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Abstract: The present study outlines a reliable approach to determining the electrical conductivity
and elasticity of highly oriented electrospun conductive nanofibers of biopolymers. The highly
oriented conductive fibers are fabricated by blending a high molar mass polyethylene oxide (PEO),
polycaprolactone (PCL), and polylactic acid (PLA) with polyaniline (PANi) filler. The filler-matrix
interaction and molar mass (M) of host polymer are among governing factors for variable fiber diam-
eter. The conductivity as a function of filler fraction (ϕ) is shown and described using a McLachlan
equation to reveal the electrical percolation thresholds (ϕc) of the nanofibers. The molar mass of
biopolymer, storage time, and annealing temperature are significant factors for ϕc. The Young’s
modulus (E) of conductive fibers is dependent on filler fraction, molar mass, and post-annealing pro-
cess. The combination of high orientation, tunable diameter, tunable conductivity, tunable elasticity,
and biodegradability makes the presented nanofibers superior to the fibers described in previous
literature and highly desirable for various biomedical and technical applications.

Keywords: Young’s modulus; electrical percolation threshold; fiber diameter; orientation; biomedical

1. Introduction

The orientation, diameter, electrical conductivity, and mechanical strength (elastic-
ity/stiffness) are among the most significant characteristics of electrospun fibers for reli-
able usage in various biomedical applications: cardiac tissue [1–7], muscle tissue [8–10],
nerve tissue [11–15], bone tissue [16,17], wound healing [18,19], etc., and technical appli-
cations and wearable electrical devices [20,21], brain-machine interface [22], biomedical
devices [23,24], field-effect transistors (FET) [25], biosensors [26–28] and electrodes [29–31].
In recent years, highly aligned nanofiber arrays have become some of the most prominent
nanostructures owing to their directionality [32]. Moreover, the highly aligned fibers can
provide directional guidance during the release and growth of proteins, especially in tissue
engineering fields, such as neurite and muscle outgrowth [33].

Fiber diameter has a significant effect on the differentiation and proliferation of
cells. Christopherson et al. [34] suggested that rat neural stem cells (rNSCs) preferentially
differentiate into oligodendrocytes on smaller fiber-diameter substrate, while on larger
fiber-diameter substrate, rNSCs preferentially differentiate into neuronal lineage. This
allows investigators to tailor fiber diameter according to the desired cell response.

Electrical admittivity of human tissue may be predominantly conductive, capacitive,
or a combination of these depending on tissue type, availability of charge carriers, and
frequency of the applied electric field. It is carried out by ions, dipoles, or electrons
as well as holes (semiconductor) [35–37]. As such, electrical activity is a key feature of
many types of tissues and organs, such as skin, heart, muscle, nerve, bone, cartilage, and
cornea [38]. The conductivity can be enhanced by increasing ionic strength or through
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the addition of electroconductive materials, including nanoparticles, nanorods, nanowires,
carbon nanotubes, and intrinsically conductive polymers (ICPs) [3,39–41]. The impact
of electrical inducement on tissues has been known since the 1960s, when Bassett et al.
proved that electrical stimulation affects bone formation [42]. It has been demonstrated that
in-vitro application of electrophysiologically DC fields (1–10 V/cm) and AC currents (10 to
100 mA) governs cellular behavior via interference in migration, cytoskeleton organization,
alignment of neural cells, vascular endothelial, cardiofibroblasts, and myoblast cells and
enhances neurite outgrowth in nerve cells, differentiation, and collagen production [43].
Preliminary studies have confirmed that the electrical properties of implanted scaffolds
must be tuned correctly for the development of physiologically suitable artificial tissues.

The electrospun scaffold provides a “house” for cells and can regulate cellular function
and behavior via cell-scaffold interactions. The mechanical cues that cells experience are
intimately related to the microstructure of the scaffold. A well-known example is that
stem cells differentiate into specific lineages (from neurogenic to osteogenic) depending on
the relevant mechanical properties of the scaffold (from brain to collagenous bone) [44].
Additionally, physical, biochemical, and mechanical stimulations affect cell-material in-
teractions potentially to guarantee the required regeneration [45]. Tissue properties, such
as stiffness and biosignals, determine cellular activity, including adhesion, proliferation,
differentiation, and growth. Thus, a complete understanding of mechanobiology is crucial
to the appropriate use of electrospun fibers in biomedical applications.

The most studied ICPs in the biomedical field are PANi and polypyrrole (PPy). The
dispersibility of PANi and PPy in water is limited, and therefore, their potential use is also
limited [6]. Polythiophene family members are also an attractive alternative for various
biomedical applications, as they exhibit improved dispersibility in water [46]. The common
attributes of ICPs, such as electroactivity, reversible oxidation, low density, adjustable
electrical conductivity (10−11 to 105 S cm−1), hydrophobicity, biocompatibility, and sur-
face topography [3,39–41], are required for tissue engineering and regenerative medicine
applications. However, the combination of conductivity, electroactivity, biostability, and
biocompatibility of ICPs blended with biopolymers (polyethylene oxide PEO, polycapro-
lactone PCL, polylactic acid PLA) provides an appropriate platform for various electrically
stimulated biosensing applications [47]. One-dimensional (1D) materials produced by
electrospinning are superior to conventional film-based planar materials having large
specific surface area and suitable mechanical Young’s modulus (stiffness) [48,49].

