 

the University of Miami on a 3T GE750. Two of the scanned participants were excluded 

from analysis for failure to respond to a sufficient number of SMS EMA assessments (as 

described above), and three participants were excluded from analyses due to excessive 

motion (see fMRI data preprocessing below), leaving a total of 58 participants included in 

our reported fMRI analyses.

Heller et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2022 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Geolocation data processing

Prior to performing any analyses, we sought to determine the amount of geolocation data 

required on each day to extract a stable RE estimate. Missing data is unavoidable when 

collecting geolocation data from cellular phones (i.e., due to the device being shut off). 

Thus, we performed several analyses to identify an acceptable threshold for the amount 

of missing data that would enable reliable estimation of within-day roaming entropy (RE), 

while excluding the fewest number of days so that the day-to-day dynamics of roaming 

entropy could be examined.

The first analysis identified the robustness of RE estimates (see equation below) to various 

levels of missing data by randomly removing a percentage of each day’s data from days for 

which data was at least 99% complete. RE was recalculated from this subsample of data and 

compared to the full day’s RE. A threshold of 90% complete geolocation data within a day 

closely approximates 99% complete data (Supplementary Fig. 2).

The second analysis examined how many days would be excluded as a function of the 

threshold of data required for inclusion. At the within-day thresholds of 30%, 20%, 10%, 

1%, 0% allowable missing data the mean percent of days removed were: 16.1%, 18.9%, 

23.2%, 34.4%, and 77.2%, respectively. Selecting a threshold of <= 10% missing data 

resulted in an average of 80.2 useable days per subject (Supplementary Fig. 3).

As a result of these analyses, we identified a threshold of a maximum of 10% of missing 

data within-day as being sufficient to retain a sufficient number of days, while ensuring that 

calculation of a single day’s RE would be accurate.

Geolocation data were preprocessed such that latitude and longitude coordinates were 

rounded to the fourth decimal (a spatial resolution of approximately 4–11 meters 

between each unique location). For each day, we converted continuous geolocation data, 

downsampled to one-minute temporal resolution, into a measure of daily roaming entropy 

(RE) that has previously been used in studies quantifying rodent exploratory behavior14,24, 

interpolating over timepoints when data were missing:

RE = ∑
j = 1

n
(pij × (log2pij))/log(n)

In this equation, pij is the within-day historical probability that location j was visited by 

participant i, quantified as the proportion of the day spent in each unique location (number 

of minutes in that location divided by the 1440 minutes in a day) and n is the total number of 

unique locations in the environment (calculated to be 648,000,000 unique locations on earth 

at four decimal degrees of GPS resolution).

Several variables that might impact RE or affect were also acquired and used as covariates in 

analyses. These included: time and day of week that mood surveys were completed, amount 

of precipitation and mean temperature for the modal location of the participant for that day, 

total distance traveled for the day, and cohort.
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To extract weather information, weather data was collected using the API at http://

weatherunderground.com. API requests for mean temperature and total precipitation data 

were made using participants’ modal longitude/latitude for each day.

To calculate total distance traveled per day, the sum of distances between successive points 

visited in a given day was calculated. Distance was calculated using the rdist.earth function 

in the R package ‘fields,’ which uses the haversine formula,

d = 2r arcsin sin2 ϕ2 − ϕ1
2 + cos ϕ1 cos ϕ2 sin2 λ2 − λ1

2

where Φ represents latitude, λ longitude, r the radius of the Earth, and d the distance 

between the two points.

Location data analysis

Multilevel models were run in R (3.5.0) using the nlme package25 to examine whether RE 

predicted daily positive or negative affect. Subject and RE were treated as random factors. 

T-statistics and p-values were extracted from these models using lmerTest. We elected to run 

a model that included RE, as well as a number of additional factors that we hypothesized 

might relate to PA, including the time of day that mood assessment was completed, amount 

of precipitation for modal location of that day, mean temperature for modal location of that 

day, total distance traveled for that day, day of week (treated as a factor), and cohort (treated 

as a factor). Results reported in the manuscript include this full set of covariates that we 

hypothesized, a priori, might account for variance in PA. However, we also performed model 

fit comparisons using the ‘dredge’ function as part of the “MUMIn” library in R which ranks 

models via the Akaike Information Criterion (AIC)26. The best-fitting model only included 

RE, cohort and day of the week. We repeated all analyses using this best fitting model 

and the relation between RE and PA held under this reduced model (B = 0.63, t(3993) = 

2.07, p = 0.038). Random-effect coefficients from the full model, reflecting the strength of 

the RE-PA association, were extracted for each subject, and used as individual difference 

metrics to predict rsFMRI connectivity.

Determining whether analytic assumptions drive the observed RE – PA relationship

In our geolocation analysis, we interpolated over gaps in location data caused by phones 

being off or loss of GPS signal (e.g., due to underground subway commutes). To test 

whether interpolation might artificially increase RE and account for effects, we recalculated 

RE assuming that the participant remained in the last observed location throughout the 

temporal window of the data gap, instead of interpolating, and reran our analyses testing 

for relationships between daily RE and PA. An identical linear mixed effects model also 

demonstrated a significant association between non-interpolated RE and PA (B = 0.78, 

t(3834) = 2.457, p = 0.014), suggesting that this result is robust to assumptions about 

behavior when the phone is off.

