
ARTICLE

Received 3 Oct 2016 | Accepted 13 Feb 2017 | Published 3 Apr 2017

Diurnal and seasonal molecular rhythms in human
neocortex and their relation to Alzheimer’s disease
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Circadian and seasonal rhythms are seen in many species, modulate several aspects of

human physiology, including brain functions such as mood and cognition, and influence

many neurological and psychiatric illnesses. However, there are few data regarding the

genome-scale molecular correlates underlying these rhythms, especially in the human brain.

Here, we report widespread, site-specific and interrelated diurnal and seasonal rhythms of

gene expression in the human brain, and show their relationship with parallel rhythms of

epigenetic modification including histone acetylation, and DNA methylation. We also identify

transcription factor-binding sites that may drive these effects. Further, we demonstrate that

Alzheimer’s disease pathology disrupts these rhythms. These data suggest that interrelated

diurnal and seasonal epigenetic and transcriptional rhythms may be an important feature of

human brain biology, and perhaps human biology more broadly, and that changes in such

rhythms may be consequences of, or contributors to, diseases such as Alzheimer’s disease.
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C
ircadian and circannual rhythms are seen in many plant
and animal species. Circadian rhythms modulate phe-
nomena as diverse as bioluminescence in dinoflagellates1

and cognitive function in humans2,3, while circannual rhythms
are seen in functions as diverse as flowering in plants4 and
hibernation in chipmunks5, These rhythms also feature
prominently in several human brain disorders. For example,
prominent changes in circadian rest-activity6 and body
temperature rhythms7 are seen in Alzheimer’s disease, and
there are seasonal rhythms of mood in seasonal affective
disorder8, of symptom onset in schizophrenia9 and of human
functional magnetic resonance imaging brain responses with
cognitive tasks10.

Notwithstanding the ubiquity of circadian and circannual
rhythms—and their impact on human disease—there remain
gaps in our understanding of the genetic and epigenetic
mechanisms generating them and linking them to normal and
abnormal tissue function, especially in the human brain.
Mechanisms underlying circadian rhythms are better understood.
An evolutionarily conserved transcriptional negative feedback
loop lies at the core of the molecular clock in model
organisms11–13; this mechanism influences tissue physiology by
regulating the expression of tissue-specific sets of genes14.
Underlying this circadian control of transcription are rhythms
of transcription factor binding and histone modification15–17.
In the human brain, diurnal rhythms of a large portion of the
transcriptome have been revealed, and age- and depression-
related differences have been reported18,19. However, there is a
paucity of data concerning the effects of other human brain
disorders such as Alzheimer’s disease on the diurnal
transcriptome. Moreover, there are few data regarding the
relationship of diurnal rhythms of gene expression with
rhythmic epigenetic modification in the human brain.

Less is known about the genetic and epigenetic mechanisms
underlying seasonal rhythms, and how these molecular events
influence tissue function. Seasonal rhythms of selected genes
in specific brain regions have been reported in hamsters20,21,
ground squirrels22 and songbirds23. Seasonal rhythms of DNA
methylation may influence these rhythms21,24 and seasonal
rhythms of histone modification appear to be important
in plants25. Recently, widespread seasonal rhythms of gene
expression in human peripheral blood mononuclear cells have
been reported26. However, seasonal rhythms of gene expression
have never been demonstrated in any solid human organ,
including the human brain. Moreover, the epigenetic regulation
of these rhythms in human tissues is unknown, as is the extent to
which they are altered by diseases such as Alzheimer’s disease.

Using post-mortem human brain tissue obtained from two
longitudinal cohort studies of ageing, we recently characterized
large-scale diurnal rhythms of DNA methylation and their

relation to diurnal rhythms of gene expression in the human
dorsolateral prefrontal cortex27, a brain region with prominent
circadian rhythms of gene expression18, and one that shows
seasonal variation in human functional magnetic resonance
imaging brain responses with cognitive tasks10. Building on these
results, we obtained genome-wide RNA-sequencing (RNA-seq)
and histone 3 lysine 9 acetylation chromatin immuno-
precipitation sequencing (H3K9Ac ChIP-seq) data from
overlapping sets of post-mortem human dorsolateral prefrontal
cortex samples and examined, on a genome-wide scale, diurnal
and seasonal rhythms of RNA expression, H3K9Ac and DNA
methylation. We also characterized their interrelationship and
their association with Alzheimer’s disease.

Using these data, we demonstrate interrelated diurnal and
seasonal rhythms of gene expression in the dorsolateral prefrontal
cortex that are linked to parallel rhythms of epigenetic
modification, associated with specific transcription factor-binding
sites and altered in the context of Alzheimer’s disease pathology.
These data suggest that seasonal and diurnal molecular rhythms
may play an important role in the biology of the human
dorsolateral prefrontal cortex, and their disruption may be a
potential contributor to, or consequence of, Alzheimer’s disease.

Results
Diurnal/seasonal rhythms in the transcriptome and epigenome.
We studied post-mortem dorsolateral prefrontal cortex samples
from 757 participants in two ongoing cohort studies of older
persons, the Rush Memory and Ageing Project (MAP) and the
Religious Orders Study (ROS), in which participants were free of
dementia at study enrolment and agreed to annual evaluations
and brain donation on death. Clinical characteristics of the study
participants are in Table 1 and Fig. 1. Deaths were spread
throughout the year and around the 24-h day (Fig. 2a) and we
noted no relation between the date and time of death (Fig. 2b).
We used RNA-seq to quantify dorsolateral prefrontal cortex
expression of 18,709 autosomal GENCODE v14 genes and 42,873
autosomal GENCODE v14 isoforms expressed in at least 90%
of our samples27. In parallel, we used the Illumina Infinium
HumanMethylation450k Bead Chip Assay (Illumina, San Diego, CA)
to assess DNA methylation at 420,132 autosomal cytosine-
phosphate-guanine sites (CpGs)28, and ChIP followed by DNA
sequencing to assess H3K9Ac at 25,740 non-overlapping genomic
regions spanning the autosomal genome29. The latter provide a
truly epigenome-wide perspective that focuses on the parts of the
genome that are actively transcribed.

To identify seasonal patterns in the expression of each gene, we
considered expression levels as a function date of death relative
to January 1. For diurnal patterns of gene expression, in keeping
with similar studies18,19, we considered expression levels as a

Table 1 | Characteristics of the study participants*.

Median (IQR) or number (%)

Participants with RNA-seq
data (n¼ 531)

Participants with H3K9Ac ChIP-seq
data (n¼664)

Participants with DNA methylation
data (n¼ 732)

Age (years) 88.7 (84.5, 92.8) 88.8 (84.3, 92.6) 88.4 (83.9, 92.5)
Female sex 334 (63%) 433 (65%) 466 (64%)
Z1 Depressive symptoms 325 (61%) 408 (61%) 455 (62%)
Post-mortem interval (h) 5.7 (4.2, 8.2) 5.8 (4.4, 8.3) 5.8 (4.3, 8.5)
AD pathology summary score 0.54 (0.15, 1.02) 0.60 (0.16, 1.08) 0.58 (0.15, 1.07)
NIA-Reagan Pathological Diagnosis of
Alzheimer’s disease

315 (59%) 408 (61%) 441 (60%)

*Please also see Fig. 1 for characteristics of the study participants. AD, Alzheimer’s disease; ChIP, chromatin immunoprecipitation; H3K9Ac, histone 3 lysine 9 acetylation; IQR, interquartile range; NIA,
National Institutes of Ageing; RNA-seq, RNA-sequencing.
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function of time of death relative to sunrise on the date of death
(‘zeitgeber time’, ZT). In secondary analyses, we repeated all
analyses while considering time of death relative to (1) local clock
time, which may be more reflective of the timing of artificial light
exposure in industrialized societies and which shifts with daylight
savings time, and (2) the midpoint of the dark period, which is
relatively invariant across the seasons30. All three versions of our
analyses returned similar results.

We found many genes, including several canonical circadian
clock genes, that have robust diurnal and seasonal rhythms (Fig. 3
and Supplementary Figs 1 and 2). Based on visual inspection
of these data and in keeping with prior work examining
circadian18,19 and seasonal26 rhythms of human gene expression,
we modelled these data as a sum of cosine curves with diurnal
(period¼ 24 h) and seasonal (period¼ 1 year) periods.

For each of the 18,709 genes, we extracted the amplitude and
acrophase of diurnal rhythmicity based on these cosine curves,
and quantified the strength of diurnal rhythmicity by comparing
models with and without terms for diurnal rhythmicity, and
computing an F-statistic and P value (Supplementary Data 1). We
repeated these analyses for seasonal rhythmicity (Supplementary
Data 1), and for diurnal and seasonal rhythms in mRNA isoform
levels (Supplementary Data 2) as well as in our two levels of
epigenomic data, the H3K9 acetylome (Supplementary Data 3)
and in the DNA methylome (Supplementary Data 4).

Similar to other human brain data sets, where 8–12% of the
transcriptome is diurnally rhythmic at Po0.05 (refs 18,19),
B9% of the transcriptome (1,726 genes) in our data set was
diurnally rhythmic at Po0.05 (F-test, n¼ 531 samples). This
set of genes was strongly enriched for genes previously
reported as diurnally rhythmic in Brodmann’s area 11 (ref. 19)
(w2¼ 18.0, P¼ 2.2� 10� 5), Brodmann’s area 47 (ref. 19)
(w2¼ 11.8, P¼ 5.9� 10� 4) and dorsolateral prefrontal
cortex18 (w2¼ 21.4, P¼ 3.7� 10� 6) in other studies. The
timing of clock gene expression in our data set was strongly
correlated with the timing of clock gene expression in these
other data sets (Fig. 3c and Supplementary Figs 1c and 2c;
R¼ 0.97–0.99; Po0.0001). These results illustrate the robustness
of these rhythms across brain regions and data sets. They
represent an important source of transcriptional variation in the
brain, and our large data set behaves similarly to what has been
observed previously, enabling us to connect our results with the
existing framework of brain molecular rhythms.

