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Elongator mutation in mice induces
neurodegeneration and ataxia-like behavior
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Cerebellar ataxias are severe neurodegenerative disorders with an early onset and pro-

gressive and inexorable course of the disease. Here, we report a single point mutation in the

gene encoding Elongator complex subunit 6 causing Purkinje neuron degeneration and an

ataxia-like phenotype in the mutant wobbly mouse. This mutation destabilizes the complex

and compromises its function in translation regulation, leading to protein misfolding, pro-

teotoxic stress, and eventual neuronal death. In addition, we show that substantial micro-

gliosis is triggered by the NLRP3 inflammasome pathway in the cerebellum and that blocking

NLRP3 function in vivo significantly delays neuronal degeneration and the onset of ataxia

in mutant animals. Our data provide a mechanistic insight into the pathophysiology of

a cerebellar ataxia caused by an Elongator mutation, substantiating the increasing body

of evidence that alterations of this complex are broadly implicated in the onset of a number

of diverse neurological disorders.
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Ataxias are the most common neurological deficit resulting
from cerebellar dysfunction1,2. These are progressive and
currently incurable disorders with gradual deterioration in

signs and symptoms, most commonly due to neurodegeneration
of an unknown etiology. Affected neurons are Purkinje neurons
(PNs) and, rarely, granule neurons. Previous mouse models of
cerebellar ataxia have provided insight into the neuropathology of
the disease3, however, the precise molecular mechanisms of
neuronal loss remain largely unknown.

Using an ab initio N-ethyl-N-nitrosourea (ENU) mutagen-
esis screen, here we identify a yet uncharacterized Elp6 muta-
tion, which perturbs the stability and function of the murine
Elongator complex, and results in a severe ataxic phenotype,
the wobbly mouse, with associated microgliosis and degenera-
tion of cerebellar PNs. Elp6 is one of the six subunits (Elp1–6)
of the highly conserved eukaryotic Elongator complex, which
is organized in two subcomplexes, namely Elp123 and Elp456.
It has been shown that all Elongator subunits equally contribute
to the stability, integrity, and functionality of the complex
in yeast4. Involvement of the complex in various cellular
processes, including transcription, cell motility, cytoskeleton
organization, exocytosis and intracellular trafficking, has
been highlighted by a number of reports5. However, recent
studies provide evidence that the above mentioned functions
assigned to the complex are downstream effects of its master
activity as a global translational regulator6,7. In detail,
Elongator-dependent modifications of uridines in the wobble
position of tRNA anticodons seem to be of key importance
for the fidelity and kinetics of translational elongation, which
also guides and directs cotranslational folding dynamics8,9.
Over the past decade, a number of studies have showed that
the Elongator complex is involved in various cellular activities
that govern the development and maintenance of the nervous
system10–14. Moreover, several studies have linked the occur-
rence of specific mutations in Elongator subunits with the
onset of various neurological disorders15–20. Our results define
a mechanism in the pathology of cerebellar ataxias whereby
subtle deregulation of tRNA function caused by the Elp6
mutation, leads to protein misfolding, proteome aggregation,
and consecutive neuronal death resulting in a severe manifes-
tation of the disease.

Microgliosis following neuronal loss is a normal physiological
response to injury, but when this usually transient event
becomes chronic and self-propagating, it can lead to sustained
neurodegeneration21,22. Hence, microglia do not just provide
neuroprotection, but can also promote neurotoxicity. Inflamma-
somes play a central role in microglia activation, being multi-
protein complexes that sense various cellular and environmental
stress signals23. The NLRP3 inflammasome is expressed and
functional in brain microglia24, and associated with neurode-
generative disorders such as Alzheimer’s disease25, Parkinson’s
disease26, multiple sclerosis27, and prion-like diseases28, and
is the only inflammasome known to be activated by misfolded
proteins and their aggregates via a yet not fully defined
mechanism29. It has been suggested that the activation of the
NLRP3 inflammasome occurs in response to infection or
injury, and involves consequential NLRP3 oligomerization, which
serves as a scaffold to nucleate an apoptosis-associated speck-
like protein containing a caspase recruitment domain (ASC)
that further acts as a docking platform for pro-caspase-1. Ulti-
mately, NLRP3 activation leads to activation of caspase-1, which
itself promotes pro-interleukin-1β (IL-1β) processing and release
of the mature cytokine IL-1β30. Subsequently, cytokine release
promotes inflammation and leads to further damage to neurons
already primed for degeneration. Here, we demonstrate that
blocking microglial priming by inhibiting the NLRP3 pathway

can attenuate PN degeneration and the ataxic phenotype in
wobbly mice.

Results
Cerebellar ataxia and PN degeneration in wobbly mice. The
wobbly mouse was identified in a recessive ENU-mutagenesis
screen on the basis of its wobbly gait. Ataxic symptoms com-
mence at postnatal day (P) 60 in the form of loss of gait coor-
dination and balance, reduced locomotor activity, and abnormal
hindlimb clasping, which is commonly observed in mice with a
neurodegenerative defect31 (Fig. 1a and Supplementary Fig. 1).
The phenotype gradually becomes more pronounced and is most
severely manifested by P100. The mutant mice also showed an
impaired performance on the rotarod, balance beam and tests in
the Catwalk system (Supplementary Fig. 2). The defect was found
to occur in a recessive manner, as the phenotype of heterozygous
mice was indistinguishable from that of the wild-type animals
(Fig. 1a and Supplementary Figs. 1 and 2). Notably, no differences
were observed in the performance of male versus female wobbly
animals in any of the performed tests (Supplementary Figs. 1
and 2). The mice show no alternations in overall life span, weight,
and fertility.

