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Extreme mutational selectivity of axitinib limits its potential
use as a targeted therapeutic for BCR-ABL1-positive leukemia
Leukemia (2016) 30, 1418–1421; doi:10.1038/leu.2015.318

Clinical use of the BCR-ABL1 selective tyrosine kinase inhibitor
(TKI) imatinib has markedly improved the prognosis of chronic
myeloid leukemia (CML). Next-generation TKIs, including nilotinib,
dasatinib, bosutinib and ponatinib, effectively control resistance
due to BCR-ABL1 point mutations. Ponatinib, the only US Food
and Drug Administration (FDA)-approved TKI with activity against
the clinically prevalent BCR-ABL1T315I mutant,1 has been linked to
severe vascular occlusive events2–6 at a dose of 45 mg once daily,
and lower doses are being explored (clinicaltrials.gov identifier
NCT02467270). Emergence of BCR-ABL1 compound mutations can

confer high-level resistance to all available TKIs, including
ponatinib, indicating a need for new therapeutic options.7

Axitinib, an FDA-approved, ATP-competitive inhibitor of vascular
endothelial growth factor receptors (VEGFR) 1, 2 and 3, is used to
treat metastatic renal cell carcinoma after prior treatment failure
with sorafenib or systemic therapies.8–10 Recent interest in
repositioning FDA-approved drugs led to the discovery that axitinib
has activity against BCR-ABL1T315I.11 In contrast to all FDA-approved
TKIs currently used in CML, Pemovska et al.11 reported that axitinib
is inactive against native BCR-ABL1. In consideration of axitinib’s
extreme selectivity for BCR-ABL1T315I, we explored its efficacy
against other BCR-ABL1 point mutations, T315I-inclusive compound
mutations and secondary mutations of T315.
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Upon profiling axitinib against a panel of Ba/F3 cells expressing
native or single-mutant BCR-ABL1 (Figure 1a, left; and 1b;
Supplementary Table S1), we found that only three mutants exhibited
a half maximal inhibitory concentration (IC50)o500 nM, with V299L
(IC50: 236 nM) being the only substitution away from position 315. In
the recent report, IC50 values of T315V, T315I and T315A were 45, 98
and 389 nM, respectively.11 We extended this survey to include two
additional clinically observed mutants, T315L and T315M. In the
present study, both T315I and T315L (IC50: 146 and 201 nM,
respectively) may represent potential axitinib targets depending on
achievable steady-state levels (Figure 1a), whereas the T315M mutant
(IC50: 736 nM) is highly resistant to axitinib. Thus, only certain
substitutions are tolerated at position 315, further indicating this
residue represents an important determinant of axitinib binding
(Supplementary Figures 1a–c). Immunoblot analysis confirmed
inhibition of BCR-ABL1 phosphorylation by axitinib for the T315I
mutant, but not for native BCR-ABL1 or the T315Mmutant (Figure 1c).
Analysis of a panel of clinically observed T315I-inclusive

compound mutants (M244V/T315I, G250E/T315I, Q252H/T315I,

Y253H/T315I, E255V/T315I, F311I/T315I, T315I/M351T, T315I/F359V,
T315I/H396R and T315I/E453K) revealed several instances in which
axitinib is substantially more potent against the compound mutant
than either component mutant (Figure 1a, center; and 1b;
Supplementary Figure S2), including T315I/H396R (IC50: 79 vs 146
and 565 nM for T315I and H396R, respectively) and M244V/T315I
(IC50: 83 vs 567 and 146 for M244V and T315I, respectively). Axitinib
may find utility in these settings, depending on achievable plasma
concentrations (Figure 1a).8 Most compound mutants involving the
P-loop (for example, G250E/T315I and Y253H/T315I) were signifi-
cantly less sensitive compared with T315I alone (Supplementary
Figure 1b and d). Overall, axitinib was much more effective
against T315I-inclusive compound mutants than the corresponding
non-T315I single mutants, in line with axitinib more potently
inhibiting BCR-ABL1T315I than native BCR-ABL1.
Among a panel of non-T315I compound mutants (G250E/V299L,