We quantified the degree of diurnal rhythmicity across all
42,873 isoforms by computing the median F-statistic for diurnal
rhythmicity. We compared this to the median F-statistic in 10,000
null data sets generated by randomly shuffling times of death to
generate an empiric P value. The transcriptome as a whole
showed much greater diurnal rhythmicity than expected by
chance (median F¼ 1.02, P¼ 0.0252, n¼ 531 samples; Fig. 4a).
Similar analyses revealed significant seasonal rhythmicity in the
transcriptome (median F¼ 1.24, P¼ 0.0022, n¼ 531 samples;
Fig. 4b), diurnal rhythmicity in the H3K9 acetylome (median
F¼ 1.02, P¼ 0.0280, n¼ 664 samples; Fig. 4c), and diurnal
rhythmicity (median F¼ 0.74, Po0.0001, n¼ 732 samples;
Fig. 4e) and seasonal rhythmicity (median F¼ 0.78, Po0.0001,
n¼ 732 samples; Fig. 4f) in the DNA methylome. The degree of
seasonal rhythmicity in the H3K9 acetylome also approached
statistical significance (median F¼ 0.95, P¼ 0.0526, n¼ 664
samples; Fig. 4d).

When we limited these analyses to only those individual
isoforms, H3K9Ac peaks and DNA methylation sites that were
diurnally or seasonally rhythmic at Po0.05 by the F-test (based
on n¼ 531 samples for RNA, n¼ 664 samples for H3K9Ac,
n¼ 732 samples for DNA methylation; Supplementary Data 2
and 3), or when we repeated these analyses in relation to local
clock time or to the midpoint of the dark period, results were
similar (Supplementary Figs 3–5).

Relation of diurnal to seasonal rhythms. By visual inspection,
and in keeping with prior work19,26, the distribution of diurnal
and seasonal transcript acrophase times was bimodal. We used an
empiric clustering approach based on self-organizing maps to
classify transcripts into diurnal and seasonal clusters. This
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resulted in each transcript being classified into one of two
empirically defined non-overlapping diurnal clusters, which
were roughly centred about morning and evening, and one of
two empirically defined non-overlapping seasonal clusters,
which were roughly centred about spring and fall. This resulted
in four distinct empirically defined sets of transcripts: evening/
spring, evening/fall, morning/spring and morning/fall. By visual
inspection, the timing of diurnal and seasonal transcript rhythms

was closely linked, with morning-acrophase transcripts tending to
have fall seasonal acrophases, and evening-acrophase transcripts
tending to have spring seasonal acrophases (Fig. 4g). We
confirmed this by computing a w2-statistic and calculating an
empiric P value in comparison with 10,000 permuted null
data sets generated by shuffling dates and times of death. This
association was strongly significant (Fig. 4h; w2¼ 9,844.1,
Po0.0001, n¼ 531 samples). A similar pattern was seen in the
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Figure 3 | Diurnal and seasonal rhythms of clock gene expression. (a,b) Relative expression by (a) time of death and (b) month of death for several

genes known to be involved in the regulation of the mammalian circadian clock. Data plotted in (a) 4-h or (b) 2-month bins. ZT0¼ sunrise. Dots indicate

means and bars indicate s.e.’s of the mean. Data are double plotted. Red lines indicate fit cosine curve. P values for (a) diurnal or (b) seasonal rhythmicity

are as calculated as described in the text using a model considering diurnal and seasonal rhythmicity concurrently, and adjusted for demographic and

methodological covariates. (c) Correlation between the peak expression times of known circadian clock genes in our data set (y-axis) and published human

prefrontal cortex data sets (x-axis). Red line indicates fit linear regression.
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H3K9 acetylome, with morning-acrophase H3K9Ac peaks
tending to have fall seasonal acrophases, and evening-acrophase
H3K9Ac peaks tending to have spring seasonal acrophases
(Fig. 4i,j; w2¼ 4,004.6, P¼ 0.0060, n¼ 664 samples). For the DNA

methylome, we plotted the timing of the nadir rather than
acrophase of methylation as hypomethylation rather than
hypermethylation is classically associated with transcription.
However, because the acrophase always follows the nadir by p
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Figure 4 | Diurnal and seasonal rhythmicity in the transcriptome and epigenome. (a) Observed (red) versus expected (black) median F-statistic for

diurnal rhythmicity considering all transcripts together. Null distribution estimated by consideration of 10,000 empiric null data sets generated by randomly

shuffling times of death. (b) As in a but for seasonal rhythms. (c,d) As in a,b but for H3K9Ac peaks. (e,f) As in a,b but for DNA methylation sites.

(g) Association between time of diurnal versus seasonal acrophases. Each dot represents a single transcript. Coloured boxes depict empirically derived
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radians in a cosine curve, the analyses are statistically equivalent
whether acrophase or nadir is used. The resulting patterns were
different than those seen for the transcriptome and H3K9
acetylome. DNA methylation sites with fall nadirs were no more
likely to have evening than morning nadirs (Fig. 4k,l; w2¼ 882.5,
P¼ 0.6662, n¼ 732 samples). Similar results were seen when we
limited these analyses to the most significant diurnally and
seasonally rhythmic sites, or when we repeated these analyses in
relation to local clock time or to the midpoint of the dark period
(Supplementary Figs 3–5).

Relation of the epigenomic rhythms to physical position. We
have previously shown that for rhythms of DNA methylation,
diurnal acrophase time varies depending on distance from the
nearest transcription start site (TSS)27. We investigated whether
this was also true for diurnal rhythms of H3K9Ac by dividing
H3K9Ac peaks into two groups—those within 2 kb of the TSS of
transcripts expressed in more than 90% of our samples and those
more than 2 kb away.

The timing of rhythms of H3K9Ac was associated with their
proximity to active TSS (Fig. 5a–d). The angular distribution
of diurnal acrophases for H3K9Ac peaks proximate to such
sites differed from those for peaks distant from such sites
(W¼ 4,572.6, P¼ 0.0136, n¼ 664 samples), and the difference in
angular distribution of seasonal acrophases showed a trend
toward significance (W¼ 3,643.2, P¼ 0.0576, n¼ 664 samples).
Moreover, the set of H3K9Ac peaks proximate to active TSS was
relatively enriched for morning/fall acrophase peaks, while the set
of peaks distant from active TSS was relatively enriched for

evening/spring acrophase peaks (w2¼ 4,841.0, P¼ 0.0125,
n¼ 664 samples). Similar results were seen when we limited
these analyses to the most significant diurnally and seasonally
rhythmic H3K9Ac peaks, or when we repeated these analyses in
relation to local clock time or the midpoint of the dark period
(Supplementary Figs 6,8a–d).

For DNA methylation, proximity to active TSS was associated
with the timing of diurnal rhythms, as we had reported previously
(Fig. 5e–h; W¼ 3,8418.2, P¼ 0.026, n¼ 732 samples). However,
there was no association between proximity to an active TSS and
the timing of seasonal rhythms (W¼ 4,568.2, P¼ 0.7308, n¼ 732
samples) or with the overall distribution of DNA methylation
sites among the four temporal clusters (w2¼ 36,324.6, P¼ 0.065,
n¼ 732 samples). Similar results were seen when we repeated
these analyses in relation to local clock time or the midpoint of
the dark period (Supplementary Figs 7 and 8e–h). However, when
we limited these analyses to the most significant diurnally and
seasonally rhythmic DNA methylation sites (Supplementary
Fig. 6e–h), a relative enrichment of morning/fall nadirs was seen
among sites proximate to active TSS (w2¼ 354.5, P¼ 0.0001,
n¼ 732 samples).

Relation between rhythms in the transcriptome and epigenome.
Both H3K9Ac and DNA methylation are thought to influence
transcription. Therefore, we examined associations between the
timing of rhythms of transcript abundance and the timing of
rhythms of H3K9Ac and DNA methylation at nearby sites. To
examine associations between diurnal transcript and H3K9Ac
rhythms, we contrasted two groups of H3K9Ac peaks—those
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Figure 5 | Physical position and diurnal and seasonal rhythms in the epigenome. (a) Association between time of diurnal versus seasonal acrophase of
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within 2 kb of morning-acrophase transcripts and those within
2 kb of evening-acrophase transcripts. The angular distribution of
diurnal acrophases for these two sets of H3K9Ac peaks differed
(Fig. 6a,c; W¼ 67.1, Po0.0001, n¼ 471 samples) with the set
of H3K9Ac peaks near morning-acrophase transcripts being
relatively enriched for morning-acrophase H3K9Ac peaks, and
vice versa (Fig. 6e,g; w2¼ 41.0, P¼ 0.0007, n¼ 471 samples).
Similarly, the angular distribution of seasonal acrophases for
H3K9Ac peaks near spring versus fall-acrophase transcripts also
differed (Fig. 6b,d; W¼ 36.9, P¼ 0.0004, n¼ 471 samples), and
there was a trend toward relative enrichment for spring-
acrophase H3K9Ac peaks near spring-acrophase transcripts,
and fall-acrophase H3K9Ac peaks near fall-peaking transcripts
(Fig. 6f,h; w2¼ 16.8, P¼ 0.0770, n¼ 471 samples).