Histological analyses at P60 revealed a specific and substantial
loss of PNs in wobbly mice, as we were not able to detect any
other changes in overall cerebellar morphology (Fig. 1b).
Neuropathology was restricted to PNs in the cerebellum with
other central nervous system structures and nonneuronal tissue
being unaffected (Supplementary Fig. 3). The first histological
signs of PN degeneration were already detectable at P40 and the
cerebellum of mutant mice was completely depleted of PNs by
P120 (Fig. 1c). Consistent with previous findings that Zebrin II
can act as a neuroprotector32,33, we found that PNs of wobbly
mice that did not express this molecular marker were more
susceptible to cell death than Zebrin II-immuno-positive cells
(Supplementary Fig. 4a). Individual variations in the severity
of the wobbly phenotype manifestation appeared due to different
magnitudes rather than localization of PN loss, which was
shown to be consistent across all cerebellar functional subdivi-
sions, from anterior to posterior lobe, across vermis and
hemispheres (Supplementary Fig. 4b–j).

To test the functional impact of an underlying mutation,
electrophysiological recordings were obtained from PNs in
wobbly mice at P21–P24, before motor symptoms were apparent.
Already at this stage, PNs exhibited altered passive and active
membrane properties (Fig. 1d–f and Supplementary Table 1), and
an altered synaptic excitation/inhibition balance (Supplementary
Fig. 5 and Supplementary Table 1). In summary, mutant PNs
were less excitable showing increased resting membrane potential
and action potential threshold and being able to generate
significantly fewer action potentials. Parallel fiber stimulation
failed to evoke excitatory synaptic currents (EPSCs) in more than
50% of PNs, while evoked synaptic inhibition was shown to
be stronger.

Elp6L126Q underlies wobbly mouse phenotype. Whole-exome
sequencing of wobbly mice identified a T/A substitution in the
Elp6 gene (Fig. 2a), leading to a single amino acid L/Q substitu-
tion at position 126 in the protein (Elp6L126Q). To further define
Elp6 function in vivo, we generated Elp6 knockout (KO) mice
(Supplementary Fig. 6a). Consistent with previous studies that
have identified developmental defects following Elp1 and Elp3
ablation20,34, we found that a loss of Elp6 (Elp6−/−) also results in
early embryonic lethality (Supplementary Fig. 6b, c). To confirm
that the Elp6L126Q allele drives the pathology observed in the
wobbly mutant, we crossed Elp6+/− to wobbly mice and screened
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their progeny for main features of the phenotype. The compound
heterozygous (Elp6L126Q/−) animals expressed a more rapidly
progressive phenotype than wobbly mice, demonstrating that
Elp6L126Q likely functions as a hypomorph. Furthermore,
Elp6L126Q/− displayed a decreased survival rate, with 80% of
animals not surviving beyond P40 (Fig. 2b). Histological and
behavioral analyses of these mice demonstrated a full recapitu-
lation of the wobbly phenotype (Fig. 2c, d). No phenotypic
abnormalities were found in Elp6+/− animals, indicating that one
copy of wild-type Elp6 is sufficient for proper functioning of the
Elongator complex.

In agreement with its here described role, in situ hybridization
confirmed wide expression of the Elp456 subcomplex throughout
the cerebellum (Supplementary Fig. 7). To establish whether
Elp6L126Q-mediated degeneration was an intrinsic defect of
PN neurons, a transgenic rescue of the wobbly phenotype
was initiated by crossing wobbly mice to transgenic animals
expressing the HA-tagged wild-type Elp6 driven by the PN-
specific Pcp2 promoter (Pcp2-Elp6-HA; Fig. 3a). Ataxic phenotype
and neurodegeneration in Pcp2-Elp6-HA; wobbly mice were

fully rescued by the transgene (Fig. 3b–d), demonstrating that
despite the widespread expression of the Elongator complex
in the cerebellum, PN degeneration is mainly initiated cell-
autonomously.

Elp6L126Q negatively affects stability and function of the
Elongator complex. Taking advantage of the high sequence
conservation of the Elongator subunits among eukaryotes35, the
recently determined crystal structure of the yeast Elp456
(yElp456) subcomplex36, and the electron microscopy recon-
struction of the fully assembled Elongator complex37, we were
able to assess the precise location of the mutated residue within
the Elongator complex (Fig. 4a). Despite its detrimental effects,
Elp6L126Q resides on the periphery of the complex, distant from
known tRNA-, ATP-, SAM-, or acetyl-CoA binding sites and on
the side of the Elp456 ring, which is located opposite from the
enzymatically active Elp3 subunit and proposed tRNA binding
and modification pocket. To understand the consequences of
the Elp6L126Q mutation on the molecular level, we produced
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Fig. 1 Ataxia and neurodegeneration in wobbly mice. a Left: hindlimb clasping in wild-type and mutant animals. Right: behavioral analysis of the wobbly
phenotype relative to wild-type (n= 10 (5 males and 5 females) for each of the genotypes; homozygous wobbly animals are presented as wobbly and
heterozygous as wobbly het). b H&E staining of P60 cerebellar sagittal. Arrows indicate PN loss, and circles mark degenerating PNs. Black rectangles
represent magnified areas. c Pcp2 immunofluorescence and PN quantification in wobbly and wild-type cerebella. d Representative raw traces of train of
action potentials in PNs elicited by current injections of 50 and 100 pA in wild-type and wobbly cells, respectively. e Resting membrane potential of wobbly
(−40.9 ± 1.2mV, n= 10) and wild-type (−47.3 ± 1.4 mV, n= 18) PNs at P21–24. f Number of action potentials of wobbly (n= 10) and control (n= 13) PNs at
threshold elicited by current injections. For (b) and (c) n= 5 for each of the genotypes and ages presented; representative images are shown. Scale bars:
(b) left panel, (c) 500 μm; (b) middle panel, 100 μm; (b) right panel, 50 μm. Statistical evaluation: (a, c) two-way ANOVA and Sidak’s multiple comparisons
test; (e, f) two-tailed t test. Statistically significant differences are indicated (*P≤ 0.05; **P≤ 0.01; ****P≤ 0.0001). Data represent mean ± SEM
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recombinant mElp456 in bacteria and purified it to homogeneity.
The three murine subunits, like yElp456, are able to form a
dimeric Elp56 intermediate and a hexameric Elp456 assembly
(Fig. 4b and Supplementary Fig. 8a). The introduced Elp6L126Q
mutation leads to the destabilization of mElp6 itself (Supple-
mentary Fig. 8b) and the disappearance of the Elp56 inter-
mediate, but still permits hexamer formation (Fig. 4b and
Supplementary Fig. 8c). Notably, we observed decreased thermal
stability of Elp6L126Q-containing mElp456 hexamers in com-
parison to wild-type mElp456 (Fig. 4c and Supplementary
Fig. 8d). We detected the same effect for full length and truncated
versions of Elp456 (lacking predicted disordered regions in the N-
and C-termini of Elp4 and Elp5), indicating that the mutation
indeed affects the integrity of the core of the complex. The
decrease in protein stability appeared to be coupled to reduced
tRNA binding capacity in vitro (Supplementary Fig. 8e) and
reduced levels of wobble base modification (ncm5U and mcm5U)
in brains of wobbly mice in vivo (Fig. 4d). As the decreased
in vitro tRNA binding capacity of mutated mElp456 is not
restricted to Elongator-modifiable tRNAs, it most likely results
from the decreased stability of the hexameric assembly and does
not affect the tRNA selection mechanisms. The induced appear-
ance of aggregates in the Elp6L126Q sample at elevated tem-
peratures and nanoDSF analyses independently confirm our
thermofluor data and support the notion of a complex stability
related reduction in tRNA affinity (Supplementary Fig. 8f). Other
tRNA modifications, which are not conducted by Elongator, did
not show decreased levels in the analyzed samples. This data
demonstrate that Elp6L126Q destabilizes the complex and per-
turbs its function in the regulation of translation.