Y253H/E255V, Y253H/F317L, E255V/V299L, V299L/F317L, V299L/
M351T, V299L/F359V and F317L/F359V; Figure 1a, right; and 1b;
Supplementary Figure S2; Supplementary Table S2), only two
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Figure 1. BCR-ABL1 mutant sensitivity profile to axitinib and ponatinib. (a) Ba/F3 BCR-ABL1 cells expressing single (left), T315I-inclusive
compound (middle) and non-T315I compound (right) mutants were incubated in 96-well plates (2 × 103 cells per well) in twofold escalating
concentrations of axitinib (up to 2500 nM) for 72 h. Proliferation was assessed via methanethiosulfonate-based viability assay (CellTiter 96
AQueous One; Promega, Madison, WI, USA). Mean IC50 values (Supplementary Table S1) of three independent experiments performed in
quadruplicate are plotted. The horizontal dotted lines indicate the reported steady-state plasma Cmax (78 nM, 5 mg twice daily; 150 nM, 10mg
twice daily) achievable in patients. (b) A color gradient from green (sensitive) to yellow (moderately resistant) to red (highly resistant) denotes
the IC50 sensitivity to each TKI: axitinib (green: o100 nM; yellow: 100–500 nM; red: 4500 nM); ponatinib (green: o25 nM; yellow: 25–150 nM;
red: 4150 nM). Ponatinib results, for reference purposes, are from Zabriskie et al.7, with exception of T315L, which was determined in the
current study. (c) Ba/F3 cells expressing native, T315I or T315M were cultured for 6 h in standard medium alone or with escalating
concentrations of axitinib. Following axitinib exposure, cells were pelleted and lysed by boiling for 10min in SDS-polyacrylamide gel
electrophoresis loading buffer. Lysates were separated on 4–15% Tris-glycine gels, transferred and immunoblotted with antibodies for the BCR
N terminus (Santa Cruz, sc-885, Dallas, TX, USA) and pY412-ABL1 (Santa Cruz, sc-293130).
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V299L-inclusive compound mutants were sensitive to axitinib,
consistent with V299L as the only single mutant aside from select
variants of position 315 that exhibited sensitivity to axitinib. Both of
these (V299L/M351T IC50: 143 nM; V299L/F359V IC50: 147 nM) are also
addressed by ponatinib,7 but axitinib potentially provides an
alternative therapy if ponatinib is not tolerated. All other non-T315I
compound mutants tested were outside of the clinically achievable
dose range.8

To determine whether select secondary acquired mutations on
a BCR-ABL1T315I background confer resistance to axitinib, we
performed a cell-based accelerated mutagenesis screen of Ba/F3
BCR-ABL1T315I in the presence of increasing concentrations of
inhibitor. Axitinib demonstrated concentration-dependent restriction
of the outgrowth of resistant clones (Supplementary Figure S2a).
Compound mutants recovered included Q252(H;P;R)/T315I and
G250E/T315I (recovered at 200 and 400 nM axitinib, respectively;
Supplementary Figure S2b), consistent with our cell proliferation
panel findings (Q252H/T315I IC50: 320 nM; G250E/T315I IC50: 762 nM;
Figures 1a and b). Of note, two instances of isoleucine-to-threonine
reversion at position 315 (axitinib IC50: 811 nM) were detected in the
presence of 200 nM axitinib, consistent with native BCR-ABL1
conferring resistance to axitinib.
We also explored the potential of a T315I-selective inhibitor such

as axitinib to treat BCR-ABL1-positive leukemia characterized by the

simultaneous presence of clones expressing either native BCR-ABL1
or BCR-ABL1T315I. Ba/F3 cells were mixed at a 7:3 native BCR-ABL1:
BCR-ABL1T315I ratio, and then cultured with the indicated TKI(s) for
72 h. Cell counts were monitored and Sanger sequencing analysis
was conducted at the beginning and end of the experiment as an
approximate measure of the native BCR-ABL1:BCR-ABL1T315I ratio
(Figures 2a and b).12 Relative to proliferation of untreated cells,
axitinib (500 nM) reduced proliferation by 60% at 72 h and skewed
the initial 7:3 BCR-ABL1:BCR-ABL1T315I ratio to 9:1. Ponatinib (25 nM)
decreased overall cell growth to 20% of untreated control and the
remaining cells were exclusively BCR-ABL1T315I, in line with greater
potency of ponatinib against native BCR-ABL1 compared with
BCR-ABL1T315I.7 Axitinib (250 nM) in combination with dasatinib
(5 nM) reduced proliferation to 15% of untreated cells, whereas
the BCR-ABL1:BCR-ABL1T315I ratio remained relatively constant.
Dasatinib (10 nM) reduced cell proliferation to 85% of untreated
cells, but the initial 7:3 ratio favoring native BCR-ABL1 moved to
favor T315I, in a ratio of ~ 1:9 (Figures 2a and b). Overall, neither
axitinib nor dasatinib alone was effective in this setting, whereas a
combination of the two was as effective as single-agent ponatinib.
As an extension of our cell line mixing experiments, we further

