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Abstract: Background: Influenza is a respiratory infection that continues to present a major threat to
human health, with ~500,000 deaths/year. Continued circulation of epidemic subtypes in humans
and animals potentially increases the risk of future pandemics. Vaccination has failed to halt the
evolution of this virus and next-generation prophylactic approaches are under development. Naked,
“heat inactivated”, or inert bacterial spores have been shown to protect against influenza in murine
models. Methods: Ferrets were administered intranasal doses of inert bacterial spores (DSM 32444K)
every 7 days for 4 weeks. Seven days after the last dose, the animals were challenged with avian
H7N9 influenza A virus. Clinical signs of infection and viral shedding were monitored. Results:
Clinical symptoms of infection were significantly reduced in animals dosed with DSM 32444K. The
temporal kinetics of viral shedding was reduced but not prevented. Conclusion: Taken together, nasal
dosing using heat-stable spores could provide a useful approach for influenza prophylaxis in both
humans and animals.
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1. Introduction

COVID-19 has refocused attention on potential solutions not only to the current
pandemic but also to future threats. One candidate that might be considered is the use of
bacterial spores. Spores of Bacillus subtilis have been used extensively as vaccine delivery
vehicles, either by engineering spores to express antigens or by adsorption of heterologous
antigens to the spore surface [1,2]. With the adsorption approach, it has been shown that
heat-inactivated H5N1 influenza virions (NIBRG-14 clade) delivered by loaded spores
conferred localized immunity as well as protection in murine models of infection [3].
Cross neutralization of other clades as well as antigen sparing were also demonstrated
using this approach [3]. Remarkably, inactivated (inert) spores carrying no antigen (naked
spores), administered intranasally, also conferred protection to a mouse-adapted strain of
H5N2 [3]. The underlying mechanism was shown to be innate immunity via TLR (Toll-like
receptor)-mediated expression of NF-κβ and recruitment of NK (Natural Killer) cells into
the lungs together with the maturation of DCs (Dendritic cells) [3,4]. Spores have a number
of attributes that may directly or indirectly be involved in this phenomenon. First, they
have been shown to activate TLRs [3,5,6]. Second, they have adjuvant properties, and
when co-administered with antigens, whether by the same (mucosal) or different routes
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(systemic antigen—mucosal spores), they induce localized immunity as well as direct
balanced antigen-specific Th1-Th2 immune responses [7].

Seasonal A and B viruses circulate among humans, with resulting epidemics of
acute respiratory disease estimated at 3–5 million cases/year and up to 650,000 mor-
talities/year [8,9]. Infections resulting from zoonotic influenza A viruses can cause severe
illness and contribute to the emergence of pandemic strains. Current and recent outbreaks
of avian and swine influenza not only afflict farmed animals but also increase the risk of
transfer to humans and potentially increase the risk of a future pandemic [10]. It seems
appropriate then to evaluate whether the use of inert spores might protect against influenza
in a robust model of influenza infection. The ferret, guinea pig, and Syrian hamster models
of infection are superior to the murine models since they allow assessment of not only
infection but also transmission [11–14].

Novel human influenza A virus (IAV) infections during the past decade have included
the H7N9 subtype, first isolated from humans in China in early 2013 [15]. In this paper, we
investigate the protective efficacy of inert B. subtilis spores in the ferret model of influenza
infection, using the H7N9 subtype for challenge. We show that intranasal applications
of inert spores showed a significant reduction in clinical signs of disease but did not
substantially impact viral shedding.

2. Materials and Methods
2.1. Spore Inoculum

The B. subtilis strain DSM 32444 was used for this study. This strain is recommended as
safe for human consumption (USA FDA GRAS-notification GRN 000905). Spores were pre-
pared in batch culture (800 mL), and suspensions in dH2O were inactivated by autoclaving
and are henceforth referred to as DSM 32444K. A validation of spore inactivation was made
by serial dilution of heat-treated spore suspensions and plating for viability on an agar
growth medium and with no resulting bacterial growth, meeting the required standard.
The analysis was conducted in triplicate using standard operating procedures. Note that
autoclaved spores did not rupture and retained their refractility, shape, and size [16,17].
Aliquots (1 mL) were used for animal studies, with each lot containing 5 × 1010 inactivated
spore particles (determined by microscopic counting using a Neubauer counting chamber).
All sample analyses were conducted using validated methods, and all manufacturing
was conducted in compliance with current Good Manufacturing Practice (WHO GMP) at
HURO Biotech (Long An, Vietnam).

