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Background
Human dicer is an RNase III enzyme that cleaves double-stranded RNA (dsRNA) and 
pre-miRNA into short small interfering RNA and microRNA (miRNA), respectively. It 
consists of six domains: Helicase, DUF283, PAZ, RNase IIIa, RNase IIIb, and dsRBD. 
Among these domains, the RNase IIIa domain and RNase IIIb domain cleave the 3p-arm 
and 5p-arm of a pre-miRNA, leading to two miRNAs.

MicroRNA (miRNA) is a class of 20-22nt long, noncoding RNA molecules. They play 
an important role in the posttranscriptional regulation of gene expression. Usually, one 
miRNA can regulate the expressions of several proteins. They are necessary for a myriad 
of cellular processes, such as cell differentiation, cell cycle progression, and apoptosis [1]. 

Abstract 

Background:  Human dicer is an enzyme that cleaves pre-miRNAs into miRNAs. 
Several models have been developed to predict human dicer cleavage sites, includ‑
ing PHDCleav and LBSizeCleav. Given an input sequence, these models can predict 
whether the sequence contains a cleavage site. However, these models only consider 
each sequence independently and lack interpretability. Therefore, it is necessary to 
develop an accurate and explainable predictor, which employs relations between dif‑
ferent sequences, to enhance the understanding of the mechanism by which human 
dicer cleaves pre-miRNA.

Results:  In this study, we develop an accurate and explainable predictor for human 
dicer cleavage site – ReCGBM. We design relational features and class features as inputs 
to a lightGBM model. Computational experiments show that ReCGBM achieves the 
best performance compared to the existing methods. Further, we find that features in 
close proximity to the center of pre-miRNA are more important and make a significant 
contribution to the performance improvement of the developed method.

Conclusions:  The results of this study show that ReCGBM is an interpretable and 
accurate predictor. Besides, the analyses of feature importance show that it might be 
of particular interest to consider more informative features close to the center of the 
pre-miRNA in future predictors.
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Several studies [2–4] show that miRNAs are related to different types of cancers such as 
breast, lung, and thyroid cancers. Understanding how Dicer specifically selects cleavage 
sites may help us interpret the effects of mutations in miRNA coding genes [5]. There-
fore, it is of great interest to investigate how Dicer selects cleavage sites from the 3p-arm 
and the 5p-arm of a pre-miRNA.

Recently, machine learning-based approaches such as support vector machine [6–9], 
support vector regression [10–12], deep neural networks [13, 14] and conditional ran-
dom fields [15] have been widely used for cleavage site predictions. However, these 
methods mainly aim at predicting protein cleavage sites. To predict human dicer cleav-
age sites, different feature encoding schemes and feature extraction methods are needed.

There are some existing studies on human dicer cleavage sites. Ahmed et al. [16] devel-
oped an SVM-based model (PHDCleav) of Dicer cleavage site prediction. The inputs 
to this model are extracted from pre-miRNA nucleotide sequences with loop/bulge 
structures, and the output is whether an input pattern is a correct dicer cleavage site. 
They demonstrated this method outperformed other approaches such as Random For-
est, CART, and Naïve Bayes by computational experiments. Bao et al. [17] combined the 
loop/bulge size with pre-miRNA nucleotide sequences as inputs and proposed another 
SVM-based prediction model (LBSizeCleav). However, there are some shortcomings 
with these methods. First, they only considered each sequence with its loop/bulge inde-
pendently. Second, their models are not explainable.

To address the above issues, we propose an explainable predictor based on the gra-
dient boosting machine [18]—ReCGBM. Our main contributions include: (i) extract 
relational features to combine each sequence and its complementary strand; (ii) design 
class features through affinity propagation, and (iii) identify some rules from the feature 
importance of ReCGBM. We summarize the design and evaluation process of ReCGBM 
in Fig. 1a.