Moreover, the ICPs can form a percolating pathway for electrons and encourage
the formation of electron-hole pairs, which can improve the electronic performance of
electrospun conductive fiber composites [50].

The electrical percolation threshold is the critical volume fraction (ϕc) of conductive
filler in electrospun conductive fiber composites (ECFCs) at which the electrical conductiv-
ity increases by several orders of magnitude. Below this critical volume fraction, the ECFCs
cannot form a continuous path, meaning the conductivity of the material is extremely low.
However, conductivity increases above ϕc and gradually tends to a constant value. This is
the conductivity percolation phenomenon. It is important to determine this conductivity
percolation because the materials exhibit an insulator–conductor transition; specifically,
the electrical conductivity rapidly increases when initial conductive channels are formed.
A detailed study was conducted for determining the electrical percolation threshold of
highly oriented electrospun conductive fibers in our recent article [51]. The percolation phe-
nomenon depends on filler–matrix interactions, molar mass of matrix, inherent electrical
conductivity of the filler, and post-annealing conditions.

In this study, the highly oriented electrospun conductive fiber composites (ECFCs) of
PEO, PCL, and PLA blended with doped PANi were fabricated using an electrospinning
process. The electrospinning set-up deploying a proprietary designed rotating wheel col-
lector enabled high orientation of ECFCs [52]. The highly oriented ECFCs were collected
on microscopic glass slides (GS) for density, resistance (conductivity), and elasticity mea-
surements. A new procedure and model equations were developed for the calculation of
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conductivity (σ) and Young’s modulus (E) of ECFCs. The values for electrical percolation
threshold ϕc were determined by fitting the McLachlan general effective media (GEM)
equation to experimental conductivities for all types of fabricated ECFCs. The slope of
the force-strain curve of a bundle of conductive fibers was determined in the linear elastic
region and used for calculating the Young’s modulus. The Young’s moduli as a function
of filler fraction were determined using a density-based model equation. A subsequent
annealing was conducted, varying annealing temperature and time to show effects on
percolation thresholds and Young’s moduli of ECFCs, respectively.

The main motivation of this study was to determine the electrical and mechanical
properties of conductive fibers using the new, simple, and reliable methods considering
fiber dimension and alignment.

2. Results and Discussion
2.1. High Orientation with Tunable Fiber Diameter

The highly aligned electrospun conductive nanofibers of biodegradable polymers
were fabricated successfully using a special collector electrode. The scanning electron
microscopy (SEM) image (Figure 1a) shows that the fibers are straight and highly aligned
in the machine direction MD, while the orientation angles of the fibers were measured
against the vertical direction in the SEM image because the vertical axis of the image was
positioned to coincide with the machine direction. The histogram (Figure 1b) shows that
the fibers are predominantly oriented between 70◦ and 115◦. The highest number of fibers
was collected at an angle of 90◦, and the orientation angle distribution can be described by
a normal (Gauss Fit) distribution.
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Figure 1. Panel (a) shows SEM image with high orientation of electrospun fibers. Panel (b) shows directionality analysis
with the histogram and normal distribution curve (Gauss Fit) of orientation angle. The class width is approximately 5◦. 90◦

is positioned in the middle of the class because the fibers were aligned to the machine direction MD.

A detailed SEM image and statistical analysis was conducted for PEO-PANi:CSA fibers
(Figures 2 and 3), PCL-PANi:CSA fibers (Figure 2) and PLA-PANi:CSA fibers (Figure 2),
respectively. Figures 2 and 3 show the SEM images with their fiber-diameter histograms,
including filler concentration (ϕ%) and average fiber diameter (avr. D) for Case 1–Case 3.
Note that the fiber diameter varies from case to case. In this study, the filler–matrix
interaction and molar mass (M) of matrix are significant factors that affect the fiber diameter
(D) of conductive fibers independently. The effect of filler–matrix interaction on fiber
diameter is apparent from Figure 2, where the filler (PANi) produces variable fiber diameter
with PEO, PCL, and PLA matrices (50 nm < D < 2500 nm) under the same processing
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conditions. However, filler-matrix interaction and filler concentration ratio are responsible
for the variable diameter and have stated in our recent study [51].
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Figure 2. SEM images with their fiber-diameter histograms for Case 1: PEO-PANi:CSA fibers (panels a,b), Case 2: PCL-
PANi:CSA fibers (panels c,d), and Case 3: PLA-PANi:CSA fibers (panels e,f), respectively. The concentration of filler PANi
(ϕPANi ≈ 10%) is the same for all cases, and all fibers are un-annealed.
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Figure 3. The Panels (a–j) represent the SEM analysis for PEO-300 kD, PEO-600 kD, PEO-900 kD, PEO-2000 kD, and
PEO-4000 kD fibers with their fiber-diameter histograms, respectively. The concentration of PEO matrix is fixed up to 2%
(ϕPEO ≈ 2%) in spinning solutions for all molar masses (300–4000 kD). Note: A small misalignment of fibers is an issue
when handling fibers during preparation of samples for SEM measurements.