Protein misfolding and aggregation in wobbly PNs. Given that
perturbation of wobble uridine modifications was shown to lead
to ribosome pausing and protein misfolding and aggregation8, we
next performed ultrastructural analyses of degenerating neurons
to screen for signs of proteotoxic stress. The analyses using
transmission electron microscopy revealed extensive autophagy,

apoptotic cell features, and an accumulation of electron-dense
globular structures that likely represent protein inclusions
(Fig. 5a). No signs of necrosis and excitotoxicity were found in
wobbly mouse PNs. Increased ubiquitination and upregulation of
the molecular chaperone Hsp70 observed in wobbly PNs con-
firmed the presence of protein aggregates and induced proteo-
toxic stress response (Fig. 5b). Detection of activated caspase-3
supported apoptosis-mediated cell death. In addition, we show
that these cells express the endoplasmic reticulum (ER) stress-
induced transcription factor CHOP. This further suggests that
apoptosis in wobbly mouse PNs is likely induced by the ER stress
elicited by unfolded protein response, as previously described in
various other neurodegenerative diseases38.

NLRP3-mediated inflammation contributes to the wobbly
pathology. Next, we found prominent histopathological signs for
substantial microgliosis (Iba1-marked glial population)
(Fig. 6a–c) coupled to reactive astrogliosis (GFAP-marked glial
population; Supplementary Fig. 9) in the cerebellum of wobbly
mice. The appearance of these inflammatory markers is confined
to the cerebellum and strictly associated with PN degeneration.
Given that several studies in the past decade have demonstrated
that neuroinflammation can be initiated by the inflammasome
complexes in microglia activated by protein aggregates23, we
further checked for inflammasome activation in our mutant mice
cerebella. Notably, the cerebella of the ataxic wobbly mice showed
a strong upregulation of key inflammasome effectors, including
cleaved caspase-139 and ASC40 (Fig. 6b-d). ASC was shown to be
overexpressed and formed so-called specks, previously demon-
strated to activate cytokine cascade.

Given the accumulation of protein aggregates in wobbly PNs
and recent findings that the NLRP3 inflammasome can
specifically act as a sensor for intracellular misfolded proteins29,
we used a potent and selective NLRP3-inhibitor MCC95041 to
test whether activation of the NLRP3 inflammasome contributes
to the progression of neurodegeneration in wobbly mice.
Treatment of wobbly mice with MCC950 significantly delayed
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the onset of ataxia (Fig. 7a) and decreased the rate of
neurodegeneration (Fig. 7b), as a consequence of reduced
inflammation and inflammasome activity (Fig. 7c–e). To verify
these findings, we took a parallel genetic approach by crossing
wobbly mice to NLRP3 null animals. Analysis of the ataxic and
neurodegenerative features of the double mutant progeny and

controls showed that NLRP3 deficiency in vivo mirrored the
phenotype of MCC950-treated mutant mice (Fig. 8a, b), further
confirming that the NLRP3-driven inflammatory response
contributes to the progressive neuropathology in wobbly animals.
Reduction of the neuroinflammation in NLRP3 KO; wobbly mice
was shown to be even stronger than in MCC950-treated mice
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(Supplementary Fig. 10a), likely due to a relatively short half-life
time of the administrated drug41. Genetic ablation of caspase-1
function in wobbly mice not only reinforced the role of NLRP3
in the progression of neurodegeneration, but also identified
caspase-1 as a potential therapeutic target in gliosis-associated
ataxias in addition to NLRP3 itself (Fig. 8c, d). Microgliosis and
ASC nucleation were found to be reduced to a lesser extent
in caspase-1 KO; wobbly animals in comparison to NLRP3 KO;
wobbly and MCC950-tretaed wobbly mutants, which is expected
given that the inflammatory cascade in these mutants is inhibited
downstream of ASC nucleation30.