We found similar results in the DNA methylome. The angular
distribution of diurnal nadirs differed significantly between DNA
methylation sites near the TSS of morning-acrophase transcripts
and those near the TSS of evening-acrophase transcripts
(W¼ 857.6, Po0.0001, n¼ 527 samples; Fig. 6i,k) with a relative
enrichment of morning-nadir DNA methylation sites near
morning-acrophase transcripts, and a relative enrichment of
evening-nadir DNA methylation sites near evening-acrophase
transcripts (Fig. 6m,o; w2¼ 665.3, Po0.0001, n¼ 527 samples).
The angular distribution of seasonal nadirs also differed
significantly between DNA methylation sites near the TSS of
spring-acrophase transcripts and those proximate to the TSS
of fall-acrophase transcripts (Fig. 6j,l; W¼ 151.4, Po0.0001,
n¼ 527 samples). However, here there was a relative enrichment
of fall-acrophase (rather than fall-nadir) DNA methylation sites
near fall-acrophase transcripts and spring-acrophase (rather than
spring-nadir) DNA methylation sites near spring-acrophase
transcripts (Fig. 6n,p; w2¼ 74.7, Po0.0001, n¼ 527 samples).

Similar results were seen when we repeated these analyses in
relation to local clock time or the midpoint of the dark period
(Supplementary Figs 10 and 11). Qualitatively similar results were
also seen when we limited these analyses to the most significantly
rhythmic (Po0.05 by the F-test based on n¼ 527 samples for
DNA methylation and n¼ 471 samples for H3K9Ac) epigenetic
sites proximate to the most significantly rhythmic (Po0.05 by the
F-test, n¼ 527 samples for DNA methylation and n¼ 471
samples for H3K9Ac) transcripts, although statistical significance
was attenuated perhaps reflecting the smaller number of sites
considered (Supplementary Fig. 9).

Relation of rhythms to transcription factor-binding sites. The
local transcription factor environment has an important influence
on the circadian timing of transcription in model systems31,
many canonical clock genes are themselves transcription factors,
and transcription factor modification and processing (for
example, phosphorylation, translocation and degradation)
are important mechanisms regulating circadian rhythmicity.
Therefore, we examined the impact of local transcription
factor-binding sites on the timing of diurnal and seasonal
rhythms of transcript expression, H3K9Ac and DNA
methylation using genome-wide-annotated binding sites for
161 transcription factors from the ENCODE project32–34. We
considered a TSS, H3K9Ac peak or DNA methylation site to be
locally associated with a transcription factor if it overlapped with
one of its ENCODE-annotated binding sites, or was within 2 kb of
it. We used logistic regression models to examine the
independent impact of the local presence of binding sites for
each of the 161 ENCODE transcription factors on the odds of
having a spring versus fall or evening versus morning transcript,
H3K9Ac peak or DNA methylation site.

Of the 161 transcription factors examined, 11 had binding sites
that were associated with the timing of seasonal or diurnal

acrophases in the transcriptome, H3K9 acetylome or DNA
methylome at a false discovery rate (FDR) o0.05 (Fig. 7a). Effect
estimates were similar irrespective of whether they were estimated
on the basis of all transcripts/H3K9Ac peaks/DNA methylation
sites, or only those that displayed the strongest rhythmicity
(Supplementary Fig. 12). Their estimated effects on diurnal and
seasonal rhythms were tightly correlated (R¼ 0.95, Po0.0001 for
RNA rhythms; R¼ 0.77, P¼ 0.0058 for H3K9Ac rhythms;
R¼ 0.8, P¼ 0.0032 for DNA methylation rhythms; Fig. 7b–d).
Their estimated effects on diurnal RNA and DNA methylation
rhythms were strongly correlated (R¼ 0.83, P¼ 0.0015; Fig. 7f),
and their effects on diurnal RNA and H3K9Ac rhythms were
weakly anticorrelated (R¼ � 0.57, P¼ 0.065; Fig. 7e). In contrast,
their effects on the timing of seasonal epigenetic and transcrip-
tomic rhythms were not clearly linked (Fig. 7g,h). Similar results
were seen when we repeated these analyses in relation to local
clock time or the midpoint of the dark period (Supplementary
Figs 13 and 14).

Relation to Alzheimer’s disease. Alzheimer’s disease35 is
associated with differences in the timing of physiological
markers of circadian rhythmicity. To examine the association
between Alzheimer’s disease pathology and diurnal and seasonal
rhythms of RNA expression, H3K9Ac and DNA methylation, we
augmented our models with terms to capture differences in phase
and amplitude between those with and without pathologically
defined Alzheimer’s disease, reflecting the state of the brain
tissue itself, which is the source of the transcriptomic and
epigenomic data, while adjusting for the effects of age and sex on
these parameters. Compared to individuals without pathologic
Alzheimer’s disease, the diurnal transcript rhythms in individuals
with pathologic Alzheimer’s disease were advanced by
nearly 1.5 h, while their seasonal rhythms were delayed by
approximately half a month (Fig. 8a–c). These differences were
particularly pronounced for morning/fall- and evening/spring-
acrophase transcripts and were less prominent for morning/
spring- and evening/fall-acrophase transcripts, indicating a
differential effect on different temporal classes of transcripts
(Supplementary Fig. 15). Differences in rhythmic H3K9Ac were
less pronounced. No significant differences in phase and
amplitude between those with and without Alzheimer’s disease
were found when we considered all H3K9Ac peaks, although
there were trends toward a slight delay and attenuation of diurnal
rhythms (Fig. 8d–f). When individual temporal classes of
H3K9Ac peaks were examined, diurnal rhythms of evening/fall-
acrophase H3K9Ac peaks were both attenuated and delayed by
nearly 1.5 h, with minimal changes in the other clusters of
H3K9Ac peaks (Supplementary Fig. 15). Differences in DNA
methylation rhythms were also modest, with a slight attenuation
of the amplitude of diurnal rhythms (Fig. 8g–i), in keeping with
our prior report27, particularly for evening-nadir DNA
methylation sites (Supplementary Fig. 15). Phase differences
were modest when sunrise was used as the reference time
(Fig. 8g–i). However, when we used clock time (as in our prior
work) or the midpoint of the dark period as the reference times
(Supplementary Figs 18g–i and 19g–i), there was a trend towards
a delay in brains with pathologically defined Alzheimer’s disease,
in keeping with our prior report27. These findings were
qualitatively similar when we considered only these transcripts,
H3K9Ac peaks and DNA methylation sites with Po0.05 for both
diurnal and seasonal rhythmicity (Supplementary Figs 16 and 17)

Discussion
Genome-scale analysis of over 750 post-mortem human dorso-
lateral prefrontal cortex samples revealed the presence of diurnal
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and seasonal rhythms in the human brain transcriptome, H3K9
acetylome and DNA methylome. The timing of diurnal and
seasonal rhythms were related, suggesting shared regulatory
mechanisms, and were strongly influenced by the local transcrip-
tion factor-binding site environment, with shared groups of
transcription factors associated with both diurnal and seasonal
rhythms. Similarly, rhythms in the transcriptome and epigenome
were temporally linked and associated with shared transcription
factor-binding sites. Finally, differences in rhythms in the
transcriptome and epigenome accompanied a pathological
diagnosis of Alzheimer’s disease, suggesting that they may be
an important contributor to, or consequence of, Alzheimer’s
disease pathology.

Using a time of death analytic approach similar to the present
study, two recent studies have reported diurnal rhythms of the
expression of several hundred genes in several human brain
regions18,19. Our results are largely concordant with these,
both with regard to the overall bimodal clustering of diurnal
acrophases and with regard to the specific timing of canonical
circadian clock genes. The patterns of clock gene expression in
our study are also concordant with our previous study in which
we used microarrays to assess clock gene expression36. Moreover,
the set of genes identified as diurnally rhythmic in our data was
strongly enriched for genes identified as diurnally rhythmic in
two recent studies18,19. We extend these results by showing
concurrent seasonal rhythms of gene expression, which had to
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our knowledge never before been demonstrated in any human
solid organ. Like a recent study of seasonal rhythms of gene
expression in human peripheral blood mononuclear cells and
adipocytes26, we found a bimodal pattern of seasonal gene
expression. Interestingly, the peaks did not correspond to the
peak and trough of seasonal photoperiod. Rather, they were

similar to a prior study in which the clusters of seasonal gene
acrophases lagged the solstices by 1–2 months26. This argues
against photoperiod being the primary driver of these rhythms
and suggests that other environmental (for example, temperature,
whose peaks and troughs lag photoperiod in temperate climates)
or behavioural factors (for example, physical activity), or even an
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endogenous circannual clock, as has been demonstrated in the
European hamster20, may be influencing these rhythms.
Alternatively, these acrophases of gene expression may reflect
the rate of change of photoperiod, which is fastest in the spring
and summer. A recent study demonstrated that the human
dorsolateral prefrontal cortex perfusion response to certain
cognitive tasks displays a seasonal acrophase in the fall,
tracking the rate of change of photoperiod10.

We previously reported diurnal rhythms of DNA methylation
in the human dorsolateral prefrontal cortex. To our knowledge,
circadian rhythms of histone modification previously have not
been examined in the human brain. In this study, we found
prominent diurnal rhythms of H3K9Ac, similar to those
previously reported in mice15. In addition, we found seasonal
rhythms of H3K9Ac and DNA methylation, which have not, to
our knowledge, been previously demonstrated in any mammalian
tissue. Moreover, the timing of diurnal and seasonal rhythms
varied with proximity to active TSS. This suggests that the timing
of diurnal and seasonal regulation of H3K9Ac and DNA
methylation may depend in part on the local transcriptional
state and is in keeping with our previous finding that the timing
of diurnal rhythms of DNA methylation depends on proximity to
nearby active TSS27.