Moreover, the order of molar mass M of polymer matrix is PEO > PCL > PLA and
the corresponding trend in fiber diameter is observed: 1950 nm > 978 nm > 432 nm for
cases 1, 2, and 3, respectively. Figure 3 shows the trend in fiber diameter for PEO fibers
for different molar masses of PEO (300 kD, 600 kD, 900 kD, 2000 kD, and 4000 kD), with
ϕPEO ≈ 2%. The fiber diameter (D) increases (from 290 nm to 5200 nm) with increasing
molar mass of PEO. Higher molar mass provides higher viscosity of the polymer solution,
which is responsible for thicker fiber diameter when using electrospinning. The statistical
analysis (Figures 2 and 3) show that at least bimodal fiber-diameter distribution is present
as a result of jet splitting during the electrospinning process. The dependency of viscosity
and concentration on the fiber diameter and jet splitting for bimodal distribution has been
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discussed theoretically and experimentally in [53,54], respectively. However, the molar
mass is also among significant factors for determining fiber diameter. The fiber-diameter
(D) range of our highly oriented conductive fibers is approximately 50 nm < D < 5000 nm,
making them desirable for various applications.

2.2. Identifying the Electrical Percolation Thresholds

The general effective media (GEM) equations (Equations (1) and (2) presented by
McLachlan) [55] are used to determine the critical volume fraction/percolation threshold
(ϕc) of ECFCs:

(1− ϕ)· σ1/s
m − σ1/s

σ1/s
m +

(
1−ϕc

ϕc

)
·σ1/s

+ ϕ·
σ1/t

f − σ1/t

σ1/t
f +

(
1−ϕc

ϕc

)
·σ1/t

= 0 (1)

(100− ϕ)·A + ϕ·B = 0

where A = σ1/s
m −σ1/s

σ1/s
m +

(
100−ϕc

ϕc

)
·σ1/s

and B =
σ1/t

f −σ1/t

σ1/t
f +

(
100−ϕc

ϕc

)
·σ1/t

(2)

where ϕ is the volume fraction of filler in solid ECFCs calculated using Equation (S10)
(derived and stated under Supplementary materials in Section S1), σ is the conductivity of
ECFCs, σm and σf are the conductivities of pure matrix and filler, respectively (stated under
Table 1), and ϕc characterizes the percolation threshold. s and t are universal constants [56].

Table 1. Characteristics and properties of materials used.

Materials Molar Mass (Mw) Melting Point (mp) Density (ρ) at 25 ◦C Conductivity (σ)

(kDa) (◦C) (g cm−3) (S cm−1)

PEO

300
600
900
2000
4000

65
65
65
65
65

1.26
1.26
1.21
1.21
1.21

(8.14 ± 0.3) × 10−8

(8.14 ± 0.3) × 10−8

(8.14 ± 0.3) × 10−8

(8.14 ± 0.3) × 10−8

(8.14 ± 0.3) × 10−8

PCL 121 60 1.145 (9.62 ± 1.4) × 10−8

PLA 109 170 1.24 (81.4 ± 0.9) × 10−7

PANi-EB 65 >350 1.101
(1.1 ± 0.3) × 10−9

(pressed pellet, ASTM F8)
PANi:CSA (1:1) ≈ (100 ± 5)

CSA 232.30 Da 200 1.302 -
H2O 18.02 Da - 1.000 at 3.98 ◦C ≤(0.05) × 10−6

CF 119.38 Da - 1.48 ≤(0.02) × 10−6

Et-OH 46.07 Da - 0.816 Non-conductive
DMF 73.09 Da - 0.944 ≤(0.3) × 10−6

To convert volume fraction (ϕ) to volume percent (ϕ%) of filler, Equation (1) can be
re-written as Equation (2);

Graphs are plotted utilizing logarithm of conductivity (log σ) of ECFCs and volume
percent of filler (ϕ%). The GEM equation (Equation (2)), with its universal exponents
s = 0.87 and t = 2 [51], is fitted with adjustable ϕc, σm, and σf on each set of experimental
conductivities of ECFCs in all three cases. Nevertheless, the fit is performed under the
constraints that the conductivities of matrix (σm) and filler (σf) must have constant value
within each case. Thus, in the McLachlan GEM equation-fitting procedure, ϕc is the only
adjustable parameter, while the other parameters (s, t, σm, and σf) are kept constant.

To check the annealing dependence of the conductivity of ECFCs, PEO-PANi:CSA
fibers were annealed at 50, 60, 65, 70, and 75 ◦C for a fixed time interval of 24 h under vac-
uum conditions. The annealing causes lowering the percolation threshold with significant
increase in conductivity of electrospun fibers.

The details of the annealing process are stated under Supplementary materials
in Section S2.
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The resistance R of annealed ECFCs was also measured at room temperature. To
ensure accuracy and precision, each sample of ECFCs was fabricated, annealed, and
measured at least three times.