Discussion
Our data indicate a mechanistic route underlying neurodegen-
eration in cerebellar ataxias based on the perturbed function
of the Elongator complex in the regulation of translation as
a consequence of the destabilizing Elp6L126Q mutation.

The mutation was identified in a mouse model for cerebellar
ataxia, the wobbly mouse, which develops severe ataxic
symptoms as a consequence of extensive Purkinje neurodegen-
eration. We characterized the ataxic wobbly phenotype in mice
and found the induced neurodegeneration on the one hand
to follow the pattern of neuroprotective Zebrin II expression
and on the other hand to affect all cerebellar functional regions
equally. We also showed that intrinsic cellular and synaptic
changes of mutant PNs occur prior to clear pathologically
recognizable degeneration, which is consistent with observations
in other progressive neurodegenerative diseases, such as Alzhei-
mer’s disease42.

On the molecular level, Elp6L126Q destabilizes the assembly
and integrity of the heterohexameric Elp456 subcomplex, which
is ultimately necessary for tRNA binding and tRNA modification
activity of the Elongator complex. Furthermore, we demonstrated
that this mutation negatively affects the Elongator activity by
detecting lower levels of tRNA modifications in cerebella of
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mutant mice. Although reduction of tRNA modification levels is
relatively modest, our data is in line with another report on the
Elongator mutation that causes familial dysautonomia43. In this
rare disease, similar levels of reduction in tRNA modifications
were observed (29–36% of reduction) in patient-derived samples.
Together these observations indicate a scenario, where a certain
level of reduction in modification levels causes severe cellular
malfunctions, but still permits survival of the patients.

The Elongator-dependent mcm5U and ncm5U modifications
have been shown to be of crucial importance for the fidelity
and kinetics of protein synthesis and cotranslational folding
dynamics8,9. In concordance, we found defects in translational
fidelity and protein folding in wobbly PNs. Hence, we show that
the Elp6L126Q-mediated impaired function of the complex likely
results in protein misfolding and aggregation that further induces
ER-stress and subsequent apoptosis.

Protein aggregation is a common cause of neuronal death
shared by various neurological disorders44,45, as aggregated pro-
teins commonly lose their physiological function and gain
undesired toxic properties. As in vast majority of neurodegen-
erative diseases, cellular pathology is only observed in a specific
neuronal subtype in wobbly mice, namely PNs. Our transgenic
complementation study demonstrates that Elongator is a key
regulator of PN integrity and although the observed pathological

findings were found to be cell-intrinsic in ataxic mice, the
cause of this selectivity remains elusive. In general, neurons are
known to be highly sensitive to the presence of misfolded
proteins given that they are postmitotic and cannot dilute toxic
aggregates by cell division. PNs may be particularly sensitive
to deleterious effects of these toxic species as they have an
extraordinary high metabolic demand11,46. Although codon-
dependent regulation of translation by the Elongator complex
has been previously reported6, protein aggregates induced in
yeast and worms by Elongator depletion show no specific
accumulation of these Elongator-codon enriched proteins.
Therefore, the slightly decreased tRNA modification levels pri-
marily might have a large impact on the proper translation of
individual trigger proteins, which nucleate and propagate the
appearance of large aggregates and induce proteotoxic stress in
the context of whole proteome, as suggested by previous studies8.
The study presented here adds to an emerging consensus that
perturbations of the Elongator complex contribute to a range of
neurological and neurodevelopmental disorders, including
familial dysautonomia15, amyotrophic lateral sclerosis17,20,
rolandic epilepsy18, and intellectual disability16,19. The mechan-
ism by which specific mutations in different Elongator subunits
cause different neuropathologies, remains intriguing and needs to
be further clarified.
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A number of studies in the past decade have demonstrated that
neuroinflammation initiated by the activation of inflammasome
complexes in microglia underlies a variety of neuronal pheno-
types23. Here, we have demonstrated that despite the funda-
mental mechanism of neuronal death being cell autonomous,
activation of the NLRP3 inflammasome contributes significantly
to the rate of neuronal loss in wobbly mice. Thus, PNs are both
dying due to an intrinsic defect and being killed by an extrinsic
inflammatory response. Gliosis is a common observation in a
number of neurodegenerative conditions and our findings in
ataxic mice experimentally confirm an increasing body of evi-
dence proposing a common mechanism of NLRP3-mediated
neuroinflammation to underlie and contribute to the pathogen-
esis of various neurodegenerative diseases25–28. Whether NLRP3
activation is a direct consequence of the Elongator complex
malfunction in wobbly mice or it is triggered by a release
of danger-associated molecular patterns (DAMPs) from dying
neurons, has to be investigated in the future. It has been

previously established that NLRP3 activation is initiated by
aggregated proteins, such as Lewy bodies in Parkinson’s disease26,
amyloid-β peptides in Alzheimer’s disease25 and prions in prion-
related disorders28. Thus, the NLRP3-mediated inflammatory
cascade is likely to be triggered by the presence of protein
aggregates in wobbly PNs. Previous studies demonstrated that the
NLRP3 activation not only results in cytokine-induced neuronal
damage, but also in poor microglial aggregate clearance resulting
in accumulation of toxic aggregates that leads to further neuronal
demise47,48. In order to assess whether aggregates are responsible
for the NLRP3-mediated neuroinflammation in cerebellar ataxia
or the inflammatory response is induced by neuron-derived
DAMPs, different ataxia mouse models with and without the
involvement of preoteinopathy need to be compared.

