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Exercise evokes sympathetic activation and increases blood pressure and heart rate
(HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic
discharge are central command and the exercise pressor reflex (EPR). The former
suggests that a volitional signal emanating from central motor areas leads to increased
sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle
which contributes significantly to the regulation of the cardiovascular and respiratory
systems during exercise. The afferent arm of this reflex is composed of metabolically
sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately
group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated
afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during
exercise. In heart failure, the sympathetic activation during exercise is exaggerated,
which potentially increases cardiovascular risk and contributes to exercise intolerance
during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for
preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF
patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF
increases exercise capacity, reduces sympatho-excitation and improves cardiovascular
function in CHF animals and patients. In this review, we will discuss the effects of ExT
and the mechanisms that contribute to the exaggerated EPR in the CHF state.
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INTRODUCTION
A hallmark of patients suffering from chronic heart failure (CHF)
is exercise intolerance characterized by fatigue and shortness of
breath during exercise (Francis, 1985; Cohn, 1990; Sullivan et al.,
1990; Wilson, 1995). The degree of exercise intolerance is impor-
tant to characterize in patients with CHF, since it has implications
for morbidity, disability, and prognosis, and is often the reason
a patient seeks medical attention. Originally, the explanation for
exercise intolerance in CHF appears to be mainly due to inad-
equate delivery of oxygen from the failing heart to the working
muscle. However, evidence suggests that the degree of exercise
intolerance is not directly related to the degree of cardiac dys-
function (Franciosa et al., 1981; Sullivan and Hawthorne, 1995).
Rather, it is generally thought that the factors in the periph-
eral musculature may play a critical role in mediating exercise
intolerance. These peripheral factors include abnormalities in
endothelial function, vasodilatory capacity, changes in skeletal
muscle structure, oxidative enzyme activity and a reflex originat-
ing in skeletal muscle (termed “exercise pressor reflex,” EPR) that
contributes significantly to the regulation of the cardiovascular
and respiratory function during exercise (Myers and Froelicher,
1991; Sullivan and Hawthorne, 1995; Myers et al., 1999; Piepoli
et al., 1999). In CHF patients, this reflex is exaggerated and
causes extreme activation of the sympathetic nervous system
even during moderate exercise. Exaggerated sympathetic activa-
tion by the EPR during exercise likely restrains muscle blood flow,
arteriolar dilatation, and capillary recruitment, leading to under
perfused areas of working muscle. In addition to vasoconstriction

in skeletal muscle, hyperventilation is another consequence of
the exaggerated EPR during exercise, both of which accentu-
ates the symptoms of exercise intolerance. It is important to
understand how the exaggerated EPR contributes to the exer-
cise intolerance in CHF patients. Furthermore, the exaggerated
sympatho-excitation that occurs during exercise also increases the
risk of experiencing myocardial ischemia, myocardial infarction,
cardiac arrest, and/or stroke during or immediately after exercise
in these patients.

As exercise intolerance and exaggerated sympatho-excitation
are important clinical features in these patients, therapeutic inter-
ventions are largely aimed at improving these symptoms. A
particular interest has recently been directed toward the exagger-
ated EPR in CHF (Piepoli et al., 1996, 1999; Khan and Sinoway,
2000; Piepoli, 2006; Wang et al., 2010b, 2012). Once thought to be
contraindicated in patients with CHF, long-term regular exercise
training (ExT for at least 8 weeks) as a non-pharmacological treat-
ment for CHF is now commonly employed in these patients, and
has been shown to increase the quality of life as well as survival
(Belardinelli et al., 1999; Piepoli et al., 2004; Smart and Marwick,
2004; Jankowska et al., 2007; Wisloff et al., 2007; Flynn et al.,
2009; O’Connor et al., 2009). The beneficial effects of ExT include
improved autonomic balance, reduced neurohumoral activation,
increase in exercise capacity and ameliorated myopathy in CHF
patients and animals (Pliquett et al., 2003; Roveda et al., 2003;
Rondon et al., 2006; Jankowska et al., 2007; Mueller, 2007b;
Negrao and Middlekauff, 2008). Adequate discussion of the ben-
eficial effects of ExT in CHF is a large endeavor and beyond the
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scope of the current review. Therefore, this review will be nar-
rowed and focus on the role of ExT in improving the exaggerated
EPR in CHF. Furthermore, we will also discuss the mechanisms
underlying the beneficial effect of ExT on the exaggerated EPR
in CHF.

SYMPATHETIC ACTIVATION DURING EXERCISE
During exercise the sympathetic nervous system is activated,
which results in an increase in arterial pressure (AP), heart
rate (HR), and peripheral vasoconstriction, especially to non-
exercising tissues. Two theories have been postulated to explain
the increases in cardiovascular and ventilatory function during
exercise: central command and the EPR. Central command is
a mechanism whereby neural motor and sympathetic activation
occur in parallel, i.e., a volitional signal from the motor cor-
tex or subcortical nuclei, responsible for recruiting motor units,
activate cardiovascular control areas in the brainstem to mod-
ulate sympathetic and parasympathetic activity during exercise
(Goodwin et al., 1972; Eldridge et al., 1985). It has been sug-
gested that this system is linked to skeletal muscle metabolic needs
via parallel rostral brain activation of motor and autonomic cen-
ters. These autonomic adjustments elicit changes in ventilation,
HR and AP proportional to the intensity of exercise. The EPR
is a peripheral neural reflex originating in skeletal muscle which
contributes to the regulation of the cardiovascular and respira-
tory systems during physical activity. This reflex is essential for the
maintenance of adequate blood perfusion to the exercising mus-
cle, thereby matching the metabolic demands that exercise creates
(McCloskey and Mitchell, 1972).