2.2. Virus

A zoonotic avian influenza virus strain A/Anhui/1/13 [H7N9] (accession no. EPI4399507,
EPI439509) was used for the infectious challenge [18].

2.3. Ferret Study

United Kingdom regulations categorize H7N9 as a Specified Animal Pathogens Order
(SAPO) 4 and Advisory Committee on Dangerous Pathogens (ACDP) Hazard Group 3
pathogen because it is a notifiable animal disease agent and presents a zoonotic risk;
hence, the stages of the in vivo experiment involving the H7N9 virus were conducted in
licensed containment level 3 facilities at the Animal and Plant Health Agency (APHA),
Weybridge, Surrey, UK. Two groups of ferrets (Mustela putorius furo; non-albino) each
consisting of 8 animals (4 male, 4 female; ~750–1000 g) were acclimatized for 7 days prior
to treatment. Immediately after this period (Day 0), the animals were considered free
of current influenza infection with HIT titres ≤1/5 and absence of viral RNA in nasal
wash samples. The animals were housed in groups (n = 4) by sex in open cages. At
Days 0, 7, 14, and 21, the animals were intranasally administered 0.5 mL of DSM 32444K

(Group 1) or PBS (Group 2) (0.25 mL/nare). For DSM 32444K, this equated to a total of
2.5 × 1010 spore particles per dose. On Day 28, the animals were transferred to BSL3
facilities and all were challenged intranasally (0.5 mL/nostril) with AIV (A/Anhui/1/13
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[H7N9]) at a titre of 1 × 107 TCID50/mL (tissue culture infectious dose). The viral titre
was back-titrated following inoculation by TCID50 to ensure that an accurate viral titre had
been administrated. Note that the H7N9 challenge dose for ferrets is consistent with that
used by others [19].

Weight and temperatures were taken daily from all ferrets. Nasal washes were per-
formed every other day post-infection, and detection and quantification of viral RNA were
performed by RT-qPCR. Fifteen days post-infection (d.p.i.), the animals were euthanized
and blood was taken for serological analysis (with the exception of one animal that was
culled prematurely).

2.4. Assessment of Clinical Scores

All ferrets were assessed daily for clinical symptoms using a standardized scoring
system (Table S1). Weights and temperatures were taken at daily intervals, and body
temperatures were monitored using subdermal microchips implanted in the nape of the
ferret.

2.5. Sampling and Analysis

For nasal washes, ferrets were anaesthetized using isoflurane (IsoFlo, Zoetis) and
1 mL (0.5 mL/nare) of Dulbecco’s PBS (Sigma, St. Louis, MO, USA) was administered
intranasally and used to lavage the nasal cavity as described previously [18]. The nasal
washes were collected into 2 mL Eppendorf tubes and stored at −80 ◦C until required.
Blood was obtained both prior to infection via venipuncture and post-infection via cardiac
puncture under terminal anaesthesia. Blood was stored at 4 ◦C to facilitate clotting and
centrifuged at 1000× g for 15 min, and the serum was aliquoted into fresh tubes.

2.6. Serology

The serum was treated with a receptor-destroying enzyme (RDE) (supplied and
validated by APHA) and heat-treated at 56 ◦C for 30 min; seroconversion to AIV H7N9
was assessed using the hemagglutination inhibition assay, as previously described [18].
Beta-propiolactone (BPL) (97%, Sigma) inactivated homologous A/Anhui/1/13 [H7N9]
antigen [20] was used to quantify hemagglutination inhibition titres (HITs). HITs ≤ 1/5
were considered negative.

2.7. RT-qPCR Analysis

RNA was extracted from ferret nasal wash samples using the KingFisher™ Flex
Purification System and MagMax™-96 Total RNA Isolation Kit technology (Invitrogen) and
eluted in 90 µL of DEPC-treated RNase free H2O. Influenza A virus RNA was detected using
an influenza A-specific RT-qPCR targeting the Matrix-gene, as described elsewhere [21].
The virus titre was determined by using a serially diluted standard curve generated from
RNA extracted from the homologous virus (A/Anhui/1/13 [H7N9]) at a starting titre of
1 × 107 TCID50/mL, as previously described [18]. The final viral titre in each sample was
presented as relative equivalency units (REUs), calculated based on Cq (quantification
cycle) values, and extrapolated from the standard curve. The limit of detection was a
value of ≥36.00 Cq (≥7.012 REUs) based on the threshold for influenza A virus diagnostic
testing [21].