For cerebellar ataxia patients, prognosis is currently bleak and
therapies in use are limited to symptomatic treatment with no
pharmaceutical intervention available to ameliorate the disease
pathology. Data presented here not only define a fundamental

*

A
ve

ra
ge

 s
co

re
 (

hi
nd

lim
b-

cl
as

pi
ng

, l
ed

ge
,

 o
pe

n-
fie

ld
 te

st
)

 P
12

0 
N

LR
P

3 
K

O
; w

ob
bl

y 
   

   
   

   
   

   
   

  

Pcp2

a b

c d

A
ve

ra
ge

 s
co

re
 (

hi
nd

lim
b-

cl
as

pi
ng

, l
ed

ge
,

 o
pe

n-
fie

ld
 te

st
)

 P
12

0 
C

as
p-

1 
K

O
; w

ob
bl

y 
   

   
   

   
   

   
   

 

Pcp2
Wild-type

Casp-1 KO; wobbly

Wobbly

Casp-1 KO

Wild-type

NLRP3 KO; wobbly

Wobbly

NLRP3 KO

P
12

0 
w

ob
bl

y
P

12
0 

w
ob

bl
y

8

6

4

2

300

200

100

0

300

400

*

200

100

0

0

**

*

–2

P21 P40 P60 P80
P10

0
P12

0

8

6

4

2

0

****
***

–2

P21 P40 P60 P80
P10

0
P12

0
P

N
 n

um
be

r/
ce

re
be

lla
r 

se
ct

io
n

W
ob

bly

NLR
P3 

KO; w
ob

bly

P
N

 n
um

be
r/

ce
re

be
lla

r 
se

ct
io

n
W

ob
bly

Cas
p-

1 
KO; w

ob
bly
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understanding of cerebellar neurodegeneration caused by the
Elongator mutation, but also identify a potential therapeutic
strategy to substantially delay the course of the disease. Heredi-
tary ataxias display a variety of inheritance modes and the ple-
thora of genetic pathways known to cause these conditions makes
it difficult to conceive of a single pan-ataxia therapeutic approach.
Though, several studies suggest that the majority of ataxias have
some broad commonalities, such as protein aggregation, meta-
bolic deficits, and perturbation in ion channel function49. Despite
the potentially different biochemical bases that trigger neurode-
generation, a common feature of ataxias is the accompanying
induction of neuroinflammation, and in particular microglial
activation50–53. It is clear that the role of sterile inflammation in
neurological diseases is a field that is generating great interest and
our study provides the first instance that blocking inflammasome
activation can significantly ameliorate neurodegeneration in
ataxia by targeting the associated activated gliosis.

Methods
Animals and genotyping strategies. All animal experiments were approved by
the University of Queensland Molecular Biosciences Ethics Committee (project
license numbers IMB/098/14 and IMB/097/14). Mice were housed under a 12 h
light cycle in a specific-pathogen-free climate-controlled facility with food and
water provided ad libitum. Genomic DNA for genotyping purposes was obtained
from tail tips using QuickExtract DNAextraction solution (Epicenter) as per the
manufacturer’s instructions. The genetic background of all animals, including
wobbly, Elp6 KO, transgenic (Pcp2-Elp6-HA), NLRP3 KO and Casp-1 KO mice,
was C57BL/6. No gender-related phenotypic differences were observed in all mice
strains. Both sexes were found to be fertile with normal life span and body weight.
The wobbly mutation arose from an ENU-mutagenesis phenotype-driven screen at
the Australian Phenomic Facility, the Australian National University. This strain
has been archived with the Australian Phenome Bank, ID 4118. Whole-exome
sequencing revealed the homozygous Elp6L126Q mutation. A custom TaqMan
SNP genotyping assay was used to genotype the animals through qPCR reaction
based on allelic discrimination. Primers used were: forward 5′-AAACCTGCAG
TCACTGTATACGTT-3′ and reverse 5′-CAACAGACTGGGTACTTCCAT-3′,
with the cycling conditions: 95 °C for 10 min, followed by 40 cycles of denaturation
step at 92 °C for 15 s, and annealing and extension at 60 °C for 90 s. The amplified
product of 88 bp was further annealed with either VIC-labeled wild-type Elp6
sequence 5′-AGGACACCCTGAAGCC-3′ or fluorescein-labeled wobbly
(Elp6L126Q) sequence 5′-AGGACACCCAGAAGCC-3′. For MCC950 treatment
studies, wobbly mice were dosed orally via drinking water (0.3 mg/ml), from P21
until sacrifice. Elp6 functional KO mice were generated using CRISPR-Cas9
technology with the gRNA sequence: 5′-CCCCAGACAAGACCGAGCAG-3′
(Supplementary Fig. 3a). Primers used for genotyping were: forward 5′-
CCCTGAGCCATCTCTTTGGC-3′ and reverse 5′-AGTGTTCCGTGCAACCTG
TAA-3′, with an amplified product of 920 bp, further analyzed by Sanger
sequencing. Transgenic animals were generated by pro-nuclear injection of the
Pcp2-Elp6-HA construct into fertilized egg. Pcp2 minigene was previously reported
and was a generous gift from Professor Jaroslaw Barski54. Elp6 cDNA was HA-
tagged at the C-terminus and inserted into exon 4 of the Pcp2 minigene, followed
by linearization of the construct by Hind III and EcoRI digestion, purification and
pro-nuclear injection. Transgenic mice were genotyped by PCR reaction using
forward 5′-GCCTTGGTATCCTCCTG-3′ and reverse 5′-CCAGGAACACAA
GCTGCCCTCTGTCCCG-3′ primers, which generated a 671 bp product in Pcp2-
Elp6-HA animals. PCR products were amplified using the following conditions:
initial denaturation for 4 min at 94 °C followed by 35 cycles of 94 °C for 30 s, 58 °C
for 30 s and 72 °C for 60 s, and a final single extension step of 72 °C for 10 min.

Behavioral testing. The simple composite phenotype scoring system used was a
modified version of the scoring system for evaluating mouse models for spino-
cerebellar ataxias55. The system was based on the hindlimb clasping, open field and
ledge tests. All tests were scored on a scale of 0–2, with a combined total of 0–6 for
all three tests. Each test was repeated three times and the mean value of the scores
was recorded. Time points chosen for testing mice were P21, P40, P60, P80, P100,
and P120.