In model organisms, diurnal rhythms of histone modification
and diurnal rhythms of transcription are related15–17. We found
similar relationships in the human dorsolateral prefrontal cortex
with regions near expressed transcripts being relatively enriched
for H3K9Ac peaks with acrophases and DNA methylation sites
with nadirs coincident with or preceding peak transcript
abundance. When we examined seasonal rhythms, a similar
enrichment was seen, although here the enrichment was for DNA
methylation acrophases coincident with, and H3K9Ac acrophases
several months preceding, peak transcript abundance. This delay
may suggest that although seasonal rhythms of H3K9Ac
and DNA methylation may contribute to seasonal rhythms of
transcript expression, other more proximate causal factors must
also be contributing (for example, other epigenetic changes,
derepression of repressors or other factors).

We found a striking relationship between the timing of diurnal
and seasonal rhythms for gene expression and H3K9Ac as well as,
to a lesser degree, DNA methylation. This suggests that shared
mechanisms regulate diurnal and seasonal rhythmicity in the
human dorsolateral prefrontal cortex. Indeed, overlap between
mechanisms regulating circadian and circannual rhythmicity has
been reported at the anatomic37–39 and genetic levels40. In an
exploratory analysis in this study, the effects of the local
transcription factor-binding site environment on the timing of
diurnal and seasonal rhythms overlapped, with the magnitude
and direction of the effect of a transcription factor-binding site on
diurnal rhythms predicting the magnitude and direction of its
effect on seasonal rhythms. Furthermore, the effect of a
transcription factor-binding site on diurnal DNA methylation
rhythms was a better predictor of its effect on transcript rhythms
than its effect on H3K9Ac rhythms, raising the possibility that
DNA methylation rhythms may mediate the link between specific
transcription factors and diurnal and seasonal transcript rhythms.
It is noteworthy that of the 11 transcription factors significantly
associated with the timing of diurnal or seasonal rhythms,
four transcription factors (EZH2 (ref. 41, RBBP5 (refs 42,43),
SP1 (ref. 44) and TBP45) have previously been implicated in the
circadian machinery, reported to bind to members of the
circadian machinery or found to be enriched in the promoter
regions of clock-controlled genes. The role of the remaining seven
genes in regulating seasonal or diurnal rhythms merits further
study. One caveat in interpreting these results is that our binding
site annotations were taken from human cell lines. We are not

aware of genome-wide data sets using transcription factor
ChIP-seq to generate similar annotations for human neocortex;
the results of our hypothesis-generating analysis will guide
targeted experiments to generate such data and will also guide
in vitro validation efforts in human in vitro models, with a goal
of further elucidating transcription factors regulating diurnal
and seasonal epigenetic and transcriptional rhythms in the
human brain.

Concordant with our previous report27, a pathological
diagnosis of Alzheimer’s disease was associated with attenuated
diurnal rhythms of DNA methylation. It was also associated with
attenuated diurnal rhythms of H3K9Ac in some but not other
classes of H3K9 peaks, while no attenuation of diurnal transcript
rhythms was seen. The selective attenuation of rhythms on some
but not other clusters of H3K9Ac peaks and DNA methylation
sites, and the sparing of the amplitude of diurnal transcript
rhythms argues against the possibility that these effects reflect
greater within-group diurnal dyssynchrony in individuals with
Alzheimer’s disease pathology compared to those without, which
has been suggested as an explanation for the attenuation of
diurnal transcript rhythms associated with depression18. If this
were the case, it should affect all diurnal rhythms equally.

Compared to a prior analysis of a subset of these data27,
we found a less robust effect of Alzheimer’s disease pathology on
the phase of diurnal methylation rhythms once we adjusted for
seasonal effects. This reflects in part the different reference time
frame (midnight clock time versus sunrise time) used in the two
analyses. Indeed, in secondary analyses, when we used clock time
as the reference time, the phase delay associated with Alzheimer’s
disease pathology approached statistical significance. In addition,
given the strong association between seasonal and diurnal
rhythms that we have shown here, it is also likely that in the
previous study, there was some confounding of diurnal effects by
seasonal effects, highlighting the importance of adjusting for
seasonal effects when examining diurnal rhythms.

Although we found that pathologic Alzheimer’s disease had
modest effects on the timing of diurnal or seasonal epigenetic
rhythms after controlling for other covariates, the diurnal
transcript rhythms of individuals with Alzheimer’s disease
pathology were phase advanced by almost 1.5 h and their
seasonal rhythms delayed by almost half a month. There are at
least two possible explanations for this observation. First, rhythms
of transcription reflect not only DNA methylation and H3K9Ac
but also other epigenetic marks, and other transcriptional events
such as RNA polymerase binding17,46,47. Alzheimer’s disease
pathology may alter the phase relationship between rhythms of
H3K9Ac, DNA methylation and RNA transcription by affecting
these other processes. Second, post-transcriptional processes
appear to play an important role in determining the timing of
rhythms of transcript abundance17,46,47. MicroRNAs may play an
important role here48 as may rhythms of alternative splicing49.
Alzheimer’s disease pathology may alter post-transcriptional
RNA processing, further decoupling rhythms of H3K9Ac and
DNA methylation from rhythms of transcript abundance.

In considering these data, a few methodological points are
worth noting. As in other recent studies18,19,26, we inferred
group-level average diurnal and seasonal rhythms. Because ethical
considerations preclude serial sampling of neocortical tissue from
living human subjects, we only had one sample per individual,
making exploration of individual level differences impossible.
In addition, we had no data on behavioural state (awake
versus asleep), medical status, environmental conditions (light,
temperature) or activities proximate to death. Therefore, we
cannot distinguish diurnal or seasonal rhythms driven by
intrinsic circadian or circannual clocks, from those reflective
of rhythms in environmental conditions, social environment,
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behaviour or medical health. Third, humans experience both
natural and artificial light, the timing of which may change by
season. Moreover, sleep timing, which is a major influence
on exposure to darkness, is linked to clock time and associated
social schedules rather than natural light exposure. These
considerations complicate the selection of an appropriate
reference time for diurnal rhythms, and also the interpretation
of diurnal and seasonal rhythmicity. However, our results were
robust: results were consistent between our primary analytic
approach using sunrise time (reflective of the timing of natural
light exposure) as the reference time for diurnal analyses, and our
secondary analyses using clock time (linked to artificial light, and
to the timing of sleep and social schedules) or the midpoint of the
dark period (invariant across seasons) as the reference time.
Finally, although this is the largest study to date to examine
diurnal rhythms of gene expression in the human brain and it
provided ample statistical power for group-level comparisons,
our study lacked statistical power to draw firm conclusions about
diurnal and seasonal rhythms at the individual chromosomal
locus level, and, therefore, we did not pursue locus-level analyses.

This study also had a number of methodological strengths. We
measured transcript expression, H3K9Ac and DNA methylation
genome-wide in the same samples, allowing the inference of the
temporal relationships between them. In addition, data were
obtained at all circadian times and dates of death, and at a
relatively high temporal density, allowing greater precision than
would be provided by less frequent sampling. Moreover, as all
participants were organ donors, both time and date of death were
relatively accurately determined, and post-mortem intervals were
short. Also, we simultaneously considered both diurnal and
seasonal effects in the same model, allowing us to characterize
their independent contributions. Further, the participants were
clinically well characterized, allowing us to examine the impact
of key brain disorders like pathologic Alzheimer’s disease, on
human dorsolateral prefrontal cortex diurnal and seasonal genetic
and epigenetic rhythms. Finally, the brain tissue was obtained
from two prospective cohort studies with extraordinarily high
rates of follow-up and autopsy, minimizing bias due to selective
attrition.

Considered together, these results highlight a multilevel
architecture of interrelated diurnal and seasonal rhythms of gene
expression and epigenetic modification in the human dorsolateral
prefrontal cortex, with shared regulatory mechanisms. Moreover,
they suggest that changes in the amplitude, timing or phase
relationships of these molecular rhythms may be contributors to,
or consequences of, Alzheimer’s disease pathology. Larger human
studies sampling multiple brain regions, or even multiple organs,
are needed to provide locus-level spatial resolution while linking
these molecular diurnal and seasonal events to key nodes (such as
the suprachiasmatic nucleus) thought to play roles in circadian
and circannual rhythmicity. Meanwhile, work in vitro and in
model organisms is needed to better delineate regulatory
mechanisms suggested by our analyses.

Methods
Study participants. Data from participants in two ongoing longitudinal cohort
studies of older persons were included in this study: the Rush MAP and the ROS.
The ROS is a longitudinal study of ageing in Catholic brothers, nuns and priests
from across the United States50. The MAP is a community-based study of ageing in
the greater Chicago area51. Participants in both studies are free of known dementia
at study enrolment, and agree to annual evaluations and brain donation on death.
At the time of the current analyses, 680 ROS participants and 726 MAP
participants had died and had autopsies performed. Because all ROS and MAP
participants are organ donors, date and time of death are generally well captured in
the vast majority of participants. We excluded from further analysis data from 215
dorsolateral prefrontal cortex samples where time or date of death or other clinical
covariate data (see below) were not available.

Of the 1191 samples for whom these data were available, dorsolateral prefrontal
cortex RNA expression data passing quality control criteria (see below) were
available from 531 samples, DNA methylation data passing quality control criteria
(see below) were available from 732 samples and H3K9Ac ChIP-seq data passing
quality control criteria (see below) were available from 664 samples. Data from
these participants were included in the current analyses. Their characteristics are
shown in Table 1 and the overlap between these sets is shown in Fig. 1.

Statement of ethics approval. This study was approved by the Institutional
Review Board of Rush University Medical Centre and was conducted in accordance
with the latest version of the Declaration of Helsinki. All participants provided
written informed consent, and an Anatomic Gift Act for organ donation.