Methods
Data preparation

In this study, we extracted the cleavage pattern and non-cleavage pattern from each pre-
miRNA sequence. First, we collected 956 validated pre-miRNA sequences from miRBase 
(Version 22.1) [19]. To obtain the structural information for each pre-miRNA sequence, 
we employed quickfold [20] and RNAFold from ViennaRNA [21] to generate RNA 
secondary structure. We chose these two RNA secondary structure prediction meth-
ods because both are powerful tools for RNA secondary structure prediction. Besides, 
previous methods like PHDCleav and LBSizeCleav all employed these tools to predict 
RNA secondary structures. Then, we generated a cleavage pattern for each pre-miRNA 
sequence. Each cleavage pattern consisted of a 14 nt long sequence with the cleavage site 
located at the center. Finally, we extracted each non-cleavage pattern that was a 14 nt 
long sequence with the center 6 nt away from the corresponding cleavage site. Figure 2 
illustrates how to obtain cleavage pattern and non-cleavage pattern. In this figure, the 
cleavage pattern of 5p-arm is the sequence between the two red bars in the structure of 
the pre-miRNA sequence, which is ’UAU​AGU​UUU​AGG​GU’. The non-cleavage pattern 
of 5p-arm is ’AGG​UUG​UAU​AGU​UU’ according to our selection rules.
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To incorporate structural information of each pattern, we first obtained the structure 
of each pre-miRNA through quickfold or RNAFold. Then, we extracted the comple-
mentary strands for each cleavage pattern and non-cleavage pattern from the structural 
information of each pre-miRNA. Notice that if a nucleotide in a pattern did not have a 
complementary nucleotide according to the structural information, we would define it 
as a ’loop/bulge’. To combine ’loop/bulge’ in our data, we represented a ’loop/bulge’ as 
’O’ and considered it as a complementary nucleotide of the corresponding nucleotide in 
a pattern. In Fig. 2, the complementary strand of the cleavage pattern of 5p-arm is given 
by the complementary nucleotides in the green boxes and loops/bulges (’O’). The com-
plementary strand of the non-cleavage pattern of 5p-arm is given in the same way.

An example of data preprocessing is shown in Fig.  2. Since structural informa-
tion was generated through quickfold or RNAFold, four datasets were obtained after 

a

b
Fig. 1  Flowchart of the data preprocessing, feature extraction, model training and evaluation of the 
developed ReCGBM approach. a Shows the design and evaluation process of ReCGBM. b Describes how to 
generate relational features and class features
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the preprocessing: 3p-arm with quickfold structure, 5p-arm with quickfold structure, 
3p-arm with RNAFold structure and 5p-arm with RNAFold structure.

Relational features

In previous studies [16, 17], each pattern and its complementary strand were encoded 
by one-hot encoding separately. However, nucleotides in a pattern may also form a base 
pair with nucleotides in the corresponding complementary strand.

To better encode the relation between each pattern and its complementary strand, we 
considered relational features. For example, given a pattern ’UAU​AGU​UUU​AGG​GU’ 
and its complementary strand ’AUA​UCA​AOOOCCCO’, the relational features can be 
obtained according to (1) shown in Fig. 1b. An advantage of relational features is that it 
offers the important base-pairing information between each pattern and its complemen-
tary strand.

Class features

Previous methods [16, 17] considered each input independently to make predictions. 
However, similar inputs may lead to the same prediction outputs. In this study, we made 
an assumption that similar inputs will lead to the same prediction results and accord-
ingly designed the class feature, which assigned similar inputs to the same class.

To obtain class features, we first defined the pairwise similarities between different 
inputs based on the edit distance (Fig.  3). Then, an unsupervised learning method — 
affinity propagation [22] was used to cluster the inputs to obtain the class features.

Edit distance

In order to measure the pairwise similarities between different sequences, we used the 
edit distance [23].