THE EXERCISE PRESSOR REFLEX
Although several reviews have been published describing the EPR
(Sinoway and Li, 2005; Smith et al., 2006a; Murphy et al., 2011),
a brief synopsis is warranted here. Alam and Smirk (1937) were
the first to offer evidence suggesting that chemical byproducts of
muscle contraction could evoke a pressor reflex. These authors
demonstrated that dynamic calf exercise evoked increases in BP
and HR that were maintained by circulatory arrest at the end of
exercise. These findings provided the earliest evidence that the
accumulation of metabolites in the contracting muscle elicited the
EPR. A study by McCloskey and Mitchell (1972) demonstrated
that anodal blockade of the L7–S1 dorsal roots of the cat blocked
thickly myelinated group I and II afferents but did not affect the
cardiovascular responses to contraction whereas topical applica-
tion of a local anesthetic to the dorsal roots did not block group
I and II afferents but did abolish the cardiovascular responses
to contraction, indicating that activation of this reflex is medi-
ated by stimulation of thinly myelinated group III and IV but not
thickly myelinated group I and II afferents. Studies by Kaufman
et al. (1983, 1984) demonstrated that group III fibers in the triceps
surae muscle of the cat are predominantly mechanically sensitive,
whereas unmyelinated group IV muscle afferents are chemically
sensitive.

Anatomically, group III nerve endings terminate in the col-
lagenous connective tissue, the endoneurium of the triceps surae
and calcaneal tendon of the cat, which are rapidly excited by
mechanical deformation of their receptive field and then quickly

adapted during the steady state period of muscle contraction
(Kniffki et al., 1978; Kaufman et al., 1983, 1984; Andres et al.,
1985; Mense and Meyer, 1985; Hayward et al., 1991; Adreani et al.,
1997; Adreani and Kaufman, 1998). As such, receptors associ-
ated with these afferent fibers are termed “mechanoreceptors,”
although a few are responsive to chemical stimuli. On the other
hand, sensory receptors associated with group IV afferent neu-
rons are located on unencapsulated nerve endings that terminate
within the walls of capillaries, venules, and lymphatic vessels of
skeletal muscle, which are predominately excited by the accumu-
lation of metabolites produced by contracting muscle (Kaufman
et al., 1983; Andres et al., 1985). With regard to the time needed
for accumulation of metabolites, activation of group IV affer-
ents are always delayed (5–20 s) following muscle contraction
(Kaufman et al., 1983; Mense and Meyer, 1985). Sensory receptors
associated with group IV afferents are termed “metaboreceptors”
although a few are also responsive to mechanical stimuli.

The first site of synapse for most muscle group III and IV
afferents is the dorsal horn of the spinal cord, specifically Rexed’s
laminae I, II, V, and X (Kalia et al., 1981; Mense and Craig, 1988;
Li and Mitchell, 2002; Wilson et al., 2002). Although the spe-
cific pathway remains unknown, muscle afferents project from the
dorsal horn to the brain stem along a path that includes the dor-
solateral sulcus and the ventral spinal cord (Iwamoto et al., 1984;
Kozelka and Wurster, 1985; Dykes and Craig, 1998). From the
dorsal horn, ascending projections activate cells in the medulla.
Above the medulla, the central integration of the pressor reflex is
complex, involving multiple regions. However, evidence suggests
that full expression of the EPR at least requires an intact ponto-
medullary region of the brainstem (Iwamoto et al., 1985). Those
nuclei responsive to EPR stimulation have been described in the
nucleus tractus solitarius (NTS), rostral ventral medulla, caudal
ventrolateral medulla, lateral tegmental field, nucleus ambiguus,
and the ventromedial region of the rostral periaqueductal grey
(Iwamoto et al., 1982; Iwamoto and Kaufman, 1987; Li et al.,
1997; Li and Mitchell, 2000). From the medulla, descending pro-
jections synapse on sympathetic pre-ganglionic neurons in the
intermediolateral cell columns (IML) of the spinal cord and then
project to the synapse at the paravertebral sympathetic chain
ganglia, and finally innervate the heart and vasculature. The
EPR-mediated adjustments in parasympathetic and SNA result
in increases in cardiac contractility, SV, HR, and BP (Longhurst
and Mitchell, 1979; Murata and Matsukawa, 2001; Koba et al.,
2006; Wang et al., 2010b). It is through the pathways, outlined in
Figure 1, that skeletal muscle reflexes contribute to cardiovascular
and respiratory regulation during physical activity.