Three cases were investigated, and all showed a steep increase in electrical conduc-
tivity on reaching a critical concentration, which corresponds to ϕc. Moreover, the GEM
equation was fitted only when electrical conductivity reached flat-plateaus (almost flat-
plateaus) at sufficiently high degree of filler. The three cases are Case 1: PEO-PANi:CSA
fibers, Case 2: PCL-PANi:CSA fibers, and Case 3: PLA-PANi:CSA fibers.

In all three cases, PANi was used as filler with equal weight doping ratio with CSA
(PANi: CSA = 1:1), with conductivity of σf = 100 ± 5 S cm−1. The PEO, PCL, and
PLA are used as matrix in Case 1, Case 2, and Case 3, respectively. The conductivity
of pure matrix (σm) for PEO, PCL, and PLA fibers is determined at room temperature;
σPEO = (8.14 ± 0.3) · 10−8 S cm−1, σPCL = (9.62 ± 1.4) · 10−8 S cm−1, and
σm = (1.39 ± 0.95) · 10−7 S cm−1, respectively.

The maximum concentrations of doped-PANi, spun in Case 1, Case 2, and Case 3 is
approximately 31%, 30%, and 36%, respectively. The GEM fitted curves and values of ϕc
for Case 1–Case 3 are shown in Figure 4. The green arrows in Figure 4 indicate the trend of
decreasing ϕc.
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The variation of electrical conductivity of ECFCs with increasing filler (ICPs) con-
centration was divided into three stages. In the first stage, using very low concentration
ICPs, the electrical conductivity of ECFCs was very low due to the non-completion of a
conductive path between ICP particles (as schematically shown in Figure 5a). In the second
stage, the electrical conductivity of ECFCs increased markedly, as the complete electrically
conductive path formed due to mutual contacts between ICPs (schematic representation
is shown in Figure 5b). The volume fraction of ICPs at this stage is called the percolation
threshold ϕc and calculated by fitting the McLachlan Equation. In the final stage, with the
further addition of ICPs to the polymer matrix, several electrically conductive paths were
formed (as schematically shown in Figure 5c), and the electrical conductivity of ECFCs
further increased gradually, until levelling off.
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Figure 5. Schematic representation of percolation phenomenon within electrospun conductive nanofibers with and
without annealing. Panel (a) elaborates the incomplete continuous path between PANi particles (below the critical
concentration/percolation threshold). Panel (b) shows the completion of continuous path between ICPs particles for
percolation phenomenon (at percolation threshold). Panel (c) shows that continuous pathways increase with increasing filler
concentration. Panel (d) shows the development of continuous path due to generation of additional conductive channels
among PANi particles during annealing. Panel (e) shows continuous paths doubling after annealing. Panel (f) shows
continuous paths doubling due to physical/chemical interactions among PANi, CSA and PEO/PCL/PLA species with or
without the removal of molecules at higher annealing temperature (above 100 ◦C). Panels (g,h) show the freshly prepared
(un-stored) and stored (storage at room temperature for 24 h) conductive fibers. In stored conductive fibers, the water
molecules provide a medium between PANi particles for electron travelling.

2.2.1. Significant Factors in Determining Percolation Thresholds

The various characteristics of filler and matrix, such as interactions/compatibilities
between filler and host polymer and molar mass of the host polymer, have significant
influence on determining percolation threshold of electrospun conductive nanofibers.

Figure 4a shows the comparison between all three cases (Case 1–Case 3) of un-annealed
(used as prepared) ECFCs with their GEM equation-fitted curves. All three cases have
different values of percolation threshold ϕc. This is a direct consequence of different
interactions/compatibilities between filler PANi and polymeric matrices of PEO, PCL, and
PLA and we have already stated in our recent study [51].
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The order of molar mass M of host polymers in these three cases is PEO > PCL > PLA,
and the corresponding trend in ϕc values is observed; 12.9% > 10.6% > 5.73% for Case 1,
2, and 3, respectively (as shown in Figure 4a). In order to go deeper into the analysis of
molar mass dependence with percolation threshold, PEO-PANi:CSA fibers were produced
for different molar masses of PEO. Figure 6a shows the trend in ϕc for PEO-PANi:CSA
fibers for different molar masses of PEO (300 kD, 600 kD, 900 kD, 2000 kD, and 4000 kD).
ϕc increases with increasing molar mass of PEO. The green arrow in Figure 6a indicates the
trend of increasing ϕc (from 7.7 to 21.6%). Higher molar mass leads higher viscosity, which
is responsible for higher incompatibility among fillers and matrices. Moreover, higher
molar mass of host polymer leads to thicker fiber diameter using electrospinning and the
power law correlation between molar mass and fiber diameter is shown in Figure 6b. The
fibers with thicker diameters need higher percolation thresholds for developing continuous
pathways for charge transport and the power law correlation between fiber diamter and
percolation threshold is shown in Figure 6c. However, the direct correlation between molar
mass (M) and percolation threshold ϕc is shown in Figure 6d. The percolation threshold ϕc
has a power law dependency with molar mass M.
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Figure 6. Logarithm of conductivity (log σ) against percentage volume fraction (ϕ%) of PANi for PEO-PANi:CSA fibers.
Panel (a) shows the trend in ϕc for PEO-PANi:CSA fibers for different molar masses of PEO (300 kD, 600 kD, 900 kD,
2000 kD, and 4000 kD). Panel (b) shows the power law correlation between molar mass (M) and fiber diameter (df) with a
coefficient g = 0.13 and exponent h = 1.27. The inset graph shows the linear fit of Log df − Log M. Panel (c) shows a power
law correlation between fiber diameter (df) and percolation threshold (ϕc) with a coefficient m = 1.06 and exponent n = 0.35.
Panel (d) shows a power law dependence of percolation threshold ϕc on molar mass M for PEO-PANi:CSA fibers with
coefficient a = 0.62 and exponent b = 0.43. Panel (e) shows the temperature T dependence on percolation threshold ϕc of
PEO(900 kD)-PANi:CSA fibers. The annealing is conducted at 50, 60, 65, 70, and 75 ◦C for 24 h. The linear relation between
natural logarithm of percolation threshold (Ln ϕc%) and inverse of the annealing temperature (1/T in Kelvin) indicates an
Arrhenius activation process (f).