The ledge test: a mouse was lifted from the cage and placed on the cage’s ledge.
A score of 0: a mouse walked along the ledge without losing its balance, and
lowered itself back into the cage using its paws. A score of 1: a mouse showed signs
of tremor and lost its footing while walking along the ledge. A score of 2: severe
tremor was observed and the mouse fell off the ledge, or shaked and refused to
move despite encouragement.

Hindlimb clasping: a mouse was grasped by the tail near its base and lifted to
observe the hindlimb position for 10 s. A score of 0: the hindlimbs were
consistently splayed outward, away from the abdomen. A score of 1: both
hindlimbs were partially retracted toward the abdomen for more than 50% of the

observation time. A score of 2: hindlimbs were entirely retracted and touching the
abdomen for more than 50% of the observation time.

Locomotor activity: the test was performed in an arena with walls to prevent
escape. A mouse was placed in the center of the open field, and its movement
around the arena (horizontal activity) together with the rearing (vertical activity)
was recorded for 5 min. A score of 0: a mouse moved normally, with its body
weight supported on all limbs, and actively explored its surrounding, showing
normal horizontal and vertical activity. A score of 1: tremor was present in both,
horizontal and vertical activity of the mouse, and both activities were decreased. A
score of 2: a mouse had difficulty to move forward and/or fell down on a side while
walking, therefore showing a significant decrease in horizontal activity, while no
vertical activity was observed.

P100 animals were additionally tested using rotarod, balance beam and Catwalk
system. Mice were trained for three days (three trials a day) prior to recording the
final score.

Rotarod: maximum time allowed for the rotarod test was 120 s. The acceleration
was from 4 to 40 rpm within 60 s. The latency to fall (time spent on the rotating
road) and the speed at the time of drop (rmp) were recorded.

Balance beam: mice were trained to walk from a start platform along a wooden
beam elevated 30 cm above the ground, 80 cm long and 3 cm wide gradually
narrowing to 1 cm, ending at the goal box. The mouse was placed on the wide end
of the beam and allowed to walk the beam distance and enter the goal box. The
distance crossed (cm) and the number of missteps was recorded.

Catwalk: mice were allowed to walk across the glass walkway in an unforced
manner at least six times a day. Mouse tracks that were straight without any
interruption or hesitation were treated as successful runs. Runs with any wall
climbing, grooming, and staying on the walkway were not analyzed. Mice that
failed the Catwalk training were excluded from the study. An average number of
eight replicate crossings made by each mouse was recorded. The Catwalk software
was used to analyze crossings that had at least five cycles of complete steps. Gait
parameters, such as regularity index and base of support, were collected and
compared between groups.

All behavioral analyses were performed by researchers blinded to the genotype
of the animals.

MCC950 treatment studies. Mice were dosed orally via drinking water (0.3 mg/
ml) ad libitum starting at P21 until sacrificed at P120. The MCC950 dose to be used
was established in a pilot study where we assessed the penetrance of the drug into
the brain tissue of mice at levels above the IC50 of the drug (n= 3 for MCC950-
treated and control animals). The concentration of the drug was measured in blood
plasma and brain tissue upon transcardial perfusion with PBS.

Tissue and embryo collection. Experimental animals were anaesthetized using
Dormitor (1 mg/kg, i.p.) and Zoletil (50 mg/kg, i.p.) and transcardial perfusion was
performed with PBS, followed by 4% PFA solution. The brains were dissected and
drop-fixed in 4% PFA at 4 °C for 12 h under constant agitation. The following day,
brains were washed twice with PBS and left overnight in PBS. Brains were pro-
cessed in the Leica TP1020 tissue processor over 15 h as per the user’s guide and
subsequently embedded in paraffin and sectioned at 7 μm either in the transverse
or sagittal plain using Leica RM2235 microtome. Sections were transferred to glass
slides and dried overnight at 45 °C. Embryos were explanted and placed into cold
PBS, followed by 4% PFA fixation for 6 h at 4 °C and subsequent series of PBS
washing.

H&E staining. Following deparaffinization, slides were stained in Hematoxylin
(Sigma Aldrich) for 3 min. The excess of Hematoxylin stain was removed by short
immersion of slides in 1% HCl acid solution followed by another short immersion
in 0.1% LiCO3 solution. Samples were then stained with Eosin Y solution (Sigma
Aldrich) for 30 s and dehydrated using 70, 90, and 100% ethanol for 30 s each,
followed by xylene for 10 min. Slides were mounted with Entellan mounting
medium (ProSciTech) and dried for 1 h. Images were obtained using Olympus BX-
51 upright bright-field microscope.

Immunofluorescence. Upon deparaffinization and hydration, the slides under-
went heat-induced antigen retrieval using citrate buffer-based antigen unmasking
solution (Abacus) at 100 °C for 10 min. Mouse on Mouse (M.O.M.) blocking
reagent (Vector) was used to block endogenous mouse antibody in the tissue
section (when a primary antibody was raised in mouse) or bovine serum albumin
was used to block unspecific binding of antibodies (when an antibody was not in
other specie than mouse). Slides were incubated with primary antibodies: Pcp2
(1:100; sc-49072), Zebrin II (1:50; ab115212), Iba1 (1:400; ab5076), ASC (1:400;
Al177), Casp-3 (1:100; ab2302), Hsp70 (1:100; sc-66048), Ub (1:100; ab7780), and
HA (1:100; ab9110), followed by incubation with an AF488, AF594, or AF647-
labeled donkey anti-mouse, anti-rabbit or anti-goat IgG antibody (1:250; Invitro-
gen), and counterstained with DAPI (Sigma Aldrich). Images were captured using
Zeiss LSM 710 upright confocal microscope as Z-stacks and presented as the sum
of the Z-projection. The number of Pcp2-labeled or Iba1-labeled cells was deter-
mined separately in every visible lobule of the vermis and in the hemispheres. For
each mouse, three nonadjacent sections (separated by 70 μm) from the region of
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vermis were analyzed and the mean value was recorded. Total of five mutant and
five control animals was included in each of the studies.