ABNORMALITIES OF EXERCISE PRESSOR REFLEX IN CHF
There is general agreement that the EPR is exaggerated in humans
with CHF and that these exaggerations correlate with morbidity
and mortality as well as with decreased left ventricular (LV) func-
tion (McClain et al., 1993; Middlekauff et al., 2000, 2001; Piepoli
and Coats, 2007; Piepoli et al., 2008). The emerging evidence
describing dysfunction of the reflex with the advent of CHF has
been highlighted in several recent reviews (Sinoway and Li, 2005;
Smith et al., 2006a; Garry, 2011; Murphy et al., 2011). Despite
this, defining the mechanisms that mediate the abnormal EPR
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FIGURE 1 | Schematic illustrating the proposed pathway for the reflex

cardiovascular and respiratory changes evoked by skeletal muscle

contraction. Dashed lines indicate the afferent limb of this reflex pathway
whereas solid lines points out the efferent limb. See text for additional
discussion.

in CHF patients has proven to be difficult. For example, studies
in human subjects have not been able to clearly discern whether
peripheral primary afferent neurons or central areas that process
the EPR are responsible for the exaggerated EPR that is observed
in CHF. In addition, the literature surrounding the issue defining
the contribution of metabo- or mechano-reflex to the exagger-
ated EPR in CHF patients is conflicted. A great deal of controversy
exists regarding the contribution of the metabolic component of
the EPR (metaboreflex) because its activity has been reported
to be both enhanced (Piepoli et al., 1996, 2008; Piepoli and
Coats, 2007) and reduced (Sterns et al., 1991; Middlekauff et al.,
2000) in response to exercise in CHF patients. Based on mea-
surements of ventilation, the studies of Piepoli et al. (Piepoli
et al., 1996, 2008; Piepoli and Coats, 2007) showed that CHF
patients had an overactive metaboreflex compared with control
subjects. However, based on measurements of blood pressure
or sympatho-excitatory responses to post-contraction circulatory
arrest (PCCA, an isolated activator of the muscle metaboreflex),
the studies of Sterns et al. (1991) and Middlekauff et al. (2000)
showed that metaboreflex function is blunted rather than exag-
gerated in this disease state. The discrepant conclusions that the
metaboreflex is blunted or exaggerated in CHF appear to be
due to different measurements of physiologic parameters such
as ventilation, blood pressure and sympathetic nerve activity. In
addition, a central command mechanism, which cannot abso-
lutely be excluded in human studies, may also contribute to
this discrepant conclusion. Compared to studies concerning the

metaboreflex in CHF patients, the studies focusing on the role
of the mechanoreflex in mediating the exaggerated EPR is gen-
erally consistent, suggesting that an overactive mechanoreflex
contributes to the exaggerated EPR in CHF patients. McClain
et al. (1993) reported that limb congestion, a common feature
of congestive CHF, increases the sympathetic nerve response to
handgrip exercise. Moreover, subsequent studies from the same
laboratory demonstrated that limb congestion could sensitize
muscle mechanoreceptors and in the process increase synchrony
between contraction and sympathetic discharge (Mostoufi-Moab
et al., 2000). Middlekauff et al. (2001) suggesting that reflex renal
vasoconstriction is exaggerated in both magnitude and duration
during dynamic exercise in HF patients. Moreover, subsequent
studies from this laboratory have shown that the mechanoreflex
is exaggerated in humans suffering from CHF which is most likely
due to sensitization of the mechanoreceptor afferents by cyclooxy-
genase products (Middlekauff and Chiu, 2004; Middlekauff et al.,
2004).

In animal studies, using a decerebrate rat model, Smith et al.
(2003, 2005a,b) conducted a series of convincing experiments
designed specifically to examine EPR function in CHF and to
determine the contribution of the muscle mechanoreflex and
metaboreflex to the EPR in this disease. Their findings suggest
(1) that the overactive cardiovascular response to exercise in CHF
is mediated, in part, by an exaggerated EPR; (2) that the mus-
cle metaboreflex is blunted and that the muscle mechanoreflex
is enhanced in CHF; (3) that the mechanoreflex mediates the
exaggerated EPR activity observed in CHF; (4) that the decreased
sensitivity of group IV afferent neurons is important to the devel-
opment of EPR hyperactivity. In parallel studies, Li et al. (2004)
also reported a similar finding as that of Smith et al. (2003,
2005a,b), showing that the muscle metaboreflex control of car-
diovascular activity is blunted and that the muscle mechanoreflex
is enhanced in rats with large myocardial infarcts. Subsequent
studies from the same laboratory (Koba et al., 2008) showed that
renal and lumbar sympathetic nerve responses to muscle con-
traction were larger in CHF rats than in healthy control rats,
indicating that the EPR contributes to the exaggerated sympatho-
excitation during exercise. Recently, using the technique of single
fiber recording, we (Wang et al., 2010a) demonstrated that the
responses of group III afferents to contraction and stretch were
enhanced in rats with dilated cardiomyopathy (induced by lig-
ation of the left anterior descending coronary artery) whereas
the responses of group IV afferents to contraction and cap-
saicin were reduced in these rats compared to sham-operated rats
(Figures 2 and 3), which provide direct evidence that the exag-
gerated EPR in CHF is, at least in part, due to the peripheral
sensitization of muscle mechanically sensitive afferents. However,
the EPR is a multisynaptic reflex involving the following: (1)
the receptors activating the afferent fibers; (2) primary affer-
ent neurons, (3) second-order spinal neurons, (4) neurons in
medullary centers, (5) sympathetic and parasympathetic efferent
neurons, and (6) the end organs that the efferent fibers inner-
vate. Whether other parts of this reflex arc are also involved in the
genesis of the exaggerated EPR in the CHF state remains unclear.
Further studies are worthy of being carried out to address this
issue.
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FIGURE 2 | Representative recordings showing the discharge of group III