Evaluation of transcript expression. RNA was extracted from dorsolateral
prefrontal cortex blocks with the miRNeasy Mini Kit (Qiagen, Venlo, The
Netherlands) and the RNase-free DNase Set (Qiagen). RNA concentration was
quantified by Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA) and an
Agilent Bioanalyser was used to assess quality. Samples from which o5 mg of RNA
were obtained, or samples with a Bioanalyser RNA integrity score of 5 or less, were
excluded from further analysis. The strand-specific dUTP method52 with poly-A
selection53 was used by the Broad Institute Genomics Platform to prepare the
RNA-seq library. Poly-A selection was followed by first-strand-specific cDNA
synthesis, with dUTP used for second-strand-specific cDNA synthesis, followed by
fragmentation and Illumina adapter ligation for library construction. An Illumina
HiSeq machine was used to perform sequencing with 101 bp paired-end reads,
achieving a coverage of 150M reads for the first 12 samples, which served as a deep
coverage reference. The remaining samples were sequenced with coverage of 50M
reads. Next, beginning and ending low-quality bases and adapter sequences were
trimmed from the reads, and ribosomal RNA reads were removed. The Bowtie 1
software package54 was used to align the trimmed reads to the reference genome.
Finally, the RSEM software package was used to estimate, in units of fragments per
kilobase per million mapped fragments (FPKMs), expression levels for 55,889
individual GENCODE v14 genes, and 190,051 distinct GENCODE v14 isoforms.
These data are available through the synapse.org AMP-AD Knowledge Portal
(http: //www.synapse.org; SynapseID syn3388564). We analysed only genes and
transcripts on autosomal chromosomes, and excluded genes and transcripts
expressed in o90% of our samples, leaving 18,709 individual GENCODE
v14 genes and 42,873 individual GENCODE v14 isoforms in these analyses.
All FPKM values were log-transformed before further analysis. Principal
component analysis was used to assess sample quality, and only those samples
with principal components 1, 2 and 3 values within 3 s.d. from their respective
means were included. Data from 531 samples meeting quality control criteria
as above, and with full clinical data as described below, were included in this
analysis.

Evaluation of DNA methylation. We assessed DNA methylation in 746
dorsolateral prefrontal cortex samples as described previously27,28. Frozen 100 mg
dorsolateral prefrontal cortex blocks were thawed on ice and grey matter manually
dissected and the QIAamp DNA Mini Kit (Qiagen) was used to extract DNA. The
Quant-iT PicoGreen Kit (Life Technologies, Carlsbad, CA, USA) was used to
measure DNA concentration. The Illumina Infinium HumanMethylation450k
Bead Chip Assay (Illumina) was used by the Broad Institute’s Genomics Platform
(Cambridge, MA, USA) to assay 16 ml of DNA from each sample at a concentration
of 50 ng ml� 1. The Methylation Module v.1.8 from the Genome Studio software
suite (Illumina) was used to carry out colour channel normalization and
background removal, and to generate b values and detection P values for 485,513
CpG site across the human genome. These data are available through the
synapse.org AMP-AD Knowledge Portal (http: //www.synapse.org SynapseID
syn3157275). Probes with detection P values40.01 in any samples, with 47/50
nucleotides matching sex chromosome sequences during sequence alignment with
BLAT, in which a single-nucleotide polymorphism with a minor allele frequency
Z0.01 exists within 10 bp upstream or downstream of the CpG site, or on a sex
chromosome were excluded from further analysis. This left 420,132 autosomal
CpGs in the data set. Principal component analysis was used to assess sample
quality, and only those samples with principal components 1, 2 and 3 values within
3 s.d. from their respective means were included. As well, samples in which at least
2 out of the 10 bisulfite conversion control probes failed to reach a value of 0.8 were
excluded. Data from 732 samples meeting quality control criteria as above, and
with full clinical data as described below, were included in these analyses.

Evaluation of H3K9Ac. Grey matter was dissected on ice from blocks of
dorsolateral prefrontal cortex, minced and crosslinked with 1% formaldehyde
at room temperature for 15 min and quenched with 0.125 M glycine. After
homogenizing the tissue in cell lysis buffer using the Tissue Lyser and a 5 mm
stainless-steel bead, the nuclei were lysed in cell lysis buffer and chromatin was
sheared by sonication. Chromatin was incubated overnight at 4 �C with the
Millipore anti-H3K9Ac monoclonal antibodies (catalogue no. 06-942, lot no.:
31636) and purified with protein A sepharose beads. Finally, extracted DNA was
used for Illumina library construction following usual methods and sequenced with
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36 bp single-end reads on the Illumina HiSeq. Reads were aligned by the BWA
algorithm against the human reference genome GRCh37 (ref. 55). MACS2 was
applied for peak detection to each sample separately using the broad peak option
and a q value cutoff of 0.001 (ref. 56). Pooled genomic DNA of seven samples was
used as negative control. These data are available through the synapse.org AMP-
AD Knowledge Portal (http: //www.synapse.org SynapseID syn4896408). Five
different quality filters were used to remove low-quality samples57: (i) Z15� 106

unique reads, (ii) non-redundant fractionZ0.3, (iii) cross-correlationZ0.03, (iv)
fraction of reads in peaksZ0.05 and (v) Z6,000 peaks. After quality control, 669
out of 712 samples remained. H3K9Ac domains were defined by calculating all
genomic regions that were detected as a peak in at least 100 (15%) of our 669
samples. Regions neighboured within 100 bp were merged and very small
regions of o100 bp were removed. In total, we obtained 26,384 H3K9Ac domains.
A subset of 25,740 of these domains were located on autosomal chromosomes and
used for subsequent analyses. To quantify H3K9Ac, we counted the number of
reads falling into each H3K9Ac domain for each sample, divided by the width of
each domain in kilobases and by the total number of mapped reads in each sample,
and scaled this to obtain units of FPKMs. FPKM values were log-transformed
before analysis. Data from 664 samples meeting the quality control criteria as
above, and with full clinical data as described below, were included in these
analyses.

Assessment of clinical covariates. We computed age at death from the
self-reported date of birth and the date of death. We recorded sex at the time of the
baseline interview.

The time of sunrise on the day of death was computed from the recorded date
of death, and the latitude and longitude of the city in which each participant died.

Depressive symptoms were assessed with a 10-item version of the Centre for
Epidemiologic Studies Depression scale51.

Alzheimer’s disease pathology was quantified as described previously58,59.
Neurofibrillary tangles, diffuse plaques and neuritic plaques were visualized by
Bielschowsky silver staining in sections from the frontal, temporal, parietal and
entorhinal cortices and the hippocampus. As described in prior publications59,
a continuous global measure of the overall burden of Alzheimer’s disease pathology
was calculated by quantifying the highest density of each of neurofibrillary tangles,
diffuse plaques and neuritic plaques per 1 mm2 in sections from the frontal,
temporal, parietal, hippocampal and entorhinal cortices of each participant, scaling
these values using the s.d. of all participants, and then averaging across the four
brain regions and three pathologies (tangles, and diffuse and neuritic plaques) to
generate a summary score. As described previously58, for a categorical pathological
diagnosis of Alzheimer’s disease, cases were classified as no Alzheimer’s disease,
low-likelihood Alzheimer’s disease, intermediate likelihood Alzheimer’s disease or
high likelihood Alzheimer’s disease based on the National Institutes of Ageing-
Reagan criteria60; a participant was considered to have a pathological diagnosis of
Alzheimer’s disease if their National Institutes of Ageing -Reagan classification was
‘intermediate likelihood’ or ‘high likelihood’.

Statistical analyses of diurnal and seasonal rhythmicity. We concurrently
characterized independent diurnal and seasonal patterns in the expression of
each of the 18,709 genes using cosine functions, considering each transcript as a
function date of death and time of death relative to sunrise on the date of death
(‘ZT’, which is reflective of the timing of natural light exposure), adjusted for age at
death, sex, post-mortem interval, the burden of Alzheimer’s disease pathology, the
presence/absence of depressive symptoms and technical covariates (batch, RNA
integrity score for RNA-seq data, sample cross-correlation for H3K9Ac ChIP-seq
data) as follows:

E Yð Þ ¼ b0 þ
Xn

i¼1

bixi þAd cos t�fdð ÞþAs cos d�fsð Þ ð1Þ

where t is the ZT, and d is the date of death, Ad is the amplitude of diurnal
rhythmicity, As is the amplitude of seasonal rhythmicity, fd is the time of the
acrophase of diurnal rhythmicity and fs is the date of the acrophase of seasonal
rhythmicity. For these analyses, the diurnal period was fixed at 24 h and the
seasonal period was fixed at 365 days. This is a limitation of any study design
where each individual contributes only one data point to each 24-h or 365-day
sampling period. All times of death were converted to radians (2p radians¼ 24 h;
0 radians¼ sunrise) for analysis and then converted back to hours for the
purposes of visual representation. Dates of death were similarly converted to
radians (2p radians¼ 365 days; 0 radians¼ January 1). In secondary analyses,
we repeated all analyses using two alternative reference times: local clock time
(with ZT0¼midnight), to which the timing of artificial light exposure is
linked, and the midpoint between sunset and sunrise, which is invariant across
the seasons. For computational efficiency, we fit equivalent linearized models
of the form

E Yð Þ ¼ b0 þ
Xn

i¼1

bixiþ bdcos
cos tð Þþ bdsin

sin tð Þþbscos
cos dð Þþbssin

sin dð Þ

ð2Þ

and, Ad, fd, As and fs from equation (1) were calculated using the formulae

Ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

dcos
þ b2

dsin

q
ð3Þ

As ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

scos
þ b2

ssin

q
ð4Þ

fd ¼ atan2
bdsin

bdcos

� �
ð5Þ

fs ¼ atan2
bssin

bscos

� �
ð6Þ

To quantify the contribution of diurnal rhythmicity to the model fit in equation (2)
for each transcript, independent of the effects of seasonal rhythmicity, we com-
pared the residual sum of squares for equation (2) to that of a reduced model
without the diurnal terms

EðYÞ ¼ b0 þ
Xn

i¼1

bixi þ bscos
cos dð Þþ bssin

sin dð Þ ð7Þ

and determined the F-statistic

Fd ¼
RSSEq7 �RSSEq2
� �

=2
n� 17

ð8Þ

The greater the contribution of diurnal rhythmicity to the overall model fit, the
greater the value of Fd. In similar way, we quantified the contribution of seasonal
rhythmicity to the model fit in equation (2) by comparing the residual sum squares
for equation (2) to that of a reduced model without the seasonal terms and
determined the corresponding F-statistic.