3. Results
3.1. Symptomatic Protection to H7N9 AIV Infection

Prior to the challenge, the animals administered four intranasal doses of DSM 32444K

or PBS (control group) exhibited no clinical signs including weight loss or elevated temper-
atures (Figure S1). After the last dose of DSM 32444K or PBS, the animals were infected
(intranasally) with H7N9. One ferret (no. 323) in the control group was euthanized at
7 days post-infection (d.p.i.). on welfare grounds due to prolonged weight loss, loss of
appetite, and dehydration.
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For the remaining animals, clinical signs were monitored and graded (Table S1).
Infection with the H7N9 virus typically induces a range of clinical signs including lethargy,
loss of appetite, change in fur appearance, dehydration, and elevated temperature. The
animals in the control group exhibited more severe clinical signs compared to the animals
receiving DSM 32444K spores (Figure 1). All ferrets exhibited mild and transient pyrexia,
starting from 1 d.p.i., with a maximum of a 2 ◦C increase from the predefined baseline
(Figure 2A). Elevated temperatures returned to baseline levels from 4 to 6 d.p.i. for all
groups. Pyrexia was most pronounced in the control-treated female group, and at 2 d.p.i.,
the DSM 32444K-treated animals exhibited a significantly (p < 0.05) lower body temperature.
Most ferrets exhibited weight loss, with a 20% reduction in weight from baseline data
between 1 and 5 d.p.i. (Figure 2B). The control-treated groups exhibited significantly
(p < 0.0001) greater weight loss compared to DSM 32444K-treated ferrets (Figure 2B). Taken
together, this study shows that intranasal administration of DSM 32444K spores reduced
the symptoms of infection caused by a zoonotic influenza A virus.
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Figure 1. Clinical signs, change in body temperature, and weight loss exhibited by ferrets treated
with DSM 32444K (panel B) or mock-treated (panel A) with PBS following infection with H7N9 AIV.
Ferrets were treated with 0.5 mL of DSM 32444K or PBS on four separate occasions, 7 days apart,
followed by infection with H7N9 AIV 7 days after the last treatment. Individual values were plotted
per animal, and lines indicate the mean values per group. All ferrets were scored for clinical signs
daily following infection according to the clinical score system presented in Supplementary Table S1.
The cumulative daily clinical scores were represented graphically.
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Figure 2. Change in body temperature and weight loss exhibited by ferrets treated with DSM 32444K

or mock treated with PBS following infection with H7N9 AIV. Ferrets were treated with 0.5 mL
of DSM 32444K (red line) or PBS (blue line) on four separate occasions, 7 days apart, followed by
infection with H7N9 AIV 7 days after the last treatment. Individual values were plotted per animal,
and lines indicate the mean values per group. Body temperatures and weights taken 1 day prior to
infection were used to configure a baseline, and then, temperatures (panel A) and weights (panel B)
were taken daily following infection with H7N9 AIV. Statistical significance was determined using a
two-tailed Mann-Whitney U test; panel A, * p < 0.05; panel B, ** p < 0.01, *** p < 0.001.

3.2. Protection against Viral Shedding

All ferrets shed detectable viral H7N9 RNA between 2 × 108 and 2 × 104 REU.mL−1

(REU, relative equivalency units) from their nasal cavities at 2 d.p.i., indicating that all
animals had become productively infected with H7N9 (Figure 3). Shedding was detectable
in all ferrets, above the limit of detection, until 10 d.p.i. for the control group and 6 d.p.i.
for the DSM 32444K-treated group (Figure 3). However, there was no statistical difference
in viral shedding between groups using one-way ANOVA at any time point following
infection. These data suggest that prior treatment with DSM 32444K does not alter the titre
of the virus being shed or overall virus load following infection with avian influenza A.

The infectivity of the shed virus was not determined, and although rRT-qPCR is highly
sensitive and was used here to detect viral RNA, it is unable to provide insight into the
titres of infectious virus present within the sample for which egg isolation is traditionally
used. Despite this limitation, it appears that dosing with spores has little if any impact
on viral shedding. This indicates that protection most likely occurs through an unspecific
mechanism such as innate immunity. Here, spore-induced innate immunity is unable to
provide sufficient protection to impair transmission but it is possible that further refinement
of dose and/or dosing regimens may achieve a measurable impact on transmission. Current
licensed systemic influenza vaccines provide, at best, 60% protection and limited effect on
transmission. Accordingly, killed spores might have utility as an adjunct to existing flu
vaccines.