Extraction of number of novel locations visited—For analyses examining whether 

the RE-PA effect could be accounted for by an estimate of the degree to which a participant 
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encountered “novel” locations on that day, we extracted the number of novel locations 

visited in a day (defined as number of unique locations not previously visited during the 

observation period). An important caveat regarding this metric is that we are not able 

to determine in any absolute sense whether an individual has never previously visited a 

location, and thus whether the location is truly novel for a participant. Instead, we can only 

make the more restricted inference of whether the participant has previously visited this 

location during the 3–4 month tracking period. In order to avoid inflation of this novelty 

estimate early in the observation period and allow for adequate observation of visited 

locations prior to the designation of novel locations, we held out data from the first 10 days 

before estimating novelty.

Estimation of entropy over sociodemographic features of the environment—
We suggest that a greater degree of daily ‘experiential diversity’ on high RE days might 

contribute to the association between RE and PA. To test this hypothesis, we attempted 

to estimate the degree of diversity in the social and demographic features of the locations 

visited by participants on a given day.

The first step in this analysis was to map each GPS coordinate that appeared in our dataset 

to its corresponding Federal Information Processing Standard (FIPS) code. A FIPS code 

uniquely identifies locations at the spatial resolution of a “Block Group”, the smallest 

geographical unit for which the U.S. Census Bureau publishes data. The areas encompassed 

by Block Groups differ in size as they are determined by the approximate population size of 

roughly 600 to 3,000 people each.

Block Groups are used by US government agencies and other geographic information 

systems (GIS) to link geographic and demographic information to specific physical 

locations. We downloaded 53 variables capturing demographic and socioeconomic features 

of a given block group (e.g., population density, median age, total businesses, educational 

attainment, unemployment population, race, gender - see Supplementary Appendix 1 for a 

complete list of data sources) from the U.S. Census Bureau.

We performed a Principal Component Analysis (PCA) to reduce the dimensionality of 

the 53 sociodemographic variables. PCA derives a smaller set of artificial variables 

(“components”) that explain a maximum of variance in all of the variables. All variables 

were mean-centered and scaled by standard deviation. The “principal” function from the 

R package psych version 1.8.1227 was utilized to perform a Varimax rotated PCA on the 

53 sociodemographic variables. Varimax rotation was utilized to maximize orthogonality 

among the components. Examination of the scree plot and eigenvalues showed that the 53 

Census variables optimally clustered into 12 components that explained 80% of the variance 

in the data. Component weights indicate how strongly a sociodemographic variable is related 

to its component, with 1 reflecting the strongest positive associations and −1 indicating 

a strong inverse relationship (component weights for all 53 variables can be found in 

Supplementary Table 3). Individual component values for each block group were calculated 

using the regression method.
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In order to better differentiate our measure of location in GPS coordinate space from 

a measure of location in sociodemographic feature space, we sought to define a 

sociodemographic feature space at a relatively lower level of spatial resolution. We took 

the first 3 components in our PCA analysis that explained the largest amount of variance in 

the sociodemographic data and discretized this 3-dimensional space into “high” and “low” 

values for each component, based on a median split. This results in each block group being 

assigned one of eight possible positions in this 3-dimensional sociodemographic feature 

space (PC1 (2 levels) x PC2 (2 levels) x PC3 (2 levels)).

We converted each subject’s minute-by-minute GPS coordinate timeseries into a timeseries 

consisting of minute-by-minute values in this 3-dimensional sociodemographic feature space 

for the corresponding Block Group. We then calculated daily entropy over this feature 

space. This entropy measure reflects day-to-day variability in exposure to sociodemographic 

features of the environment, with higher entropy achieved on days when an individual is 

exposed to greater sociodemographic diversity.

fMRI data preprocessing

Resting state data were preprocessed using AFNI (version AFNI_17.2.17). Resting state 

functional MRI (rsFMRI) data were despiked, slice-time corrected, coregistered to the 

subject’s T1 image, spatially registered using linear and nonlinear registration (3dQwarp) 

to the MNI152 template, and smoothed with a 6mm3 isotropic kernel. Normalized T1 data 

were segmented into grey matter, white matter, and the ventricles. We removed variance 

associated with motion, the derivative of motion, and the timeseries of BOLD activity 

in white matter and ventricles28,29. TRs with motion above 2mm were censored and the 

resulting data were bandpass filtered at 0.01 – 0.1 Hz. Participants with >3mm head motion 

in any direction were excluded from analyses (n = 3). The resulting residuals from the 

remaining 58 participants were used in the connectivity analyses detailed below.