We then repeated the above analyses for each of the 42,873 individual isoforms,
25,740 autosomal H3K9Ac peaks and 420,132 autosomal DNA methylation sites.

We generated a list of putatively rhythmic genes by calculating the
corresponding P value and setting a threshold of Po0.05. We compared this list of
putatively diurnally rhythmic genes to three other published data sets (the
dorsolateral prefrontal cortex data from Li et al.18, and the BA47 and BA11
data from Chen et al.19), examining for enrichment using the w2-test. For the
data from Li et al.18, only data from the top 50 most rhythmic transcripts were
available for comparison, and we considered only transcripts identified as
diurnally rhythmic in the dorsolateral prefrontal cortex at Po0.05. For the
data from Chen et al.19, we considered all transcripts considered diurnally
rhythmic at Po0.05 in BA11 or BA47. Next, we compared the time of peak
expression of core circadian clock genes (as annotated by GENECARDS61)
between our data and these two other data sets by calculating circular correlation
coefficients.

Next, we quantified the degree of diurnal rhythmicity across all 18,709 genes or
42,873 transcripts by computing the median Fd across all transcripts in the
observed data (Fd_observed). To compute an empiric P value, we compared this to
the median Fd across all transcripts in each of 10,000 null data sets (Fd_null)
generated by randomly shuffling the times of death, and determined the proportion
of null data sets for which Fd_null4Fd_observed. We then did the same for seasonal
rhythmicity, using null data sets generated by randomly shuffling dates rather than
times of death. Then, we repeated these analyses for the 25,740 autosomal H3K9Ac
peaks and 420,132 autosomal DNA methylation sites.

We next examined for patterns in the timing of diurnal and seasonal rhythms
of RNA expression. By visual inspection, and in keeping with prior work19,26,
transcript diurnal and seasonal acrophase times were bimodally distributed. Based
on this, we used self-organizing maps with toroidal grids to empirically define two
diurnal and two seasonal clusters, and to classify each transcript into these clusters.
The resulting diurnal clusters were roughly centred in the morning (BZT0) and in
the evening (BZT12), and the resulting seasonal clusters were roughly centred in
the spring and the fall. We examined the association between diurnal and seasonal
classification by calculating the w2-statistic for the corresponding 2� 2 contingency
table using the observed data (w2

obs), comparing this to the corresponding w2-
statistics computed by repeating these procedures on 10,000 empiric null data sets
generated by shuffling both the times and dates of death (w2

null), and calculating an
empiric P value by determining the proportion of 10,000 null data sets in which
w2

null4w2
obs. We then repeated this analysis for the H3K9Ac and DNA

methylation data, except that for the DNA methylation data, we considered the
time of the nadir rather than acrophase of methylation, as hypomethylation rather
than hypermethylation is classically associated with transcription. Finally, as a
sensitivity analysis, we repeated these analyses considering only those transcripts/
peaks/sites that were both seasonally rhythmic and diurnally rhythmic at Po0.05.

We previously showed that for rhythms of DNA methylation, the time of the
diurnal acrophase varies depending on distance from the nearest TSS27. We
investigated whether this was also true for diurnal rhythms of H3K9Ac by dividing
H3K9Ac peaks into two groups—those within 2,000 bp of active TSS, and those
more than 2,000 bp away from such TSS, where we defined active as corresponding
to a transcript expressed in more than 90% of our samples. We compared the
angular distributions of the diurnal acrophases of the H3K9Ac peaks in these two
groups in the observed data by computing the Mardia–Watson–Wheeler
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W-statistic (Wd_observed) and compared this to the corresponding W-statistic for
each of 10,000 null data sets generated by randomly shuffling times of death
(Wd_null), and calculated an empiric P value by determining the proportion of
10,000 null data sets where Wd_null4Wd_observed. We then did the same for the
angular distribution of seasonal acrophases, using null data sets generated by
shuffling dates of death. Next, we examined whether the classification of individual
peaks into diurnal/seasonal clusters differed between the two groups of H3K9Ac
peaks by calculating the w2-statistic, w2

observed, for the corresponding 4� 2
contingency table (4 possible seasonal/diurnal classes� 2 groups of H3K9Ac
peaks), comparing this to the corresponding w2-statistics generated by repeating the
above procedure on 10,000 null data sets generated by shuffling times and dates of
death, and calculating an empiric P value by determining the proportion of 10,000
null data sets in which w2

null4w2
observed. We then repeated the above procedure for

DNA methylation sites. Finally, as a sensitivity analysis, we repeated these analyses
considering only those transcripts/peaks/sites that were both seasonally and
diurnally rhythmic at Po0.05.

Both H3K9Ac and DNA methylation are thought to influence transcription.
Therefore, we examined associations between the timing of rhythms of transcript
abundance and the timing of rhythms of H3K9Ac and DNA methylation at nearby
sites. We first examined diurnal rhythms of H3K9Ac, using the 471 samples where
both sets of data were available.

We considered two groups of H3K9Ac peaks: those within 2 kb of the TSS of
transcripts empirically classified as morning acrophase, and those within 2 kb of
the TSS of transcripts empirically classified as evening acrophase, and compared
the angular distributions of their diurnal acrophases using the Mardia–Watson–
Wheeler W-statistic as above, computing an empiric P value by comparing this to
the equivalent W-statistic calculated on 10,000 null data sets generated by
randomly shuffling times of death. We then determined whether the two groups
differed in the proportion of H3K9Ac peaks classified as morning or evening by
calculating the corresponding w2 statistic, and computing an empiric P value by
comparison with the equivalent w2-statistic calculated from 10,000 null data sets
generated by shuffling times of death. After considering diurnal rhythms of
H3K9Ac as above, we then repeated this analysis considering seasonal rhythms.
Next, we repeated these analyses for DNA methylation sites using the 527 samples
with both RNA-seq and DNA methylation data. Finally, as a sensitivity analysis, we
repeated these analyses considering only those transcripts/peaks/sites that were
seasonally or diurnally rhythmic at Po0.05.

The local transcription factor environment has an important influence on the
circadian timing of transcription in model systems31. Therefore, we examined the
association between local transcription factor-binding sites on the timing of diurnal
and seasonal acrophases/nadirs of transcript expression, H3K9Ac and DNA
methylation. To do so, we used genome-wide-annotated binding sites for 161
transcription factors from the ENCODE project32–34. We considered a TSS,
H3K9Ac peak or DNA methylation site to be locally associated with a transcription
factor if it overlapped with one of its ENCODE-annotated binding sites, or was
within 2,000 bp of it. We empirically classified transcripts, H3K9Ac peaks and
DNA methylation sites into diurnal and seasonal clusters as above.

We then used logistic regression models of the form

logit spring versus fallð Þ ¼ b1TF1 þ b2TF2 þ � � � þ b161TF161 ð9Þ

to examine the independent association of the local presence of binding sites for
each of the 161 ENCODE transcription factors with the odds of having a spring
versus fall or evening versus morning transcript, H3K9Ac peak or DNA
methylation site. We estimated uncorrected P values and analysis-wide FDRs by
comparing the effect estimates above to those generated from 10,000 null data sets
generated by randomly shuffling times or dates of death. We identified a set of
candidate transcription factors potentially involved in regulating diurnal and/or
seasonal rhythmicity if their binding sites had an FDRo0.05 for one of diurnal or
seasonal rhythmicity for any of RNA, H3K9Ac or DNA methylation. As a
sensitivity analysis, we repeated this procedure considering only transcripts,
H3K9Ac peaks or DNA methylation sites with Po0.05 for diurnal or seasonal
rhythmicity, and calculated Spearman’s correlation coefficients relating the
transcription factor effect estimates estimated on the basis of all transcripts/
H3K9Ac peaks/DNA methylation sites, and those estimated on the basis of only
those transcripts/H3K9Ac peaks/DNA methylation sites with Po0.05 for diurnal
or seasonal rhythmicity.

Next, to examine for shared regulatory effects of these transcription
factor-binding sites on diurnal and seasonal rhythmicity, we plotted their estimated
coefficients for diurnal versus seasonal rhythmicity for each of transcript
expression, H3K9Ac and DNA methylation, and calculated Spearman’s correlation
coefficients. Next, to examine for shared regulatory effects of these transcription
factor-binding sites on transcript and epigenetic diurnal rhythms, we calculated
Spearman’s correlation coefficients relating to their effects on diurnal transcript
versus epigenetic rhythms (H3K9Ac and DNA methylation). We then repeated this
for seasonal rhythms.