Fig. 2  An example of data preprocessing. The sequence ’UAU​AGU​UUU​AGG​GU’ between the two red bars in 
the RNA structure represents the cleavage pattern of the 5p-arm. The complementary strand of this cleavage 
pattern is ’AUA​UCA​AOOOCCCO’, which can be constructed by the sequences in the green boxes and loops/
bulges
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Given two strings A and B, suppose that the lengths of A and B are |A| and |B|, respec-
tively. The edit distance between A and B is given by Dedit(|A|, |B|) as follows

where i represents the first i characters of A and j represents the first j characters of B, 
respectively, where i, j ≥ 1.
1ai  =bj is an indicator function where

Since our inputs are 14 nt RNA sequences, the similarity between two sequences can be 
calculated by the edit distance. For example, given two sequences ’UAU​AGU​UUU​AGG​
GU’ and ’UAU​GGU​UUA​GAG​UU’, the edit distance between them can be calculated 
through a distance matrix (Fig.  3).

As Fig. 3 shows, the edit distance between these two sequences is 4.
In this study, each input consisted of a pattern and its complementary strand. There-

fore, the similarity between the two inputs E and F can be defined as follows:

where E2 and F2 are the complementary strands of E1 and F1 respectively.

Dedit(i, j) =















max(i, j), ifmin(i, j) = 0;

min







Dedit(i − 1, j)+ 1
Dedit(i, j − 1)+ 1
Dedit(i − 1, j − 1)+ 1ai �=bj

otherwise.

1ai  =bj =
{

0 if ai = bj;
1 otherwise.

Dsimilar(E, F) = Dedit(|E1|, |F1|)+ Dedit(|E2|, |F2|)

Fig. 3  An example of calculating the edit distance by matrix



Page 6 of 17Liu et al. BMC Bioinformatics           (2021) 22:63 

Given a dataset that includes n samples, we define a n× n similarity matrix S where 
the entry in the ith row and jth column s(i, j) = −di,j . Notice that di,j denotes the simi-
larity Dsimilar(i, j) between the ith training sample and the jth training sample.

Affinity propagation

Affinity Propagation [22] is a clustering algorithm based on message passing. It identifies 
classes of similar inputs. Given n data points x1, . . . , xn , the algorithm works as follows:

•	 Define an n× n similarity matrix S with s(i, j) = −di,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n . di,j is 
the distance between xi and xj;

•	 Define an n× n responsibility matrix R with r(i, j) = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n;
•	 Define an n× n availability matrix A with a(i, j) = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n;
•	 Iteratively execute the follow steps: 

1	 Responsibility updates: 

2	 Availability updates: 

	  until A+ R remain unchanged over a number of steps, or after some prede-
fined numbers of steps. For each point xi , the data point xk that maximizes 
a(i, r)+ r(i, k) gives us the class information of xi.

We chose affinity propagation to generate class features as it only requires a few hyper-
parameters. More importantly, affinity propagation does not need to choose the number 
of classes. To employ affinity propagation, we used the edit distance to generate similar-
ity matrices.

Given a training set and a test set, we first calculated the similarity matrix of the 
training set. Then we applied affinity propagation to the similarity matrix. The affin-
ity propagation will assign each sample in the training set a cluster label, which is our 
class features. Besides, the number of clusters and the center of each cluster were also 
obtained from the results of affinity propagation (Fig. 4). We then measured the edit dis-
tance between each sample in the test set and these cluster centers. Finally, we assigned 
each test sample the same cluster label as the cluster center with the minimum edit dis-
tance. The whole procedure is given by (2) in Fig. 1b.

LightGBM

Gradient boosting machine [18] is a machine learning algorithm that uses a group of 
weak prediction models (often decision trees) to make predictions. In this study, we uti-
lized a gradient boosting machine-based framework — lightGBM.

r(i, k) ← s(i, k)−max
k ′ �=k

{a(i, k ′)+ s(i, k ′)}

a(i, k) ← min(0, r(k , k)+
∑

i′∈{i,k}
max(0, r(i′, k))) for i �= k

a(k , k) ←
∑

i′ �=k

max(0, r(i′, k))
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LightGBM [24] is an efficient implementation of gradient boosting machine. It has 
been widely used in the field of bioinformatics and compuational biology since it has the 
following advantages:

•	 High speed and low memory cost: LightGBM uses a histogram-based algorithm [25–
27]. Such algorithm can assign continuous feature values into discrete bins, thereby 
leading to high training speed and low memory cost.