Electron microscopy. Excised cerebella were quickly trimmed and immediately
immersed in 2.5% glutaraldehyde in cacodylate buffer for 48 h and then postfixed
in reduced osmium, en-bloc stained with 2% uranyl acetate and dehydrated
through ethanol solutions, before final embedding in Epon812 resin (ProSciTech).
Ultra-thin sections were cut on a Leica UC6 Ultra microtome and viewed on a
JEOL 1011 electron microscope (JEOL Australasia Pty Ltd) at 80 kV. Images were
captured using iTEM software (Soft Imaging System, Olympus).

In situ hybridization. Total RNA was extracted from granule neuron precursors
isolated from P7 wild-type animals56 using RNeasy micro kit (QIAGEN) following
the protocol supplied. Subsequently, cDNA was obtained using the protocol from
SuperScript III first-strand synthesis kit (Thermo Fisher). The probes were
amplified using above mentioned PCR conditions. Primers were designed in the
3′UTR region of the Elp4-6 cDNA: Elp4 forward 5′-CGACTGCATTTGCCTCCA
GACTTGTCAGAC-3′ and reverse 5′-GTTCTACACTCTATGGGGTGT
GCCATGCC-3′, Elp5 forward 5′-GCTTCATGGCCCAGGCTCCATGGG-3′ and
reverse 5′-CACACTCATCCTAGCTTGATGCTGCTCCTTGGC-3′, Elp6 forward
5′-GCCTCACCTGCCTGTTTTTG-3′ and reverse 5′-GTCCCAGTGCCAT
GCTTTTG-3′. DIG RNA labeling kit (Roche) was used to synthesize the RNA
probes and the probes were purified using the RNA cleanup protocol from the
RNeasy mini kit (QIAGEN). In situ hybridization on P21 sagittal brain sections
was carried out following the established protocol57.

Western blotting. Mouse cerebellum whole-tissue lysate was prepared by
homogenization in radioimmunoprecipitation assay (RIPA) buffer. Protein con-
centrations were determined using BCA protein assay (Pierce). The XCell SureLock
mini-cell electrophoresis system (Thermo Fisher Scientific) was used for SDS-
PAGE and wet protein transfer. Proteins were transferred onto nitrocellulose
membranes at 25 V for 90 min and detected by immunoblotting using relevant
primary and horseradish peroxidase-conjugated secondary antibodies. Peroxidase
activity was further detected using SuperSignal West Pico chemiluminescent
reagent (Thermo Fisher Scientific). The membrane was exposed to an X-ray film
for 30 s–2 min prior to development using X-omat film developer. Densitometric
analysis of western blot images was performed using ImageJ software.

Electrophysiology. Whole-cell recordings were obtained from PNs in 300 μm-
thick sagittal brain slices from P21–26 wobbly and wild-type mice. Mice were
anesthetized with isoflurane, decapitated, and 300 μm-thick sagittal brain slices
prepared in an ice-cold sucrose solution using a vibratome (Leica). Brain slices
were continuously perfused with oxygenated aCSF (32 °C) and whole-cell patch-
clamp recordings were performed as previously described58. Spiking was evoked
using current injections applied in increments of 20 pA from −60 to 340 pA. In the
case of spontaneous excitatory postsynaptic current (sEPSC) recordings, Purkinje
cells were clamped at −60 mV and recorded for 10 min. For electrical stimulation,
a theta-glass stimulator (Harvard apparatus glass capillaries) was filled with aCSF
and placed in the molecular layer of cerebellar sagittal slices to stimulate parallel
fibers. Induced inhibitory postsynaptic current (IPSC) and EPSC were recorded,
while holding PNs at −40 and −60 mV, respectively. Input resistance, action
potential threshold, amplitude, delay, half width, rise time, sEPSCs, IPSCs, and
EPSCs were analyzed offline. No corrections were made for liquid junction
potentials.

tRNA modification analyses. Total RNA was isolated from ~100 mg cerebellar
tissue using TRIzol reagent (Life Technologies). After TRIzol addition, the tissue
was homogenized with ceramic beads (Sapphire Bioscience) in tissue homogenizer
(Bertin Technologies). Total tRNA was isolated from low melting point agarose gel
(Progen) following the protocol for β-agarase I provided by manufacturer (NEB).
After completion of gel digestion reaction, tRNA was extracted with water-
saturated phenol followed by repetitive chloroform extraction and precipitation by
ethanol; 8–10 ng of tRNA was recovered for each sample. tRNA purity and quality
was confirmed by 8% urea–PAGE electrophoresis in TBE–buffer. Hydrolysis of
tRNA to nucleosides was performed as previously described59. A Prominence ultra
high performance liquid chromatography (HPLC) system (Shimadzu, Australia)
was used to perform reversed phase separation of the samples using a Luna Omega
1.6 µm, Polar-C18 100A column (150 mm × 2.1 mm, Phenomenex, Australia) at a
temperature of 35 °C. A 10-µl aliquot of the samples in 0.1% formic acid (aq) was
injected onto the HPLC column. The mobile phase consisted of solvent A (0.1%
formic acid (aq)) and solvent B (acetonitrile/0.1% formic acid). Chromatographic
separation was achieved using a gradient elution program of 0% buffer B for 4 min,
0–20% for 21 min, 20–40% for 2 min, 40–80% buffer B for 1 min, followed by
washing with 80% buffer for 2 min and returning to 0% for equilibration of the
column before the next sample injection. The flow rate was 200 µl/min. The RP-
HPLC column was directly connected to the TurboIonSpray source of the
mass spectrometer. Selected reaction ion monitoring (SRM) mass spectrometry
experiments were performed on a hybrid quadrupole/linear ion trap 4000 QTRAP
MS/MS system (SCIEX, California, USA). All analyses were performed using SRM