Brain disorders such as Alzheimer’s disease35 have been shown to have an
impact on physiological markers of circadian rhythmicity. To examine the impact
of Alzheimer’s disease on the amplitude and timing of rhythms of transcript

expression, H3K9Ac and DNA methylation, we augmented equation (4) as follows:

E Yð Þ ¼ b0 þ
Xn

i¼1

bixi þ b0
dcos
þ
Xm

j¼1

bj
dcos

yj þ bAD
dcos

AD

 !
cos tð Þ

þ b0
dsin
þ
Xm

j¼1

bj
dsin

yj þbAD
dsin

AD

 !
sin tð Þ

þ b0
scos
þ
Xm

j¼1

bj
scos

yj þ bAD
scos

AD

 !
cos dð Þþ b0

ssin
þ
Xm

j¼1

bj
ssin

yj þbAD
ssin

AD

 !
sin dð Þ

ð10Þ
where y1 and y2 are age at death and male sex.

Here, the relative amplitudes of diurnal and seasonal rhythmicity in individuals
with Alzheimer’s disease are given by

AAD
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0

dcos
þ bAD

dcos

� �2
þ b0

dsin
þ bdsin

AD
� �2

r
Y

ð11Þ

AAD
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0

scos
þ bAD

scos

� �2
þ b0

ssin
þbAD

ssin

� �2
r

Y
ð12Þ

and the relative amplitudes of diurnal and seasonal rhythmicity in individuals
without Alzheimer’s disease are given by

AnoAD
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0

dcos

� �2
þ b0

dsin

� �2
r

Y
ð13Þ

AnoAD
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0

scos

� �2
þ b0

ssin

� �2
r

Y
ð14Þ

Moreover, the acrophases of diurnal and seasonal rhythmicity in individuals with
Alzheimer’s disease are given by

fAD
d
¼ atan2

b0
dsin
þ bAD

dsin

b0
dcos
þ bAD

dcos

 !
ð15Þ

fAD
s
¼ atan2

b0
ssin
þbAD

ssin

b0
scos
þbAD

scos

 !
ð16Þ

and the acrophases of diurnal and seasonal rhythmicity in individuals without
Alzheimer’s disease are given by

fnoAD
d

¼ atan2
b0

dsin

b0
dcos

ð17Þ

fnoAD
s

¼ atan2
b0

ssin

b0
scos

ð18Þ

To depict graphically the association between a pathological diagnosis of Alzheimer’s
disease and the timing of transcript rhythms, we classified each transcript into
diurnal and seasonal classes as above, based on the model predicted acrophase for
samples without Alzheimer’s disease, and separately plotted the model-predicted
diurnal and seasonal acrophase times for those with Alzheimer’s disease. To more
formally quantify the association between a pathological diagnosis of Alzheimer’s
disease and the timing of transcript rhythms, we calculated the median difference in
predicted acrophase timing between individuals with and without Alzheimer’s
disease, first considering all transcripts and then considering separately transcripts in
each of the four temporal classes. This procedure was repeated in 10,000 null data
sets generated by shuffling times of death to generate empiric P values. We then
repeated this procedure for seasonal acrophases. To quantify the effect of Alzheimer’s
disease on the amplitude of transcript rhythms, we calculated the median difference
in relative amplitude between individuals with and without Alzheimer’s disease, first
considering all transcripts, and then considering separately transcripts in each of the
four temporal clusters. This procedure was repeated in 10,000 null data sets
generated by shuffling times of death to generate empiric P values. We then repeated
this procedure for the relative amplitude of seasonal rhythms. As a sensitivity
analysis, we then repeated the above considering only those transcripts with
individual Po0.05 for both diurnal and seasonal rhythmicity. Finally, we repeated
the above analyses for the H3K9Ac peaks, and DNA methylation sites.

Data availability. RNA-seq data that support the findings of this study have been
deposited in the synapse.org AMP-AD knowledge portal with the accession code
syn3388564 (https://www.synapse.org/#!Synapse:syn3388564). H3K9Ac
ChIP-seq data that support the findings of this study have been deposited in the
synapse.org AMP-AD knowledge portal with the accession code syn4896408
(https://www.synapse.org/#!Synapse:syn4896408). DNA methylation data that
support the findings of this study have been deposited in the synapse.org AMP-AD
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knowledge portal with the accession code syn3157275 (https://www.synapse.org/
#!Synapse:syn3157275).

References
1. McMurry, L. & Hastings, J. W. Circadian rhythms: mechanism of luciferase

activity changes in Gonyaulax. Biol. Bull. 143, 196–206 (1972).
2. Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A. & Dijk, D. J. Circadian

temperature and melatonin rhythms, sleep, and neurobehavioral function in
humans living on a 20-h day. Am. J. Physiol. 277, R1152–R1163 (1999).

3. Darwent, D. et al. Contribution of core body temperature, prior wake time, and
sleep stages to cognitive throughput performance during forced desynchrony.
Chronobiol. Int. 27, 898–910 (2010).

4. Yanovsky, M. J. & Kay, S. A. Molecular basis of seasonal time measurement in
Arabidopsis. Nature 419, 308–312 (2002).

5. Kondo, N. et al. Circannual control of hibernation by HP complex in the brain.
Cell 125, 161–172 (2006).

6. Mirmiran, M. et al. Circadian rhythms and the suprachiasmatic nucleus in
perinatal development, aging and Alzheimer’s disease. Prog. Brain Res. 93,
151–163 (1992).

7. Satlin, A., Volicer, L., Stopa, E. G. & Harper, D. Circadian locomotor activity
and core-body temperature rhythms in Alzheimer’s disease. Neurobiol. Aging
16, 765–771 (1995).

8. Rosenthal, N. E. et al. Seasonal affective disorder. A description of the
syndrome and preliminary findings with light therapy. Arch. Gen. Psychiatry
41, 72–80 (1984).

9. Owens, N. & McGorry, P. D. Seasonality of symptom onset in first-episode
schizophrenia. Psychol. Med. 33, 163–167 (2003).

10. Meyer, C. et al. Seasonality in human cognitive brain responses. Proc. Natl
Acad. Sci. USA 113, 3066–3071 (2016).

11. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in
transgenic rats. Science 288, 682–685 (2000).

12. Yamamoto, T. et al. Transcriptional oscillation of canonical clock genes in
mouse peripheral tissues. BMC Mol. Biol. 5, 18 (2004).

13. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian
dynamics reveals persistent circadian oscillations in mouse peripheral tissues.
Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

14. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B.
A circadian gene expression atlas in mammals: implications for biology and
medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

15. Koike, N. et al. Transcriptional architecture and chromatin landscape of the
core circadian clock in mammals. Science 338, 349–354 (2012).

16. Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory
RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16,
833–845 (2012).

17. Le Martelot, G. et al. Genome-wide RNA polymerase II profiles and RNA
accumulation reveal kinetics of transcription and associated epigenetic changes
during diurnal cycles. PLoS Biol. 10, e1001442 (2012).

18. Li, J. Z. et al. Circadian patterns of gene expression in the human brain
and disruption in major depressive disorder. Proc. Natl Acad. Sci. USA 110,
9950–9955 (2013).

19. Chen, C. Y. et al. Effects of aging on circadian patterns of gene expression in the
human prefrontal cortex. Proc. Natl Acad. Sci. USA 113, 206–211 (2015).

20. Saenz de Miera, C. et al. A circannual clock drives expression of genes central
for seasonal reproduction. Curr. Biol. 24, 1500–1506 (2014).

21. Stevenson, T. J. & Prendergast, B. J. Reversible DNA methylation regulates
seasonal photoperiodic time measurement. Proc. Natl Acad. Sci. USA 110,
16651–16656 (2013).

22. Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences
in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427
(2013).

23. Thompson, C. K. et al. Seasonal changes in patterns of gene expression in avian
song control brain regions. PLoS ONE 7, e35119 (2012).

24. Alvarado, S., Mak, T., Liu, S., Storey, K. B. & Szyf, M. Dynamic changes in
global and gene-specific DNA methylation during hibernation in adult
thirteen-lined ground squirrels, Ictidomys tridecemlineatus. J. Exp. Biol. 218,
1787–1795 (2015).

25. Footitt, S., Muller, K., Kermode, A. R. & Finch-Savage, W. E. Seed
dormancy cycling in Arabidopsis: chromatin remodelling and regulation of
DOG1 in response to seasonal environmental signals. Plant J. 81, 413–425
(2015).

26. Dopico, X. C. et al. Widespread seasonal gene expression reveals annual
differences in human immunity and physiology. Nat. Commun. 6, 7000
(2015).

27. Lim, A. S. et al. 24-hour rhythms of DNA methylation and their relation with
rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS
Genet. 10, e1004792 (2014).

28. De Jager, P. L. et al. Alzheimer’s disease: early alterations in brain DNA
methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17,
1156–1163 (2014).

29. Bennett, D. A. et al. Epigenomics of Alzheimer’s disease. Transl. Res. 165,
200–220 (2015).

30. Daan, S., Merrow, M. & Roenneberg, T. External time–internal time. J. Biol.
Rhythms 17, 107–109 (2002).

31. Ueda, H. R. et al. System-level identification of transcriptional circuits
underlying mammalian circadian clocks. Nat. Genet. 37, 187–192 (2005).

32. Wang, J. et al. Factorbook.org: a Wiki-based database for transcription
factor-binding data generated by the ENCODE consortium. Nucleic Acids Res.
41, D171–D176 (2013).

33. Wang, J. et al. Sequence features and chromatin structure around the genomic
regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812
(2012).

34. Gerstein, M. B. et al. Architecture of the human regulatory network derived
from ENCODE data. Nature 489, 91–100 (2012).

35. Hatfield, C. F., Herbert, J., van Someren, E. J., Hodges, J. R. & Hastings, M. H.
Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of
home-dwelling patients with early Alzheimer’s dementia. Brain 127, 1061–1074
(2004).