assessed the effects of axitinib (100 nM) alone or in combination
with dasatinib (10 nM) in colony assays involving primary CML
specimens with varying BCR-ABL1T315I allele burden as estimated
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Figure 2. Axitinib effects in a mixed population of BCR-ABL1 native and T315I cells. (a) Ba/F3 BCR-ABL1 cells expressing native or T315I were
mixed and incubated for 72 h without drug, or with axitinib (500 nM), ponatinib (25 nM), dasatinib (10 nM), or axitinib and dasatinib (250 and 5 nM,
respectively). At 0 h and after 72 h, genomic DNA was extracted and the BCR-ABL1 kinase domain was amplified using two-step PCR to exclude
amplification of endogenous ABL1. The resulting PCR product was sequenced in both directions using conventional Sanger sequencing and
relative native, and T315I expression was evaluated using Mutation Surveyor software (SoftGenetics, State College, PA, USA). (b) Using the same
cell mixture as in a, cells were plated in quadruplicate in 96-well plates (2× 103 cells per well) without drug, or with axitinib (500 nM), ponatinib
(25 nM), dasatinib (10 nM), or axitinib and dasatinib (250 and 5 nM, respectively). After 72 h, relative proliferation was assessed via
methanethiosulfonate assay. (c) Patient-derived mononuclear cells expressing various levels of BCR-ABL1T315I (89% (left), 39% (middle) or 0%
(right)) were plated in methylcellulose semisolid medium with StemSpan CC100 (STEMCELL Technologies, Vancouver, BC, Canada) without drug,
with axitinib (100 nM), or with axitinib and dasatinib (100 and 10 nM, respectively). After 2 weeks, colonies were counted.
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by cloning and sequencing (Figure 2c).7 Consistent with axitinib’s
selectivity for the T315I mutant over native BCR-ABL1, the degree
of colony inhibition by axitinib alone was tracked with the relative
abundance of the T315I mutation (T315I allele burdens of 89%,
39% and 0% reduced colony growth to 56%, 73% and 91%
of control, respectively). In contrast, the effect of the combination
of axitinib and dasatinib was relatively constant across all three
specimens (reduced to 31–51% of control), irrespective of T315I
mutant burden (Figure 2c). These results highlight the necessity of
including a second TKI to inhibit native BCR-ABL1 in the case of
axitinib, introducing the potential for associated toxicity issues.5,6

T315I-positive patients typically have a mix of native BCR-ABL1
and BCR-ABL1T315I at the time of switching to a TKI with T315I
activity. For example, among 27 patients with the T315I mutation
detected prior to starting ponatinib, the average T315I allele
burden was 81.5% and the range was 40–100% (Supplementary
Table S3).4 Our cell line and ex vivo primary CML cell studies
suggest that residual native BCR-ABL1-positive clones remain a
liability for axitinib (Figure 2).
The IC50 values for native BCR-ABL1 and the kinase domain

single mutants evaluated in our study exceed the reported steady-
state peak plasma level of axitinib dosed at the recommended
5mg twice daily (78 nM), as well as the maximum allowable dose
of 10 mg twice daily (150 nM).8 Although direct comparison of
pre-clinical IC50 values with peak plasma levels of axitinib is not
possible, this observation raises an important concern about
axitinib’s clinical role in CML. In the recent report on axitinib as a
BCR-ABLT315I inhibitor, a consideration for preferring axitinib to
ponatinib was the possibility of reducing the risk of ponatinib
treatment-related thrombotic events. The scientific justification
for this assertion is not entirely clear, given that axitinib is a
low-nanomolar inhibitor of VEGFR1, 2 and 3.10 Prescribing
information for axitinib states that the risk of arterial and venous
embolic and thrombotic events as well as hypertension must be
considered carefully and managed appropriately.13,14 Although
the mechanisms responsible for arterial occlusive events asso-
ciated with ponatinib remain to be established, it is plausible that
ponatinib’s potent inhibition of VEGFR2 is a contributing factor.5,6

We conclude that the potential clinical utility of axitinib in
BCR-ABL1-positive leukemia encompasses mutations at positions
315 or 299 only, with plasma levels of axitinib projected to be
insufficient to inhibit native BCR-ABL1 and all other single mutants
tested. In fact, containment of T315I (IC50: 146 nM) and V299L
(IC50: 236 nM) requires axitinib concentrations exceeding the
clinically attainable plasma levels at the standard 5mg twice-daily
dose. Escalation to a dose of 7–10mg twice daily is permitted based
on individual tolerability.8,10 In principle, axitinib is the only TKI with
demonstrated activity against T315L (IC50: 201 nM), but this is of
uncertain clinical utility due to dosing limitations. For axitinib, T315I
is the default sensitive background and native BCR-ABL1 functions
as a point mutant with considerable resistance. Although it is
possible that useful principles for designing analogs with activity
against T315I-inclusive compound mutants can be extracted
from the axitinib:BCR-ABLT315I complex, the extreme mutational
selectivity of axitinib limits its use as a targeted therapy for
BCR-ABL1-positive leukemia.
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