•	 High accuracy: Traditional decision tree-based learning algorithms generate trees 
level-wise. However, lightGBM generates trees leaf-wise. This strategy usually causes 
lower loss than level-wise algorithms.

•	 Support categorical features: One-hot encoding is an efficient encoding scheme for 
categorical features. However, for tree-based learning algorithms, one-hot features 
tend to generate very unbalanced trees, which may prevent the prediction model 
from achieving good accuracy. Instead of one-hot encoding, lightGBM allows users 
to input categorical features directly to train the model, which may lead to more bal-
anced trees and more accurate results.

We built a lightGBM-based model — termed ReCGBM with relational features and class 
features as inputs. The outputs were cleavage sites or non-cleavage sites.

Evaluation metrics

To assess the performance of our prediction model, we used several different metrics 
including sensitivity (Sn), specificity (Sp), accuracy (Acc) and Matthews correlation coef-
ficient (MCC):

Fig. 4  Average number of classes for different data types. The terms qf and rf represent quickfold and 
RNAFold, respectively
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where TP, TN, FP and FN denote the numbers of true positives, true negatives, false 
positives, and false negatives, respectively.

Results
Predictive performance

The main goal of this paper is to develop an accurate prediction model for the Dicer 
cleavage sites. In this section, we show the predictive performance of ReCGBM and 
compare our results with other existing models.

We built prediction models for the 5p-arm dataset and 3p-arm dataset with secondary 
structures predicted by quickfold and RNAFold respectively.

To ensure the effectiveness of our model, we trained 10 models for each dataset, where 
we only considered the cases in which the affinity propagation converged. For each 
model, we randomly divided our preprocessed dataset into two subsets. The first subset 
that included 800 cleavage patterns and 800 non-cleavage patterns was used as the train-
ing set. The other subset was used as the independent test set, which included 156 cleav-
age patterns and 156 non-cleavage patterns. We computed the average sensitivity (Sn), 
specificity (Sp), accuracy (Acc), and MCC of the 10 models for each dataset.

We compared the predictive performance of ReCGBM with the existing methods, 
PHDCleav and LBSizeCleav. Since the performance of LBSizeCleav highly depends on 
the variable k, which represents the effect of length of loops/bulges on the kernel com-
putation, we trained LBSizeCleav with k = 1, 2, 3, 4, 5 as previously described [17]. All 
models were trained on the same 10 training sets and evaluated on the same 10 test sets 
for each dataset.

In order to tune the hyperparameters, we performed grid search on the training set 
for each models with GridSearchCV in scikit-learn [28]. For ReCGBM, we performed 
a grid search with max_depth ∈ [10, 20, 30, 40, 50, 60] , learning_rate ∈ [0.05, 0.1, 0.15] , 
and num_leaves ∈ [200, 300, 400] , respectively. For PHDCleav and LBSizeCleav-
based models, we performed grid search with C ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] , and 
gamma ∈ [0.1, 0.01, 0.001] . After the best hyperparameters were chosen, the models 
with the best hyperparameters were trained on each training set.

The predictive performance of different models is illustrated in Fig. 5 and Additional 
file  1: Table  S1 for both the 5p-arm dataset and the 3p-arm dataset with secondary 
structures predicted by quickfold. For the 5p-arm dataset with secondary structures 
predicted by quickfold, ReCGBM achieved a sensitivity of 0.863, a specificity of 0.846, 
an accuracy of 0.854 and an MCC of 0.709, respectively, which outperformed all other 
predictors in terms of three out of the four evaluation metrics. For the 3p-arm dataset 

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )
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with secondary structures predicted by quickfold, ReCGBM achieved the best sensitiv-
ity, specificity, accuracy and MCC of 0.883, 0.899, 0.891 and 0.783, respectively.