(A–D) and IV (E–H) afferents in response to static contraction induced by

electrical stimulation of L5 ventral root in sham (Group III in panel (A):

CV, 5.2 m/s; Group IV in panel (E): CV, 0.8 m/s) and CHF rats (Group III in

panel (B): CV, 7.0 m/s; Group IV in panel (F): CV, 0.5 m/s). (C) and (D), 5-s

recording of two group III fibers discharge derived from the broken-lined box
in (A) and (B), respectively. (G) and (H), 6-s recording of two group IV fibers
discharge derived from the broken-lined box in (E) and (F), respectively.
[Reprinted from Wang et al. (2010a). Copyright @ 2010 The Physiological
Society. Used with permission.]
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FIGURE 3 | Mean data showing the baseline discharge of group III and

IV afferents in sham and CHF rats (A) and the responses of group III

and IV afferents to static contraction induced by electrical stimulation

of L5 ventral root in sham and CHF rats (B). Mean data showing the
discharge of group III and IV afferents in response to two levels of passive

stretch (C) and two doses of capsaicin (D) respectively in sham and CHF
rats. Data are expressed as Mean ± SE. ∗P < 0.05 vs. sham, †P < 0.05
vs. lower level of stretch or lower dose of capsaicin. [Reprinted from Wang
et al. (2010a). Copyright @ 2010 The Physiological Society. Used with
permission.]

EFFECT OF ExT ON THE EPR IN HEALTH AND CHF
Over the past decade numerous clinical trials and small ran-
domized studies have demonstrated that long-term regular exer-
cise is safe in stable CHF patients and increases the quality
of life as well as survival (Belardinelli et al., 1999; Khan and
Sinoway, 2000; Jankowska et al., 2007; Mueller, 2007a; Wisloff
et al., 2007). Therefore, ExT has been recommended as a non-
pharmacological treatment for CHF, ischemic heart disease and
hypertension by the American Heart Association (Fletcher et al.,
1996; Halbert et al., 1997; Fletcher et al., 2001; Pina et al., 2003).
Furthermore, several clinical and experimental studies have also
suggested that ExT effects EPR function in health and disease
states. However, the mechanisms underlying the effect of ExT
on EPR function in both health and disease remain largely
unknown.

EFFECT OF ExT ON THE EPR IN HEALTH
An earlier study by Sinoway et al. (1996) reported that 4-week
forearm training reduced sympathetic responses and mean AP
rises during rhythmic voluntary handgrip exercise in normal sub-
jects. Following study from this group (Mostoufi-Moab et al.,
1998) demonstrated that forearm exercise conditioning paradigm
also attenuated the pressor response to ischemic rhythmic exercise

and decreased lactate accumulation and venous pH values, sug-
gesting that muscle metaboreceptor afferent activity may be
reduced because of a decrease in metabolite accumulation in the
trained muscle. However, during such voluntary exercise, it has
been difficult to distinguish between possible training-induced
changes in central command, and the different muscle affer-
ent inputs to the response. Therefore, Fisher and White (1999)
used two exercise modes to re-evaluate the effects of ExT on
central command and the EPR in healthy subjects. The first
exercise mode was voluntary muscle contraction, which poten-
tially involves central command as well as muscle mechanore-
ceptor and muscle metaboreceptor stimulation, and the second
was electrically evoked contraction (involuntary) at the same
force level. In this instance, central command was removed but
muscle receptor activity should remain at the same level as
in the voluntary exercise mode. Both forms of exercise were
followed by PCCA where muscle metaboreceptor activity pre-
dominates. These data demonstrated that 6-week calf muscle
training had no effect on the muscle afferent input to the pres-
sor response to electrically evoked contraction in the untrained
limb, since cardiovascular responses were unchanged both dur-
ing exercise and PCCA. However, during voluntary contraction
of the untrained limb, diastolic blood pressure and HR rises
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were attenuated after training, but neither were altered from
pre-training values during PCCA. Therefore the changes can
only be explained by decreased central command during exer-
cise. In animal experiments, we (Wang et al., 2010b) recently
reported that although 8–10 week of treadmill ExT tended to
reduce the blood pressure, HR and renal sympathetic activation
responses to involuntary static contraction by electrical stimu-
lation of ventral roots in a decerebrate rat model where central
command was removed, this training effect did not reach statis-
tical significance (Figure 4), indicating that ExT has less effect
on the EPR in healthy animals. Direct evidence from muscle
afferent recording experiments (Wang et al., 2012) also supports
that training has less effect on the sensitivity of group III and
IV afferents in healthy rats (Figures 5–7). Taken together the
evidence suggests that it is very likely that ExT attenuates car-
diovascular activity during exercise mainly via affecting central
command rather than muscle afferent input in normal subjects
or animals.