2.2.2. Post Factors for Determining Percolation Thresholds

Post factors, such as storage time (stored at room temperature 15–25 ◦C and relative
humidity 20–70%) and annealing temperature also have significant influence on determin-
ing percolation thresholds of ECFCs. Due to the high specific surface area of electrospun
fibers and high affinity of polyaniline for water molecules, high inter-grain connectivity is
possible, which ultimately increases electrical mobility in stored ECFCs (schematic repre-
sentation is shown in Figure 5h). Figure 4b–d show that storage has a marginal effect on
percolation threshold ϕc of ECFCs; ϕc decreases with storage time. Moreover, for Case 1,
the storage effect is more pronounced (ϕc decreases from 12.9 to 11%) because PEO is more
hydrophilic than PCL and PLA.

During the annealing process, the molecular chains of host polymers become more
relaxed (expanded), and ICPs (PANi particles) acquire a certain degree of freedom to
interconnect/reorganize themselves. This reorganizing (intermingling) of ICPs generates
more paths and additional conductive channels (as schematically shown in Figure 5d–f),
which are responsible for inter and intra-chain conductivity in annealed ECFCs [57,58].
Nevertheless, annealed ECFCs can transport charge more efficiently than un-annealed.
Therefore, the annealed ECFCs have higher conductivity with lower percolation threshold
ϕc than un-annealed ECFCs [59–62]. The effect of annealing temperature on PEO (900 kD)-
PANi:CSA fibers is shown in Figure 6e. The green arrow in Figure 6e indicates the trend of
decreasing ϕc (from 12.9 to 1.3%). The correlation between percolation threshold ϕc and
temperature (T) is shown in Figure 6f indicating an Arrhenius activation process within
experimental error.

2.3. Identifying the Young’s Modulus

Figure 7a–e show the force-strain curves for PEO-PANi:CSA fibers using 300 kD–4000 kD
molar mass of PEO for 0–31 ϕ% (percent volume fraction) of PANi, respectively. Figure 7f
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shows the trending curves of Young’s modulus/elasticity (E) for different molar mass of
PEO as a function of ϕ% of PANi. The elasticity E of PEO-PANi:CSA fibers increases to
maximum Young’s modulus Emax (as shown within the dotted circles in Figure 7f) and
then decreases as a function of ϕ% of PANi for each molar mass of PEO. The decreases
in mechanical strength after the optimal concentration of PANi are expected due to the
consequences of phase separation between polymeric matrix PEO and filler PANi particles.
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Figure 8a–c show the force-strain curves for PEO (900 kD)-PANi:CSA fibers using
50–70 ◦C annealing temperature for 0–31 ϕ% of PANi, respectively. Figure 8d shows the
trending curves of E for un-annealed (25 ◦C) fibers and for 50, 60, and 70 ◦C annealing
temperatures as a function of ϕ% of PANi, respectively. On annealing, E also increases
to Emax (as shown within the dotted circles in Figure 8d), then decreases as a function of
ϕ% of PANi for each annealing temperature. The annealing after optimal concentration of
filler particles is also responsible for the initiation of crack growth behavior, which leads to
lower mechanical strength of conductive fibers.
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Figure 8. Panels (a–c) show the force-strain curves for PEO (900 kD)-PANi:CSA fibers using 50, 60, and 70 ◦C annealing
temperatures, respectively. The percentage volume fraction (ϕ%) of PANi varies from 0–31%. The bold double red
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Factors Affecting Young’s Modulus

The mechanical properties of fibers (especially elasticity) are influenced by many
factors, but filler concentration, molar mass, and post annealing are the most significant in
the present study. The Young’s modulus E of PEO-PANi:CSA fibers increases to an optimal
concentration of filler PANi (as shown in Figure 7f for each curve with its molar mass)
because the interactions of polymeric molecules (PEO matrix) with the surface of the filler
particles lead to restricted mobility of the attached molecules resulting in an increase in
elasticity due to longer retardation times.