Figure 6 and Additional file 1: Table S2 show the average specificity, sensitivity, accu-
racy, and MCC of models on both the 5p-arm dataset and the 3p-arm dataset with 
secondary structures predicted by RNAFold. For the 5p-arm dataset with secondary 
structures predicted by RNAFold, ReCGBM achieved the best specificity (0.862), accu-
racy (0.873) and MCC (0.747). In contrast, LBSizeCleav (k=3) achieved the best sensi-
tivity (0.888). For the 3p-arm dataset with secondary structures predicted by RNAFold, 
ReCGBM achieved the best specificity (0.892), while PHDCleav achieved the best sensi-
tivity (0.904), accuracy (0.894) and MCC (0.789).

Overall, ReCGBM outperformed the other models on three of the four datasets, high-
lighting the effectiveness of this model for predicting human dicer cleavage sites.

To further investigate whether different RNA secondary structures affect our predic-
tion accuracy, we also generated relational features and class features using the RNAs-
tructure package [29, 30]. For ∼ 70 nt RNA structure, RNAstructure predicts secondary 
structures of the pre-miRNA-size RNAs with the accuracy near 100% .We trained 5 
models for each dataset, where we only considered the cases in which the affinity 

5p-arm 3p-arma b
Fig. 5  Performance comparison between different models based on the datasets with secondary structures 
predicted by quickfold

5p-arm 3p-arma b
Fig. 6  Performance comparison between different models based on the datasets with secondary structures 
predicted by RNAFold
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propagation converged. For each model, we randomly divided our preprocessed dataset 
into two subsets. The first subset that included 800 cleavage patterns and 800 non-cleav-
age patterns was used as the training set. The other subset was used as the independent 
test set, which included 156 cleavage patterns and 156 non-cleavage patterns. The results 
are shown in Additional file 1: Table S3. The performance of ReCGBM with RNAstruc-
ture is close to the performance of ReCGBM with RNAFold.

Affinity propagation

The goal of this experiment is to explore the relationship between class features and 
cleavage/non-cleavage sites. To address this, we applied affinity propagation to each 
training set of 3p-arm and 5p-arm with secondary structures predicted by quickfold and 
RNAFold. Figure 4 shows the average cluster results of 10 training sets of 3p-arm and 
5p-arm with secondary structures predicted by quickfold and RNAFold.

To further investigate the relationship between the class features and the cleavage/
non-cleavage sites, we defined ratioi(cleavage) for each class i in Fig. 4 as follows:

where Ni(cleavage) and Ni(non-cleavage) represent the number of cleavage patterns 
and the number of non-cleavage patterns in class i, respectively. If ratioi(cleavage) is 
close to 0, the samples in class i are almost non-cleavage patterns. On the other hand, if 
ratioi(cleavage) is close to 1, the samples in class i are almost cleavage patterns. Classes 
with very high ratio(cleavage) and classes with very low ratio(cleavage) are desirable as 
these classes reflect that the class features have the potential to distinguish cleavage sites 
from non-cleavage sites.

We assume class i belongs to label 1, 2, 3, 4, 5 if ratioi(cleavage) ∈ [0, 0.2] , (0.2, 0.4], 
(0.4, 0.6], (0.6, 0.8], (0.8, 1.0], respectively.

Figure 7a–d show the relationships between the average number of classes and each 
label for the 5p-arm dataset(qf ), 3p-arm dataset(qf ), 5p-arm dataset(rf ) and 3p-arm 
dataset(rf ) in Fig. 4, respectively. The commonality in these four figures is that the num-
bers of classes in label 1 and label 5 were much higher than others. Figure 7e–h describe 
the relationships between the average number of samples and each label for four data-
sets. It is obvious that the numbers of samples in label 1 and label 5 were much higher 
than others.

Thus, the results of affinity propagation show that the majority of classes are over-
whelmed by either only cleavage sites or non-cleavage sites, which indicates that the 
clusters based on edit distance may improve the prediction of the cleavage site.

Sequence logo representations

To explore the difference between cleavage sites and non-cleavage sites at the RNA 
sequence level, we draw the sequence logo representations (Fig. 8) of the 5p-arm cleav-
age sites, 5p-arm non-cleavage sites, 3p-arm cleavage sites and 3p-arm non-cleavage 
sites by WebLogo 3 [31].