EFFECT OF ExT ON THE EPR IN CHF
The beneficial effect of ExT on the exaggerated EPR in CHF
has also been previously demonstrated. Piepoli et al. (1996)
reported that in patients with CHF (8–38 months, New York
Heart Association (NYHA) class II–III), there is an exaggerated
exercise-evoked sympatho-excitation, vasoconstrictor, and venti-
latory drive characteristic of this population of patients, which
is partially reversed by 6-week forearm training. These findings
indicate a potential beneficial effect of ExT on the abnormal mus-
cle reflex function in CHF patients. However, due to intrinsic
limitations of human research, the study of Piepoli et al. could not
distinguish between possible training-induced changes in cen-
tral command, and the different muscle afferent inputs to the
response. In animal experiments, using a decerebrate model to
remove the cortical structures from which central command orig-
inates, we recently (Wang et al., 2010b) observed that 8–10 weeks
of treadmill ExT initiated at an early stage of CHF (i.e., 2 weeks
after coronary ligation) prevents the exaggerated HR, pressor and

FIGURE 4 | Mean data showing the effects of ExT on pressor (A), heart

rate (B) and sympatho-excitatory (D) responses to a 30-s static

contraction in sham and CHF rats. Both baseline and contraction-induced
RSNA were compared in sham+Sed, sham+ExT, CHF+Sed and CHF+ExT

rats (C). Values are Mean ± SE, ∗P < 0.05 vs. sham+Sed and sham+ExT,
†P < 0.05 vs. baseline RSNA, #P < 0.05 vs. CHF+Sed. [Reprinted from
Wang et al. (2010b). Copyright @ 2010 American Heart Association. Used
with permission.]
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FIGURE 5 | Representative recordings showing the discharge of group III

afferents in response to static contraction induced by electrical

stimulation of L5 ventral root in sham+Sed (CV, 4.1 m/s, A),

Sham+ExT(CV, 3.0 m/s, B), CHF+Sed (CV, 4.7 m/s, C) and CHF+ExT rats

(CV, 5.3 m/s, D). [Reprinted from Wang et al. (2012). Copyright @ 2012
American Heart Association. Used with permission.]

sympatho-excitatory responses to either static contraction or pas-
sive stretch (a purely mechanical stimulus) and partially prevents
the blunted cardiovascular responses to injection of exogenous
capsaicin (a chemical stimulus) in CHF rats (Figure 4). These
findings indicate that ExT at an early stage of CHF has a benefi-
cial effect on the exaggerated EPR. More recently, we (Wang et al.,
2012) further demonstrated that this training protocol prevents
the sensitization of group III afferents and partially prevents the
blunted sensitivity of group IV afferents in CHF rats (Figure 8),
suggesting that the beneficial effects of ExT on the exaggerated
EPR is at least, in part, mediated by preventing the abnormal
sensitization of muscle afferents in the CHF state.

MECHANISMS UNDERLYING THE BENEFICIAL EFFECT OF
ExT ON THE EXAGGERATED EPR IN CHF
Although the beneficial effects of ExT on the exaggerated EPR has
been demonstrated in CHF patients and animals (Piepoli et al.,
1996; Piepoli, 2006; Wang et al., 2010b, 2012), the underlying
mechanisms have not been completely identified. For example, in
addition to muscle afferents, whether other components of the
reflex arc are also affected by ExT in CHF remains unknown.
We previously demonstrated that ExT also attenuated the exag-
gerated sympatho-excitation at rest in CHF animals (Liu et al.,
2000; Gao et al., 2007). The effects of ExT on sympatho-excitation
in CHF is, in part, mediated by effects on central neural struc-
tures such as the rostral ventrolateral medulla (RVLM) and the

nucleus tractus solitaries (NTS) (Mueller and Hasser, 2006; Gao
et al., 2007). Therefore, it is possible that ExT affects the EPR in
CHF via a central mechanism. In addition, in a previous study
(Gao et al., 2007) we demonstrated that the effects of ExT on
central neural structures such as the RVLM also contribute to
an improvement of the blunted arterial baroreflex function in
CHF. The latter and the EPR are well known to modify one
another functionally during exercise. For example, it has been
demonstrated that the cardiovascular response to activation of
the EPR is enhanced in normotensive baro-denervated cats and
rats (Waldrop and Mitchell, 1985; Smith et al., 2006b). Therefore,
we speculate that a blunted baroreflex in CHF might contribute
to the genesis of the exaggerated EPR whereas the ExT-mediated
improvement of the blunted arterial baroreflex might amelio-
rate the exaggerated EPR. However, direct evidence for these
hypotheses is absent.

Previous studies (Drexler et al., 1992; Mancini et al., 1992)
have shown that peripheral skeletal myopathy develops in CHF
(e.g., muscle atrophy, decreased peripheral blood flow, fiber-type
transformation and reduced oxidative capacity). These abnor-
malities in the peripheral musculature in CHF may alter the
environment around muscle afferent endings to sensitize mus-
cle afferents. Because ExT has been reported to reverse skeletal
myopathy in CHF (Howald et al., 1985; Hambrecht et al., 1997),
this effect may play a critical role in the ExT-mediated improve-
ment of the abnormal sensitization of muscle afferents in CHF.
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FIGURE 6 | Representative recordings showing the discharge of group IV

afferents in response to static contraction induced by electrical

stimulation of L5 ventral root in sham+Sed (CV, 1.2 m/s, A),

Sham+ExT(CV, 0.82 m/s, B), CHF+Sed (CV, 0.73 m/s, C) and CHF+ExT

rats (CV, 1.0 m/s, D). [Reprinted from Wang et al. (2012). Copyright @ 2012
American Heart Association. Used with permission.]

In addition, a chronic reduction in skeletal muscle perfusion in
CHF patients may alter muscle metabolism and cause excessive
accumulation of metabolites during exercise. As such, the poten-
tial chronic exposure to excess metabolites could result in the
sensitization of muscle afferents. It has been well documented
that ExT leads to an increased perfusion of skeletal muscle in CHF
patients (De Matos et al., 2004). This combined with an increased
ability of the muscle to maintain aerobic metabolism leads to a
decreased reliance on anaerobic metabolism. We speculate that
this will lead to lower interstitial concentration of metabolites,
evoking less muscle afferent stimulation.