positive ion acquisition mode. Mass spectrometer parameters were optimized for
targeted ribonucleosides using multiple injections of 0.1–1 ng of uridine, cytidine,
adenine, guanine, as well as commercially obtained 5-methylcytidine (Abcam),
7-methylguanosine, inosine, 5-methyluridine and 2′-O-methyladenosine
(MetaGene). The obtained retention times were superimposed with the previously
published results59. Mass Spectrometer Source conditions used were: Declustering
Potential, DP: 60, Curtain Gas: 40, Collision Gas (CAD): Medium, Ion Spray
Voltage: 5300, Temperature GS2: 500, Ion Source Gas 1: 70, Ion Source Gas 2: 80.
SRM Transitions: Resolution set to Unit, Unit for both Q1 and Q3 respectively;
Dwell Time 130 ms except for U, which was 5 ms, was used for data analysis and
quantification. An analytical method was developed for the simultaneous analysis
of 33 modified ribonucleosides of which 5 compounds of interest were targeted for
quantification (Supplementary Table 2). 5-Methylcytidine served as an internal
normalization standard. To confirm the correct retention time, the standard was
added to control sample aliquots at 0.01 or 0.1 ng. Analyst 1.6.2 software was used
for peak assignment, area calculation and normalization. Corresponding structures
and molecular masses were obtained from Modomics database60

Localization of mElp456L126Q within the structure of the Elongator complex.
Elp6 from S. cerevisiae (Q04868) was used as a template to identify and align
Elp6 sequences from mouse (Q8BK75) and human (AAH00623). Structural
comparisons and models were prepared using Phyre261 and Modeler62. Atomic
models of Elp456 (PDB ID 4A8J) and holoElongator were used to identify L126Q
and to prepare structural figures using Pymol63.

Protein expression and purification. Coexpression constructs encoding mouse
Elongator subunits were designed as previously described for yElp4569. Constructs
encoding truncations and mutations of mElp4, mElp5, and full-length mElp6 were
created using standard quick-change protocol. mElp6 and mElp6L126Q were
cloned into pETM11 using standard cloning procedures. All constructs were
expressed in E. coli (BL21 pRARE) after transformation using electroporation. In
detail, bacteria were grown in TB at 37 °C until an OD600 of ~1.2, followed by
induction with 1 mM IPTG and subsequent incubation at 18 °C for 12–15 h.
Bacteria were lysed in 50 mM HEPES (pH 7.5), 300 Mm NaCl, 10 mM imidazole,
1 mM β-mercaptoethanol, 5% (v/v) glycerol, DNAse and protease inhibitors using
a homogenizer. The soluble fractions were cleared by centrifugation (70,000×g for
45 min at 4 °C), and proteins were further purified using NiNTA affinity chro-
matography, followed by size-exclusion chromatography on a 16/600 HiLoad
Superdex 200 pg column (GE Healthcare) and/or Superdex 200 Increased (10/300)
in 20 mM HEPES (pH 7.5), 150 mM NaCl and 5 mM DTT. Respective fractions
were analyzed by SDS-PAGE, pooled and concentrated.

Thermal shift assay. Thermal shift assays were performed to monitor protein
unfolding using thermofluor technology64. Thermofluor assays were conducted in
the CFX96 Real-Time System C1000 Touch Thermal Cycler (Biorad). Varying
concentrations of protein samples (1–0.25 mg/ml) were incubated with SYPRO
Orange and 20 mM HEPES (pH 7.5), 150 mM NaCl, 5 mM DTT buffer. Samples
were gradually heated from 4 to 98 °C at a heating rate of 0.2 °C/10 s. The
fluorescence intensity was measured at probe specific excitation (470 nm) and
emission (570 nm) wavelengths.

Microscale thermophoresis. Microscale thermophoresis (MST) experiments were
performed to determine binding affinities of Cy5-labeled tRNAAla and tRNACys

from S. cerevisiae (at concentration 210 and 55 nM) and purified Elp456 com-
plexes. Proteins were titrated in a 1:1 dilution series in 20 mM HEPES pH 7.5, 50
mM NaCl, 2 mM DTT, 0.05% Tween, whereas labeled tRNA concentrations stayed
constant. Samples were loaded into Monolith™ NT.115 MST Premium Coated
Capillaries (NanoTemper Technologies) and measured using a Monolith NT.115
at room temperature (light-emitting diode (LED)/excitation power setting 20%,
MST power setting 20%). Data was analyzed using MO. Affinity analysis software
at the standard MST on time of 5 s.

Nano differential scanning fluorimetry. NanoDSF experiments were performed
to determine protein stability employing intrinsic tryptophan or tyrosine fluores-
cence of purified Elp456 complexes. Proteins were diluted to concentration 100 µg/
ml in 20 mM HEPES pH 7.5, 50 mM NaCl, 2 mM DTT. Samples were loaded into
Prometheus NT.48 Series nanoDSF Grade High Sensitivity Capillaries (Nano-
Temper Technologies) and measured using a Prometheus NT.48 at temperature
range from 20 to 95 °C (LED/excitation power setting 10%, temperature slope 2 °C/
min). Data was analyzed using NanoTemper software, n= 3.

Data analysis and statistics. Statistical analyses were performed using the
GraphPad Prism software V6. To determine statistical significance, the unpaired
two-tailed t test was performed. For the simple composite phenotype scoring
system for cerebellar ataxia and the quantification of PNs, Iba1 and ASC specks
at different ages, two-way-analysis of variance (ANOVA) was used. To test for
difference of each dependent variable in different age groups, Sidak’s test was used.
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