As can be seen from Fig. 8, the 5p-arm cleavage sites and 5p-arm non-cleavage sites 
show different preferences for the neighboring nucleotides. For cleavage sites, sequence 

ratioi(cleavage) =
Ni(cleavage)

Ni(non-cleavage)+ Ni(cleavage)
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5p-arm (qf) 3p-arm (qf)

5p-arm (rf) 3p-arm (rf)

Relation with the Number of Classes

5p-arm (qf) 3p-arm (qf)

5p-arm (rf) 3p-arm (rf)

Relation with the Number of Samples

c

a

d

b

e f

g h

Fig. 7  Results of affinity propagation. a–d plot the relationships between the average number of classes 
and different labels for the 5p-arm dataset (qf ), 3p-arm dataset (qf ), 5p-arm dataset (rf ) and 3p-arm dataset 
(rf ), respectively where qf represents secondary structures predicted by quickfold server and rf denotes 
secondary structures predicted by RNAFold. e–h show the relationships between the average number of 
samples and different labels for the 5p-arm dataset (qf ), 3p-arm dataset (qf ), 5p-arm dataset (rf ) and 3p-arm 
dataset (rf ), respectively
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motifs associated with over-represented nucleotides at the positions 3-11 (Fig. 8a) can 
be easily observed, while for non-cleavage sites, no specific nucleotides were found to be 
over-represented at the positions 7 and 8 (Fig. 8b). For the 3p-arm cleavage sites (Fig. 8c), 
nucleotides at two specific positions 7 and 8 showed most distinctive preferences, com-
pared with the 3p-arm non-cleavage sites (Fig. 8d). There also exist subtle differences in 
other positions such as the positions 5, 9, 10, and 11 between the 3p-arm cleavage sites 
and non-cleavage sites. Altogether, the nucleotide preferences shown in Fig. 8 represent 
patterns important for distinguishing the dicer cleavage sites from non-cleavage sites.

0.0

0.1

bi
ts

A
U
C
G

C
A
U
G

A
C
G
U

C
A
G
U

5
C
A
U
G
A
C
U
G
C
A
G
U

A
C
G
U

C
A
G
U

10
A
C
G
U
C
A
G
U

C
A
G
U

C
A
G
U

5p-arm cleavage sites

0.0

0.1

bi
ts

C
U
A
G

U
C
A
G
C
A
U
G

A
C
U
G

5
C
A
U
G
C
U
A
G
A
U
C
G

C
A
U
G

A
C
G
U

10
C
A
G
U
C
A
U
G
A
C
U
G
C
A
G
U

A
C
G
U

5p-arm non-cleavage sites

0.0

0.1

0.2

bi
ts

A

C
U
G
A
A

5
G
C
A
U

U
A
G
C

U
A
C
G
G
A
C
U
G
U
C
A

10
G
U
C
A

U
A
G
C

A
G
U
C
A
G
U
C

3p-arm cleavage sites

0.0

0.1

0.2

bi
ts

U
A
C
G
G
A
C
U
G
U
C
A

G
U
C
A

5
U
A
G
C

A
G
U
C
A
G
U
C

A
G
U
C

10
A
G
C
U
A
G
U
C
A
G
U
C

A
G
C
U

A
G
C
U

3p-arm non-cleavage sites

b

c

d

a

Fig. 8  Sequence logo representations of cleavage sites and non-cleavage sites. a and b are sequence logo 
representations of the 5p-arm cleavage sites and the 5p-arm non-cleavage sites. c and d are sequence logo 
representations of the 3p-arm cleavage sites and the 3p-arm non-cleavage sites
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Feature importance

Gradient boosting machine typically uses decision trees as the base learners. An advan-
tage of the decision tree is that it is an explainable model. Therefore, it is also possible 
to interpret a gradient boosting machine as an ensemble of decision trees. Fortunately, 
lightGBM has a built-in module that provides a score to describe the usefulness of each 
feature for a trained model. Here we will discuss the feature importance of ReCGBM.