Because of ongoing debate within the resting state fMRI literature on preprocessing best 

practices – particularly work indicating that the effects of motion on resting state BOLD 

are non-linear and spatially variable30–32 – we performed a second preprocessing approach 

similar to the one used by multiple groups32. Using this approach, we first identified frames 

that contained framewise displacement > 0.2mm. Those volumes were marked as outliers, 

however we also marked one volume before and two volumes after any volumes with FD 

> 0.2. In addition, uncensored segments of data lasting fewer than five contiguous volumes 

were flagged as outliers. It has been suggested that this approach more completely removes 

volumes in which movement occurred as well as the potential aftereffects of movement on 

the BOLD signal.

We then used the same nuisance regressors (six demeaned motion parameters, their 

derivative, their square, the square of the derivative, the averaged ventricular signal, its 

derivative and square, as well as the averaged white matter signal, its derivative and 

square), with a band pass of 0.01 to 0.10 Hz. With the residual fMRI timeseries, we then 

implemented the Lomb-Scargle Periodogram censoring interpolation method31 to perform 

signal recovery and interpolation. We extracted VS-hippocampal connectivity from these 
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preprocessed data and tested whether we obtained the same result using this alternative 

preprocessing approach (Supplementary Note 2).

We conducted additional analyses to determine whether the seed region in the ventral 

striatum and the hippocampus cluster fell within traditional resting state networks33 

(Supplementary Note 3).

fMRI data analysis

For each participant, the mean timeseries from voxels in the nucleus accumbens 

(NAcc), anatomically defined using the Harvard-Oxford Atlas34, was extracted from the 

preprocessed rsFMRI data. This timeseries was correlated with the rest of the brain, 

and an r-z transformation was performed to complete parametric statistical tests. The 

random effect coefficients from the multilevel model described above (along with average 

framewise displacement, scanner site (Miami or New York City), mean RE, and mean PA 

as control variables) were then included as predictors in a robust regression model to predict 

NAcc-whole brain connectivity. These random effects maps were corrected for multiple 

comparisons using FSL’s FLAME with a threshold of z > 2.7, corrected at p < .05.

Statistics

Multilevel models were run in R (3.5.0) using the nlme package25 to examine whether 

our geolocation-derived measures (roaming entropy, number of novel locations, entropy 

over sociodemographic [US Census derived] space, number of unique locations) predicted 

daily positive or negative affect. Data were assumed to be normally distributed, but 

this was not formally tested. To view the distribution, scatterplots illustrating participant-

level associations between roaming entropy (z-scored) and positive and negative affect 

are presented in Supplementary Figs. 4 & 5. Imaging analyses used voxelwise multiple 

regression using FSL. No statistical methods were used to predetermine sample sizes, but 

our sample sizes were similar to those reported in previous publications18,35.
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Extended Data

Extended Data Figure 1. 
Positive and negative affect by day of week. This figure depicts the parameter estimates 

of the effect of day of week (DOW) on positive and negative affect from linear mixed-

effects models that included RE, time of day EMA was collected, distance travelled, mean 

temperature and precipitation (from the modal location of that day for that participant), and 

cohort as predictors (n = 122 independent human participants). Of the variables in models, 

only day of the week was also significantly associated with PA, with PA lower early to 

mid-week relative to the weekend (F(3834) = 2.8, p = 0.011). Both temperature (B = 0.062, 

t(3835) = 2.585, p = 0.01) and day of the week (F(3835) = 3.0, p = 0.006) were significantly 

associated with negative affect, which was greater on higher temperature days and in the 

early to mid-week relative to the weekend. Error bars represent standard error of parameter 

estimate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Geolocation tracking in New York and Miami.
Representative low (left column) and high (right column) roaming entropy days from one 

participant in New York (top row) and one in Miami (bottom row). Map tiles by © Stamen 

Design, under CC BY 3.0. Map data by OpenStreetMap.org contributors.
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Figure 2. Physical location transformed into sociodemographic feature space.
Maps depicting the sociodemographic feature space of New York City and Miami at the 

spatial resolution of a block group (the smallest geographical unit for which the US Census 

publishes data). Color of locations represents the positions in this sociodemographic feature 

space derived from our discretized PCA. Daily entropy over this sociodemographic feature 

space was associated with positive affect (n = 122 independent human subjects). Map tiles 

by CARTO under CC BY 4.0. Map data by OpenStreetMap contributors.
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Figure 3. Entropy-affect association is linked to hippocampal-ventral striatal connectivity.
Random-effects, reflecting individual differences in the degree to which roaming entropy is 

associated with positive affect, correlate positively with resting-state functional connectivity 

between a ventral striatal seed and the posterior hippocampus (A & B). Shaded band 

represents the 95% confidence interval on the best fitting regression line (n = 58 

participants).

Heller et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2022 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods:
	Participants
	Procedure
	Geolocation data processing
	Location data analysis
	Determining whether analytic assumptions drive the observed RE – PA relationship
	Extraction of number of novel locations visited
	Estimation of entropy over sociodemographic features of the environment

	fMRI data preprocessing
	fMRI data analysis

	Statistics
	Extended Data
	Extended Data Figure 1.
	References
	References
	Figure 1.
	Figure 2.
	Figure 3.