The elasticity of conductive electrospun fibers (PEO-PANi:CSA fibers) is also strongly
affected by its molar mass of host polymer/matrix (PEO). The trending curves of PEO-
PANi:CSA fibers (Figure 7f) show that the fibers with the lower molar masses have higher
E values than higher molar masses of PEO. The reason is that the lower molar mass
produces thinner fibers, which are more stretchable and oriented in the electrospinning
process due to the lower viscosity. Thus stretching causes high chain orientation along the
fiber direction [63,64], which is responsible for higher linear elastic regime (stiffness) in
force-strain curves, which is directly dependent on E.
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The post-annealing process may cause some liberation of residual solvents and re-
action between fillers, dopants, and polymer matrices, which could liberate molecules
(water/solvent) as by-products (as shown schematically in Figure 5f). The loss of solvent
reduces the weight of fibers, which are directly dependent on Young’s modulus. More-
over, the residual solvents act as a plasticizer, which is responsible for low stiffness of
un-annealed nanofibers. The removal of plasticizers (solvents) during annealing also in-
creases the degree of crystallinity, which ultimately leads to higher elasticity in conductive
fibers [51]. However, Figure 8d shows that Young’s modulus E of PEO-PANi:CSA fibers
increases as long as the annealing temperature does not deteriorate the polymer.

The behavior of maximum Young’s modulus Emax with molar mass M and annealing
temperature T are shown in Figure 9a,b, respectively. Figure 9a shows that Emax has a
negative exponential correlation with molar mass M of matrix PEO for PEO-PANi:CSA
fibers. Emax tends to Eo = 87 MPa for M→ 0 and E∞ = 46 MPa for M→ ∞, respectively.
Figure 9b shows the correlation between Emax and temperature T. Emax demonstrates
nearly sigmoidal behavior, which ends in a plateau as long as the annealing temperature
does not deteriorate the polymer. Moreover, the removal of molecules may lead to some
physical/chemical bonding among fillers and matrices for improving the conductivity and
dimensional stability.
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2.4. Comparative Study for Applications

The comparative studies are shown in Figures 10 and 11, comparing the conductivi-
ties and Young’s moduli (elasticity) of our fabricated ECFCs with other conductive fibers
that have been reported on in the literature for various biomedical applications, such as
cardiac, nerve, muscle tissues, wound healing, etc., and technical applications, such as
biosensors, biomedical devices, electrodes, field-effect transistor, brain-machine interface,
and wearable electrical devices. It is significant that the electrical conductivity and mechan-
ical strength (Young’s modulus/stiffness) of our fabricated ECFCs are suitable for a wide
range of biomedical and technical applications. Note that our fibers are highly oriented
(aligned), while other fibers described in the literature are randomly oriented. Moreover,
the fiber-diameter range is a basic requirement for the appropriate usage of fibers in various
applications. Our fabricated conductive fibers have a widely variable fiber-diameter (D)
range from a few tens of nanometers to several micrometers (50 < D < 5000 nm). The
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combination of high orientation, tunable diameter, tunable conductivity, tunable elasticity,
and biodegradability makes our nanofibers superior to the fibers described to date and
highly desirable for various biomedical and technical applications.
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Figure 10. The comparison of conductivities of conductive fibers in this study (PEO-PANi:CSA fibers, PCL-PANi:CSA fibers,
and PLA-PANi:CSA fibers) and stated in the literature for various tissue and technical applications. The PEO-PANi:CSA
fibers contain conductive fibers for different molar masses of PEO (300–4000) kD. The PEO (900 kD)-PANi:CSA fibers were
annealed at 50, 60, and 70 ◦C for 24 h.
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Figure 11. The comparison of Young’s moduli of conductive fibers in this study (PEO-PANi:CSA fibers with 300 kD–4000
kD molar mass of PEO) and stated in the literature for various biomedical applications. The PEO (900 kD)-PANi:CSA fibers
were annealed at 50, 60, and 70 ◦C for 24 h.

3. Materials and Methods
3.1. Materials

PEO and PCL purchased from Merck (Sigma-Aldrich, Baden-Württemberg, Germany)
and PLA containing 2% D-lactic acid and 98% L-lactic acid (Nature Works, Minnetonka,
MN, USA) were used. The order of molar mass for PEO, PCL, and PLA is PEO > PCL > PLA
(values are provided under Table 1) and these high molar mass biopolymers were used
as polymer matrix. The electrical conductivity of pure PEO, PCL, and PLA fibers was
measured and used as conductivity of pure polymer matrix (σm) in this study (values
are shown in Table 1). The ICPs, such as polyaniline emeraldine base (PANi-EB) doped
with (+)-Camphor-10-sulfonic acid (CSA), abbreviated to (PANi:CSA), was used as filler
and purchased from Merck (Sigma-Aldrich). PANi was doped with CSA in equal weight
ratio (PANi:CSA = 1:1), and the electrical conductivity of doped PANi filler is equal to
σf, and its value is stated in Table 1. The solvents ethanol (Et-OH) denatured ≥ 99.8,
N,N-dimethyl formamide (DMF) ≥ 99.8, and chloroform (CF) were purchased from Merck
(Sigma-Aldrich) Germany. The characteristic properties of the used materials, such as
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weight average molar mass (Mw), values of melting point (mp), boiling point (bp), density
(ρ), and conductivity (σ), are shown in Table 1.