ExT REVERSED MUSCLE TYPE SHIFT IN CHF
Iwamoto and Botterman (1985) reported that contraction of fast-
twitch fibers (type II) evoked a larger pressor response to static
contraction compared to slow-twitch fiber (type I) contraction.
Furthermore, the study by Wilson et al. (1995) demonstrated that
chronic low-frequency electrical stimulation of the tibial nerve
of one hindlimb of adult rabbits, which converted the gastroc-
nemius (predominately type II) to a muscle that was primarily
type I, decreased the pressor response to static contraction. These
two studies suggested that type II fiber contraction may activate
a larger number of muscle afferent receptors. In the CHF state,

a muscle fiber-type shift from type I to type II could cause an
exaggerated EPR. Since muscle fiber-type transformation in CHF
can be reversed by ExT (Howald et al., 1985; Hambrecht et al.,
1997), the improvement of abnormal fiber-type shift by ExT may
subsequently affect muscle afferent function, and eventually ame-
liorate the exaggerated EPR function in the CHF state. Clearly,
further research is needed in this area.

PURINERGIC RECEPTORS ARE INVOLVED IN THE MECHANISM BY
WHICH ExT PREVENTS THE SENSITIZATION OF GROUP III
AFFERENTS IN CHF
Purinergic (P) ligand-gated ion channels have been localized
to both group III and IV muscle afferent neurons (Vulchanova
et al., 1996, 1997, 1998). Skeletal muscle contraction triggers the
release of purines such as adenosine and interstitial ATP, which
act as ligands for P1 and P2X receptors, respectively (Hellsten
et al., 1998; Li et al., 2003, 2005). Previous studies (Costa and
Biaggioni, 1994; Middlekauff and Chiu, 2004) demonstrated that
ATP is a potential metabolic stimulator of the EPR via the P2X
receptor whereas adenosine and the P1 receptor is not involved
in the modulation of the EPR. For example, an intra-arterial
administration of α,β-methylene ATP (a P2X receptor agonist)
into the hindlimb of decerebrated cats elevates BP and enhances
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FIGURE 7 | Mean data showing the baseline discharge of group III and IV

afferents (A) and the responses of group III and IV afferents to static

contraction induced by electrical stimulation of L5 ventral root (B) in

Sham+Sed, Sham+ExT, CHF+Sed and CHF+ExT rats. Mean data showing
the discharge of group III and IV afferents in response to two levels of passive

stretch (C) and two doses of capsaicin (D) respectively in Sham+Sed,
Sham+ExT, CHF+Sed and CHF+ExT rats. The digit in the bar graph indicates
the number of recording fibers. Data are expressed as Mean ± SE. ∗P < 0.05
vs. sham + Sed, #P < 0.05 vs. CHF + Sed. [Reprinted from Wang et al.
(2012). Copyright @ 2012 American Heart Association. Used with permission.]

afferent impulses from group IV fibers by 67% (Hanna and
Kaufman, 2004). Furthermore, the arterial administration of
the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-
2′, 4′-disulfonic acid (PPADS) attenuates the pressor response to
static muscle contraction by 38% in cats and reduces the pressor
response to post-contraction circulatory occlusion (Hanna and
Kaufman, 2003). Furthermore, ATP may function as a metabolite
that sensitizes mechanoreceptors. Kindig et al. (2006) reported
that PPADS attenuated the responses of group III muscle afferents
to static contraction as well as to tendon stretch in decerebrate
cats, suggesting that P2 activation sensitizes group III afferents in
the normal state. Recently, we (Wang et al., 2010a) demonstrated
that (1) PPADS attenuated the response of group III muscle
afferents to either static contraction or passive stretch in CHF
rats to a greater extent than in sham rats; (2) protein expres-
sion of P2X3 receptors in the DRG was significantly increased
in CHF rats compared with sham rats; (3) increased protein
expression of P2X3 receptors in DRG was located on both IB4-
positive (C fiber marker) and NF200-positive (A fiber marker)
neurons. These findings suggest that ATP and P2X receptors are
involved in the mechanism underlying the sensitization of group
III afferents in CHF state. Furthermore, we (Wang et al., 2012)

found that (1) the increased antagonistic effect of PPADS on the
sensitivity of group III afferents observed in CHF rats was pre-
vented by ExT (Figure 8) and (2) ExT prevented the upregulation
of P2X3 receptors in both A- and C-fiber DRG neurons in CHF
rats (Figures 9 and 10), indicating that ExT prevented the sensiti-
zation of group III afferents, at least in part, by the normalization
of the upregulated P2X receptors in the CHF state.