Since we trained 10 models for each dataset, we list the average feature importance of 
the 10 trained models for each dataset.

Let p1 , . . . , p14 denote the 14 pairs of the relational features (Fig. 1b1). Figures 9 and 10 
show the results of feature importance for different datasets.

Figure 9 gives the feature importance of the 5p-arm datasets with the secondary struc-
tures predicted by quickfold and RNAFold, respectively. It can be seen that p8 , . . . , p14 
were more important than p1 , . . . , p7 . Additional file 1: Figure S1a and S1b shows the 
relationships between p8 , . . . , p14 and p1 , . . . , p7 on 5p-arm dataset directly.

a

b
Fig. 9  Results of feature importance on the 5p-arm datasets. The secondary structures of a and b are 
predicted by quickfold and RNAFold, respectively
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Figure  10 shows the feature importance of the 3p-arm datasets with the secondary 
structures predicted by quickfold and RNAFold, respectively. For the 3p-arm datasets, 
p1 , . . . , p7 were more important than p8 , . . . , p14 . Additional file 1: Figure S1c and S1d 
shows the relationships between p8 , . . . , p14 and p1 , . . . , p7 on the 3p-arm dataset directly.

Discussion
Although ReCGBM showed a better performance on three of the four datasets, 
PHDCleav achieved the best performance on the 3p-arm dataset with the secondary 
structures predicted by RNAFold. There are several potential reasons. First, the perfor-
mance of ReCGBM highly depends on the predicted secondary structures. To obtain 
relational features and class features, the secondary structure information is necessary. 
However, the secondary structure generated by quickfold or RNAFold may include sev-
eral structures. In ReCGBM, only one structure can be included in our input features, 
which might affect the prediction performance.

a

b
Fig. 10  Results of feature importance on the 3p-arm datasets. The secondary structures of a and b are 
predicted by quickfold and RNAFold, respectively
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Second, some class features generated by the affinity propagation may not be accurate. 
As shown in Fig. 4, the number of classes given by the affinity propagation for each data-
set was over 180. However, the number of samples in each dataset was 1912. Thus such 
classes may exist: the distance between each sample in this class may not be so close. The 
distance between samples in this class and samples in other classes is relatively farther. 
The affinity propagation may fail to find data that are ’close enough’ to each sample in 
such classes. By ’close enough’ we mean different samples are close enough such that 
they share some common properties.

The feature importance of ReCGBM also shows some connections between the RNA 
secondary structures and human dicer cleavage site prediction. Considering the position 
of relational features in the secondary structure of pre-miRNA (Additional file 1: Figure 
S2), p8 , . . . , p14 of 5p-arm and p1 , . . . , p7 of 3p-arm are closer to the center of the pre-
miRNA. Therefore, relational features close to the center of pre-miRNA may contribute 
more to human dicer cleavage sites prediction.

Another observation is that class features are more important in the 5p-arm datasets, 
which can be concluded based on the results shown in Figs. 9 and 10.

Conclusions
In summary, we have introduced a lightGBM-based model—termed as ReCGBM for 
accurate prediction of human dicer cleavage sites and analyzed the feature importance 
of ReCGBM. Computational experiments demonstrated the effectiveness of this model. 
However, possible improvements can be achieved in the future. First, affinity propaga-
tion finds the number of clusters automatically. However, in some cases it is hard to 
converge on small datasets. Thus, an easy-to-converge cluster algorithm is desirable. 
Second, the predictive performance of this model highly depends on the predicted sec-
ondary structures of pre-miRNA. Therefore, a feature encoding strategy that can com-
bine several secondary structures given by quickfold or RNAFold for a pre-miRNA is 
desirable. Finally, the analyses of feature importance showed that the relational features 
that are localized in close proximity to the center of the pre-miRNA are more impor-
tant than the other features. Accordingly, it might be potentially useful to consider more 
informative features close to the center of the pre-miRNA in future predictors.
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