36. Lim, A. S. et al. Sex difference in daily rhythms of clock gene expression in the
aged human cerebral cortex. J. Biol. Rhythms 28, 117–129 (2013).

37. Sumova, A., Travnickova, Z., Peters, R., Schwartz, W. J. & Illnerova, H. The rat
suprachiasmatic nucleus is a clock for all seasons. Proc. Natl Acad. Sci. USA 92,
7754–7758 (1995).

38. Stoleru, D. et al. The Drosophila circadian network is a seasonal timer. Cell 129,
207–219 (2007).

39. Farajnia, S., van Westering, T. L., Meijer, J. H. & Michel, S. Seasonal induction
of GABAergic excitation in the central mammalian clock. Proc. Natl Acad. Sci.
USA 111, 9627–9632 (2014).

40. Pegoraro, M., Gesto, J. S., Kyriacou, C. P. & Tauber, E. Role for circadian clock
genes in seasonal timing: testing the Bunning hypothesis. PLoS Genet. 10,
e1004603 (2014).

41. Etchegaray, J. P. et al. The polycomb group protein EZH2 is required
for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215
(2006).

42. Wang, X. et al. MLL1, a H3K4 methyltransferase, regulates the
TNFalpha-stimulated activation of genes downstream of NF-kappaB. J. Cell Sci.
125, 4058–4066 (2012).

43. Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the
oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414–1421
(2010).

44. Li, Y. et al. DNA binding, but not interaction with Bmal1, is responsible for
DEC1-mediated transcription regulation of the circadian gene mPer1. Biochem.
J. 382, 895–904 (2004).

45. Bozek, K., Rosahl, A. L., Gaub, S., Lorenzen, S. & Herzel, H. Circadian
transcription in liver. Biosystems 102, 61–69 (2010).

46. Koike, N. et al. Transcriptional architecture and chromatin landscape of the
core circadian clock in mammals. Science 338, 349–354 (2012).

47. Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-Seq
reveals novel features of mouse circadian transcriptional regulation. eLife 1,
e00011 (2012).

48. Du, N. H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape
circadian hepatic gene expression on a transcriptome-wide scale. eLife 3,
e02510 (2014).

49. McGlincy, N. J. et al. Regulation of alternative splicing by the circadian clock
and food related cues. Genome Biol. 13, R54 (2012).

50. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and
findings from the religious orders study. Curr. Alzheimer Res. 9, 628–645
(2012).

51. Bennett, D. A. et al. Overview and findings from the rush Memory and Aging
Project. Curr. Alzheimer Res. 9, 646–663 (2012).

52. Levin, J. Z. et al. Comprehensive comparative analysis of strand-specific RNA
sequencing methods. Nat. Methods 7, 709–715 (2010).

53. Adiconis, X. et al. Comparative analysis of RNA sequencing methods for
degraded or low-input samples. Nat. Methods 10, 623–629 (2013).

54. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10, R25 (2009).

55. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

56. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9,
R137 (2008).

57. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and
modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

58. Bennett, D. A. et al. Neuropathology of older persons without cognitive
impairment from two community-based studies. Neurology 66, 1837–1844 (2006).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14931 ARTICLE

NATURE COMMUNICATIONS | 8:14931 | DOI: 10.1038/ncomms14931 | www.nature.com/naturecommunications 15

https://www.synapse.org/#!Synapse:syn3157275
https://www.synapse.org/#!Synapse:syn3157275
http://www.nature.com/naturecommunications


59. Bennett, D. A. et al. Apolipoprotein E epsilon4 allele, AD pathology, and the
clinical expression of Alzheimer’s disease. Neurology 60, 246–252 (2003).

60. National Institute on Aging and Reagan Institute Working Group of Diagnostic
Criteria for the Neuropathological Assessment of Alzheimer’s Disease.
Consensus recommendations for the postmortem diagnosis of Alzheimer’s
disease. Neurobiol. Aging 18, S1–S2 (1997).

61. Stelzer, G. et al. In silico human genomics with GeneCards. Hum. Genom. 5,
709–717 (2011).

Acknowledgements
This research was supported in part by National Institutes of Health (http://www.nih.
gov) grants P30AG10161 (to DAB), R01AG15819 (to DAB), R01AG17917 (to DAB)
R01AG36042 (to DAB), R01AG36836 (to PLDJ), U01AG046152 (to PLDJ) and
Canadian Institutes of Health Research (http: //www.cihr-irsc.gc.ca) grants MOP125934 (to
ASPL), MMC112692 (to ASPL) and MSH136642 (to ASPL). Computations were performed
on the General Purpose Cluster supercomputer at the SciNet HPC Consortium. SciNet is
funded by the Canada Foundation for Innovation (http://www.innovation.ca) under the
auspices of Compute Canada; the Government of Ontario (http://www.ontario.ca); Ontario
Research Fund—Research Excellence (http://www.ontario.ca/business-and-economy/
ontario-research-fund-research-excellence); and the University of Toronto
(http://www.utoronto.ca). The funders had no role in study design, data collection and
analysis, decision to publish or preparation of the manuscript.

Author contributions
Conceptualization: A.S.P.L., P.L.D.J.; methodology: A.S.P.L., H.-U.K., J.X., P.L.D.J.;
software: A.S.P.L., H.-U.K., S.A., J.X.; formal analysis: A.S.P.L., H.-U.K., S.A., L.B.C., L.Y.;
investigation: H.-U.K., J.X., P.L.D.J.; resources: A.S.P.L., D.A.B., P.L.D.J.; writing—

original draft: A.S.P.L., H.-U.K., J.X.; writing—review and editing: A.S.P.L., H.-U.K., L.Y.,
L.B.C., S.A., J.X., D.A.B., P.L.D.J.; supervision: A.S.P.L., D.A.B., P.L.D.J.; funding
acquisition: P.L.D.J., D.A.B., A.S.P.L.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Lim, A. S. P. et al. Diurnal and seasonal molecular rhythms in
human neocortex and their relation to Alzheimer’s disease. Nat. Commun. 8, 14931
doi: 10.1038/ncomms14931 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14931

16 NATURE COMMUNICATIONS | 8:14931 | DOI: 10.1038/ncomms14931 | www.nature.com/naturecommunications

http: //www.nih.gov
http: //www.nih.gov
http: //www.cihr-irsc.gc.ca
http://www.innovation.ca
http://www.ontario.ca
http://www.ontario.ca/business-and-economy/ontario-research-fund-research-excellence
http://www.ontario.ca/business-and-economy/ontario-research-fund-research-excellence
http://www.utoronto.ca
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Diurnalsolseasonal rhythms in the transcriptome and epigenome

	Table 1 
	Relation of diurnal to seasonal rhythms

	Figure™1Subsets of samples with RNA-seq H3K9Ac and DNA methylation data.Number of participants with RNA-seq, H3K9Ac ChIP-seq or DNA methylation data available, or combinations of the 3
	Figure™2Distribution of times and dates of death.(a) Distribution of times and dates of death for the samples used in this study. (b) Relationship between time and date of death. n=757
	Figure™3Diurnal and seasonal rhythms of clock gene expression.(a,b) Relative expression by (a) time of death and (b) month of death for several genes known to be involved in the regulation of the mammalian circadian clock. Data plotted in (a) 4-h or (b) 2
	Figure™4Diurnal and seasonal rhythmicity in the transcriptome and epigenome.(a) Observed (red) versus expected (black) median F-statistic for diurnal rhythmicity considering all transcripts together. Null distribution estimated by consideration of 10,000 
	Relation of the epigenomic rhythms to physical position
	Relation between rhythms in the transcriptome and epigenome

	Figure™5Physical position and diurnal and seasonal rhythms in the epigenome.(a) Association between time of diurnal versus seasonal acrophase of H3K9Ac peaks lt2thinspkb from active TSS. Each dot represents a single H3K9Ac peak. Coloured boxes depict empi
	Relation of rhythms to transcription factor-binding sites
	Relation to AlzheimerCloseCurlyQuotes disease

	Discussion
	Figure™6Association between rhythms in the transcriptome and epigenome.(a) Temporal distribution of H3K9Ac diurnal acrophases for peaks within 2thinspkb of the TSS of evening acrophase (red) and morning acrophase (blue) transcripts. Data are double plotte
	Figure™7Transcription factor-binding sites and rhythms in the transcriptome and epigenome.(a) Transcription factor-binding sites associated with at least one of diurnal or seasonal rhythms of RNA expression, H3K9 acetylation or DNA methylation at FDRlt0.0
	Figure™8AlzheimerCloseCurlyQuotes disease and diurnalsolseasonal rhythms in the transcriptome and epigenome.(a) Model-predicted times of diurnal versus seasonal acrophases in samples without a pathological diagnosis of AlzheimerCloseCurlyQuotes disease. E
	Methods
	Study participants
	Statement of ethics approval
	Evaluation of transcript expression
	Evaluation of DNA methylation
	Evaluation of H3K9Ac
	Assessment of clinical covariates
	Statistical analyses of diurnal and seasonal rhythmicity
	Data availability

	McMurryL.HastingsJ. W.Circadian rhythms: mechanism of luciferase activity changes in GonyaulaxBiol. Bull.1431962061972WyattJ. K.Ritz-De CeccoA.CzeislerC. A.DijkD. J.Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans
	This research was supported in part by National Institutes of Health (http://www.nih.gov) grants P30AG10161 (to DAB), R01AG15819 (to DAB), R01AG17917 (to DAB) R01AG36042 (to DAB), R01AG36836 (to PLDJ), U01AG046152 (to PLDJ) and Canadian™Institutes of Heal
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