THE TRPV1 RECEPTOR IS INVOLVED IN THE MECHANISM BY WHICH
ExT PREVENTS THE DESENSITIZATION OF GROUP IV AFFERENTS
IN CHF
Transient receptor potential vanilloid 1 (TRPV1) receptors
are predominantly localized to group IV fibers (Michael and
Priestley, 1999; Wang et al., 2010a, 2012). Intra-arterial injection
of capsaicin, a TRPV1 receptor agonist, markedly increases BP,
HR, and SNA by stimulating group IV afferents (Crayton et al.,
1981; Kaufman et al., 1982, 1983; Wang et al., 2010a,b). TRPV1
receptors are sensitive to changes in muscle temperature, increases
in extracellular hydrogen ion concentration (pH <5.7), and
inflammatory products such as bradykinin and prostaglandins
(Tominaga et al., 1998; Guenther et al., 1999; Jordt et al., 2000;
Welch et al., 2000). These potential activators of the TRPV1
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FIGURE 8 | Mean data showing the effect of PPADS, a P2X

antagonist, on the baseline discharge (A) and the responses of

group III afferents to either static contraction (B) or passive

stretch (C) in Sham+Sed, Sham+ExT, CHF+Sed, and CHF+ExT rats.

(D) The effect of PPADS on the TTI produced by passive stretch or

static contraction in Sham+Sed, Sham+ExT, CHF+Sed and CHF+ExT
rats. Data are expressed as Mean ± SE. n = 8 − 10/each group.
∗P < 0.05 vs. before, #P < 0.05 vs. Sham+Sed. [Reprinted from Wang
et al. (2012). Copyright @ 2012 American Heart Association. Used with
permission.]

receptor are present during exercise. An earlier study by Kindig
et al. (2005) demonstrated that TRPV1 blockade failed to prevent
the pressor response to static contraction in decerebrated cats,
indicating that TRPV1 plays little role in evoking the EPR. On
the contrary, Smith et al. (2010) recently reported that TRPV1
blockade attenuated the pressor response to static contraction
in decerebrate rats, indicating that TRPV1 plays an important
role in evoking the EPR. The discrepancy among studies is not
readily apparent. However, the majority of studies do raise the
possibility that the activation of TRPV1 receptors by skeletal
muscle metabolites (e.g., protons) may contribute to the excita-
tion of the skeletal muscle metaboreflex during exercise. In CHF
animals, several reports by Smith and colleagues (Smith et al.,
2005b, 2006a, 2010) demonstrated that (1) TRPV1 activation
by capsaicin caused a blunted cardiovascular response in CHF
rats compared to sham rats, which was confirmed by our recent
study (Wang et al., 2010b); (2) chronic deletion of TRPV1 recep-
tors in normal rats recapitulates the exaggerated EPR observed
in CHF rats, indicating that the loss of TPRV1 receptors may

be an important contributor to the development of the exag-
gerated EPR in CHF; and (3) the mRNA level of TRPV1 in the
DRG and in skeletal muscle was decreased in CHF rats com-
pared to sham rats. Recently, we (Wang et al., 2010a) further
demonstrated that (1) the response of group IV afferents to exoge-
nous TRPV1 activation by capsaicin was blunted in CHF rats and
(2) protein expression of TRPV1 receptors in the DRG was sig-
nificantly decreased in C-fiber DRG neurons of CHF rats. These
findings suggest that the TRPV1 receptor plays an important role
in causing the blunted group IV sensitivity in the CHF state. More
recently, we (Wang et al., 2012) demonstrated that ExT partially
prevents the blunted sensitivity of group IV afferents in response
to either static contraction or to administration of capsaicin in
CHF rats (Figure 7). This was associated with an improvement
in the decrease in protein expression of TRPV1 receptors in C-
fiber DRG neurons of CHF+ExT rats (Figures 10 and 11). These
findings indicate that ExT improves the blunted sensitivity of
group IV afferents, in part, by preventing the downregulation of
TRPV1 receptors in muscle afferent neurons in the CHF state. It
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FIGURE 9 | Immunohistochemical data showing the protein expression

of P2X3 receptors in L4/L5 dorsal root ganglion (DRG) in Sham+Sed,

Sham+ExT, CHF+Sed and CHF+ExT rats. Isolectin B4 (IB4), a C-fiber
neuron marker; NF200, an A-fiber neuron marker. White Bar = 100 μm.

White arrow represents double staining of P2X3 with IB4, white arrowhead
represents double staining of P2X3 with NF200. [Reprinted from Wang
et al. (2012). Copyright @ 2012 American Heart Association. Used with
permission.]

FIGURE 10 | Western blot data showing the protein expression of P2X3

(A) and TRPV1 (B) receptors in L4/L5 dorsal root ganglion (DRG) in

Sham+Sed, Sham+ExT, CHF+Sed, and CHF+ExT rats. Data are

expressed as Mean ± SE. n = 6/each group. ∗P < 0.05 vs. sham+Sed,
#P < 0.05 vs. CHF+Sed. [Reprinted from Wang et al. (2012). Copyright @
2012 American Heart Association. Used with permission.]
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FIGURE 11 | Immunohistochemical data showing the protein

expression of TRPV1 receptors in L4/L5 dorsal root ganglion

(DRG) in sham and CHF rats. IB4, a C-fiber neuron marker;
NF200, an A-fiber neuron marker. White Bar = 100 μm. White

arrow represents double staining of TRPV1 with IB4, white arrowhead
represents double staining of TRPV1 with NF200. [Reprinted from Wang
et al. (2012). Copyright @ 2012 American Heart Association. Used with
permission.]

should be noted that similar to TRPV1 receptors, acid-sensing ion
channels (ASICs), which open when exposed to an extracellular
pH of 7.0 or less, are also localized to group IV fibers and con-
tribute to the metaboreceptor component of the EPR (Chen et al.,
1998; Zhang and Canessa, 2001; McCord et al., 2009). However,
the role of ASIC channels in mediating the blunted metabore-
flex as well as the desensitization of group IV afferents in CHF
is largely unknown. Whether ASIC channels are involved in the
ExT-induced improvement of the blunted metaboreflex as well as
the densitization of group IV afferents in CHF remains unclear.