3.2. Preparation of Spinning Solutions

A schematic for the procedure for preparation of spinning solutions is shown in
Figure 12. The polymeric matrix solution and filler solution/dispersion with their respec-
tive solvent systems were prepared separately in weight/weight percentage (w/w %) via
step 1 and step 2, respectively. The independently prepared matrix solution and filler
solution were mixed in different volume ratios (step 3). The procedure for conversion of
(w/w %) to v/v % (volume/volume percentage) and derivation of equations for calculating
the volume fraction of filler (ϕ) and density (ρc) of dried electrospun conductive fiber
composites (ECFCs) are explained in detail under Supplementary materials in Section S1.
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3.3. Electrospinning Set-Up

The electrospinning set-up (schematic shown in Figure 13) consisted of three main
parts: a syringe with feeding pump delivering the spinning solution, a high-voltage (HV)
power supply (0–60 kV), and a rotating collector for the fibers, which was purpose-built at
the University of Erlangen–Nuremberg. A 3D model and its geometrical diagram of the
rotating collector are shown in Supplementary materials in Section S3, respectively. The
rotating collector consists of two circular terminal plates equipped with circular notches.
The notches enable mounting of equally spaced horizontal bars. The bars are held in place
by screws. In this study, sixteen bars were used. The spacing between two adjacent bars is
25 mm. The rotating collector has a diameter of 21.2 cm. It can be used up to a speed of
1000 rpm, which corresponds to a tangential velocity of approximately 11 m/s. The matrix
filler solutions were poured into 10-mL glass syringe with a blunt 20-gauge stainless steel
nozzles with an inner diameter of approximately 0.61 mm and flat tip. The high-voltage
power supply (60 kV, DC Linari Engineering S.r.l., and Valpiana, Italy) was used to produce
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a direct current with the positive polarity on the metallic nozzle, while the collector was
grounded. A feeding pump (Linari Engineering S.r.l., and Valpiana, Italy) was used to
provide a constant flow rate of the spinning solution. The processing parameters were
varied from case to case, and their ranges are: voltage (5–40 kV), flow rate (0.1–4 mL/h),
tip-collector distance (5–25 cm), and collector rotation (10–700 rpm). At the optimized
processing parameters, the viscoelastic spinning solution was ejected from the spinneret
and stretched in the form of a charged jet towards the grounded collector. During the
jet’s flight, stretching occurred due to electrical forces, while viscous forces counteracted
as discussed in [53] theoretically and in [54] experimentally. The displacement of jets
from spinneret to collector and the evaporation (almost complete) of solvent led to solid
electrospun conductive fiber composites (ECFCs) on the rotating wheel electrode. These
solid ECFCs were collected and transferred onto a glass slide (GS) for further study. A
detailed electrospinning theory can be found in the works of Schubert [53,54]
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Figure 13. Schematic of electrospinning set-up and procedure for measurement of conductivity and mechanical strength of
electrospun conductive fibers. Panels (a–c) show the feeding pump, high-voltage (HV) power supply, and rotating wheel
collector, respectively. The wheel covered with electrospun fibers is aligned to machine direction (MD). Panels (d–f) show
the glass slide (GS), two-point probe set-up, and Ohmmeter for resistance R measurement, respectively. Panels (g,h) show
annealing process and resistance R measurement of annealed fibers, respectively. Panels (i–l) show the rolling of fibers
into a bundle, clamping of a fiber bundle (within red marks), SEM image of a fiber bundle, and testing of a fiber bundle,
respectively, using single-fiber tensile testing machine (m). Panels (n,o) show fiber bundles on SEM holders and weighing
of tested sample within marked length, respectively.

3.4. Electrical Conductivity Measurement

An equation was derived to calculate the conductivity (σ) of ECFCs. The highly
aligned fibers were collected on microscopic glass slides (GS) for the measurement of
resistance R using an ohmmeter (Keithley 2400). Two opposite sides of GS were coated
with silver-ink paste to ensure contact with the electrodes. Complete drying of the paste
formed a solid coating layer, as shown in schematic Figure 13.
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First, consider a single fiber of length L and radius r, which has cross-sectional
area Ae = πr2 (as shown in schematic Figure 14). The fiber has uniform radius along
its whole length.
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derivation of equations of electrical conductivity (σ) and elastic Young’s modulus (E) of ECFCs, respectively.

At constant temperature, the resistance of a single fiber Re were calculated using Equation (3):

Re =
µe· L
πr2 (3)

where µe is resistivity of a single fiber. For n fibers on GS R were calculated using Equation (4):

R =
µ· L
nπr2 (4)

where R and µ are total resistance and resistivity of n fibers, respectively.
As the volume of n cylindrical fibers on GS (V = nπr2L) were calculated using Equation (5):

nπr2L =
Wc

ρc
(5)

where Wc and ρc are the final weight and density of dried ECFCs.
Combining and re-arranging Equations (4) and (5) were represented in Equation (6):

R =
µ· L2· ρc

Wc
(6)

Since conductivity σ is the reciprocal of the resistivity µ were calculated using Equation (7):

σ =
1
µ
=

L2· ρc

R ·Wc
(7)

Using Equation (7), the electrical conductivity σ of ECFCs can be calculated using
the value of R, which is measured using a two-point probe method for a constant voltage
(1 V) at room temperature, Wc measured before applying the silver-ink paste, L as length of
ECFCs (equal to the length of a single fiber), and ρc (density of dried ECFCs) calculated from
Equation (S14), which is derived and stated under Supplementary materials in Section S1.