3.3. Effect of DSM 32444K on Seroconversion to Influenza A Virus

Serum was collected from all ferrets at 15 d.p.i. (with the exception of the one eutha-
nized animal). All ferret serum was treated with RDE and tested via the haemagglutinin
inhibition assay using homologous H7N9 antigen. All ferrets exhibited seroconversion to
the H7N9 antigen (HIT titres > 29), confirming active infection.
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Figure 3. Viral shedding exhibited by ferrets treated with DSM 32444K or mock-treated with PBS
following infection with H7N9 AIV. Viral RNA was quantified in RNA extracted from nasal wash
samples using an influenza A rRT-qPCR. Relative equivalency units (REUs) were calculated and
displayed based on Cq values obtained extrapolated from a standard curve of a known titre of
A/Anhui/1/13 (H7N9).

4. Discussion

This study strengthens an earlier finding [3] that intranasal dosing of mice with inert
B. subtilis spores has the ability to reduce symptoms of influenza. Here, we used the ferret
model of influenza, which is generally considered more informative since it closely mimics
infection in humans presenting both the symptoms of the disease as well as replication and
shedding of the virus. Our data show that pre-treatment with inert spores of B. subtilis leads
to a clear reduction in the virulent and symptomatic stages of influenza virus infection.
However, the shedding of the virus was not significantly affected. The reduction in clinical
symptoms in the more robust ferret model is encouraging. Firstly, it agrees with our
earlier mouse study (which measured only clinical signs and symptoms rather than viral
shedding), and secondly, it shows that inert spores have potential utility for controlling this
viral disease in humans and/or in animals. It seems likely that, with further refinement and
modification of either dose or dosing regimen, increased levels of protection from disease
might be achieved. As reported previously [3], the underlying mechanism is most probably
that of innate immunity.

Innate immunity plays an important role in influenza [22]. One of the key mechanisms
that evoke innate immunity is the interaction of heterologous ligands with pattern recog-
nition receptors, typically TLRs, displayed on the surface of host cells. Spores have been
shown to interact with TLR2, 4, and 6, and studies using TLR2 knockout mice have shown
the interaction of spores with TLR2 of DCs and direct induction of the MyD88 signalling
pathway [4], resulting in DC maturation and induction of adaptive responses. A number
of TLR agonists have been shown to have efficacy in preventing influenza disease [23–26].
Inert spores then add to the number of TLR agonists that are able to prevent the symp-
toms of influenza. In vitro studies have shown that spores are phagocytosed and able to
persist within the phagosome significantly longer than vegetative Bacillus cells [2,27]. This
persistence is likely important and may mimic, in part, the behaviour of an intracellular
pathogen [27]. In murine studies, the progression of spores applied intranasally has been
examined in detail [2]. Haematoxylin–eosin staining revealed spores in the bronchioles
after 2 h and by 6 h infiltration to the alveoli. Phagocytosis in lung cells was observed,
but after 24 h, spores were no longer detectable, suggesting that phagocytosis had cleared
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them. The size of the spores (~1 µm) is consistent with the size range (1–5 µm) suitable for
phagocytic uptake and transit across M (microfold) cells [28].

Although less is known about the underlying mechanisms of innate immunity in
ferrets [29,30], it is generally understood that the host’s innate immunity plays an impor-
tant role in disease and resolving infection [22]. One aspect of this is the production of
pro-inflammatory cytokines in the upper respiratory tract (URT) and the production of
sIgA [29,31]. In humans, nasal administration of spores has been shown to induce a number
of cytokines, stimulating the production of sIgA [32] as well as inducing a Th1 bias [33]. We
would predict that the underlying mechanisms (interaction with TLRs, cytokine induction,
recruitment of NK cells, and maturation of DCs) inhibiting influenza infection are broadly
similar in mice and ferrets.

In this case though, the use of spores has a number of unique attributes that lend them-
selves to further development. Bacterial spores are produced simply and cost-effectively
using bioreactors, and spores are commercially produced as probiotics or animal feed
products [34]. The majority of Bacillus strains that are used are considered safe for hu-
man consumption [35], and humans and animals are exposed to these ubiquitous and
environmentally acquired bacteria on a daily basis, with exposure estimated at 104–105

spores/day [36].

5. Conclusions

Inert bacterial spores have been shown to have efficacy in reducing the symptoms
of influenza in a robust animal model. Influenza is a disease that has a global impact on
both humans and animals. Considering that pandemics are likely to occur in the future, it
seems prudent to consider the use of inert spores as a potentially low-cost and pragmatic
prophylactic measure for the control of influenza infections in animals and possibly also in
humans. Most probably, this would be as an adjunct measure to existing flu vaccines. Since
the underlying mechanism of spore application is innate immunity, it will be of interest to
know whether inert spores might have a broader spectrum of efficacy against other viral
pathogens.
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