OTHER POTENTIAL MECHANISMS
Other peripheral mechanisms may play a role in mediating the
beneficial effects of ExT on reversing abnormal muscle afferent
activity in CHF. For example, due to underperfusion of skele-
tal muscle in CHF, there is release of reactive oxygen species
and inflammation. Augmented ROS production is strongly asso-
ciated with endothelial dysfunction and may contribute to the
exaggerated sympatho-excitatory response to exercise in CHF
(Thomas et al., 2001; Thomas and Segal, 2004). In normal rats, we
demonstrated that hindlimb infusion of a superoxide dismutase

inhibitor increased ROS production within the skeletal muscle
and augmented the pressor response to static muscle contraction
(Wang et al., 2009). This sympatho-excitatory response was sig-
nificantly attenuated by intra-arterial infusion of either a super-
oxide dismutase mimetic Tempol or an NADPH-oxidase inhibitor
apocynin (Wang et al., 2009), indicating that ROS plays an excita-
tory role in modulation of the EPR. We recently demonstrated
(Wang et al., 2011) that the both Tempol and a membrane
permeable superoxide dismutase, polyethylene glycol-superoxide
dismutase (PEG-SOD) attenuated sodium channel activity in
muscle afferent neurons in rats. Because we provided evidence
that sodium channels in muscle afferent neurons are critical for
the genesis of the EPR (Wang et al., 2011), the inhibitory effect
of ROS scavengers (Tempol and PEG-SOD) on sodium channel
activity in muscle afferent neurons indicates that ROS modulates
the EPR by affecting sodium channel activity in muscle affer-
ents. In contrast, the studies from Koba et al. (2009) and McCord
et al. (2011) found that injection of Tempol into hindlimb and
trapping the circulation to maximize the local effects of the drug
were unable to verify that Tempol attenuated the pressor response
to static contraction in normal rats, indicating that local ROS
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in skeletal muscle did not modulate the EPR in normal state.
However, it should be noted that these investigators did not
measure the EPR function immediately after stopping the trap
protocol but rather during a 30-min of reperfusion after trap-
ping. This may exhaust or minimize the pharmacologic effect of
Tempol by either dynamic metabolism or ischemic-reperfusion.
Therefore, whether local ROS in skeletal muscle is involved in
the modulation of the EPR in the normal state is still contro-
versial. Direct evidence from muscle afferent recording is needed
to address this discrepancy. However, in rats with CHF induced
by myocardial infarction, the entrapment of Tempol within the
hindlimb circulation did produce a marked reduction in BP, HR,
and renal SNA in response to the activation of the EPR (Koba
et al., 2009). Collectively, these data suggest that increases in ROS
generation (oxidative stress) in the hindlimb skeletal muscle con-
tributes to the exaggerated cardiovascular response to stimulation
of the EPR in CHF. With regard to the antioxidant and anti-
inflammatory effects of ExT (Linke et al., 2005; Batista et al.,
2010) in CHF, it is reasonable to speculate that the decreased
muscle ROS level by ExT may bring the exaggerated EPR close
to normal. Clearly, further research is needed in this area.

FUTURE DIRECTIONS
The exaggerated sympatho-excitation during exercise potentially
increases cardiovascular risk and contributes to exercise intoler-
ance during physical activity in CHF patients (Grassi and Mancia,
1999; Piepoli et al., 1999; Smith et al., 2006a). A therapeutic strat-
egy for preventing or slowing the progression of the exaggerated
EPR may significantly improve symptoms of exercise intolerance
and reduce cardiovascular risk in CHF patients. This review has
summarized the evidence from human and animal experiments
suggesting that that long-term ExT has a beneficial effect on the

exaggerated EPR in the CHF state. Evidence from our animal
studies indicates that ExT in the early stage of CHF (2 weeks after
coronary ligation) has a “protective” effect (rather than a “cura-
tive” effect) on the exaggerated EPR-evoked sympatho-excitation
during exercise in CHF since the exaggerated EPR has not devel-
oped (Smith et al., 2003) at that time point. In addition, this
training strategy also has a protective effect on the elevated resting
sympathetic tone in CHF. An important clinical relevance of these
findings is that patients recovering from myocardial infarction
can take advantage of this early ExT strategy to slow or improve
the symptoms associate with CHF. However, whether the bene-
fits of this strategy can be applied for all degrees of CHF patients
is unclear. Clearly, further studies are necessary for to determine
which CHF patients will derive maximal benefit from ExT. It will
also be important to determine what dose (i.e., duration and
intensity) of ExT can be tolerated safely in CHF patients and still
be effective. Furthermore, whether ExT can improve functional
capacity of patients with more established CHF and an exag-
gerated EPR remains unclear. Piepoli et al. (1996) reported that
6-weeks of forearm training partially reversed the exaggerated
exercise-evoked sympatho-excitation, vasoconstrictor response
and ventilatory drive in patients with CHF. Whether central com-
mand is also involved in these ExT-mediated benefits remains
largely unknown. Further animal studies are necessary to iso-
late the contribution of central command to the ExT-mediated
benefits during exercise.
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