3.5. Mechanical Strength Measurement

The single-fiber tensile test was performed to determine the mechanical properties
of ECFCs. The schematic of the mechanical testing process and photo of the single-fiber
tensile testing machine (Vibrodyn 400, Lenzing instruments GmbH & Co. KG, Gampern,
Austria) are shown in Figure 13. Under the conditions of 200-mg load and 10-mm clamping
length within the VPN program, the fiber bundle was stretched at a speed of 10 mm/min
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until it broke, providing its force-strain curve. Three replicates were carried out for each
kind of fiber. Before the tensile testing, the tensile positions were marked on each fiber
bundle. After testing, the fiber bundle was cut off along the marks. The weight of each
fiber bundle (within marked length) was measured.

An equation was derived to calculate the elastic Young’s modulus (E) of ECFCs. The
highly aligned fibers were collected on the glass slide (GS) and rolled to a bundle of
fibers (as shown in schematic Figure 14). The SEM images of a fiber bundle with different
magnifications have stated under Supplementary materials in Section S4.

Considering a bundle of n fibers with length L and radius r, which has cross-sectional
area A = nπr2:

Under optimal conditions, the Young’s modulus of a fiber (E) were calculated as
Equations (8)–(10):

E =
σ

ε
(8)

σ =
F
A

(9)

ε =
∆L
L

(10)

where σ, ε, F, A, ∆L, and L are stress, strain, force, cross-sectional area, change in length,
and length of sample, respectively.

As volume of a bundle of fibers (V = nπr2L) were calculated as Equation (11) and (12):

V =
Wc

ρc
(11)

V = A·L (12)
where Wc and ρc are the final weight (within red marks) and density (as calculated using
Equation (S14)) of bundle fiber, respectively.

Combining and re-arranging Equations (8)–(12), were shown as Equation (13) and (14):

E =
F·L
∆L
·ρc·L

Wc
(13)

E = k· ρc ·L
Wc

where k = F·L
∆L

(14)

where k is the slope of the force-strain curve in the linear elastic region.
The Young’s modulus (E) of a bundle of fibers can be determined using Equation (14).

4. Conclusions

Highly oriented electrospun conductive fibers with tunable diameter are successfully
fabricated using a special rotating collector electrode and allow an accurate determination
of electrical conductivity and Young’s modulus (E). The fiber diameter is tunable with
altering filler-matrix interactions and molar mass of host polymer.

The electrical percolation threshold (ϕc) is determined by fitting the McLachlan GEM
equation to the experimental conductivities of conductive electrospun nanofibers. Higher
molar mass produces thicker fiber diameter, and thicker fibers require higher ϕc to develop
continuous pathways for charge transport. The high specific surface area of electrospun
fibers and high affinity of polyaniline (PANi) for water molecules cause the high inter-grain
connectivity and electrical mobility for lowering ϕc in stored conductive fibers. During
the annealing process, the molecular chains of host polymers become mobile, and PANi
particles acquire a certain degree of freedom to reorganize themselves into additional
conductive channels for lowering ϕc in conductive fibers.

The mechanical properties of fibers are influenced by filler volume fraction (ϕ), molar
mass, and post-annealing process. The Young’s modulus E increases to its maximum (Emax)
and then decreases as a function of filler fraction. The elasticity of conductive electrospun
fibers is strongly affected by molar mass of host polymer: the lower the molar mass, higher
the elasticity. The lower molar mass produces thinner fibers, which are more stretchable
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and oriented in the electrospinning process due to the lower viscosity. Thus stretching
causes high chain orientation along the fiber direction, which is responsible for higher
elasticity. The removal of plasticizers (solvents) during the annealing process increases the
degree of crystallinity, which ultimately leads to higher elasticity in conductive fibers. The
maximum Young’s modulus Emax exhibits a negative exponential correlation with molar
mass of host polymer. The correlation between Emax and temperature shows sigmoidal
behavior, which ends in a plateau as long as the annealing temperature does not deteriorate
the polymer.

A trade-off is formed between conductivity and mechanical strength because, on
increasing the amount of conductive filler, at first both conductivity and elasticity increase,
but the elasticity decreases after optimal filler fraction. Moreover, the fiber diameter,
conductivity, and mechanical strength of our fabricated conductive fibers are suitable for a
wide range of biomedical and technical applications. The utilization of conductive fibers as
nano/micro-carriers in batch and continuous bioprocessing will be evaluated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221910295/s1: Section S1, Development of procedure and derivation of equations
for calculating volume fraction of filler (ϕ) and density (ρc) of solid electrospun conductive fiber
composites (ECFCs); Section S2, Annealing process for conductive fibers; Section S3, 3D-model of
rotating wheel collector electrode; Section S4, SEM images of a fiber bundle.
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