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The priming of adaptive immune responses in the draining lymph node is a crucial step to initiate
functional T and B cell responses against newly encountered antigens present in the periphery.
While lymph node resident antigen-presenting cells have been reported to present free draining
antigen that is transported by lymph and accumulates within the subcapsular sinus shortly after
immunization (1–3), the majority of cells that migrate from the tissue to the lymph node arrive
after 24 h. A large proportion consists of different populations of conventional dendritic cells, which
migrate through the lymphatics to transport antigen from the periphery to the lymph node where
they present antigen peptides to naïve T cells to initiate adaptive immunity [recently reviewed in
Worbs et al. (4) and Randolph et al. (5)]. However, antigen positive neutrophils, monocyte derived
dendritic cells, andmonocytes have also been identified in the lymph node under certain conditions
(6–9), but defining their migration kinetics and origin remains challenging.

To gain a better understanding of the key migratory events that are elicited by Alum/LPS,
a model for Alum-based vaccine administration, Hayes et al. performed a detailed analysis of
the cell migration kinetics and antigen presentation events in the draining lymph nodes after
footpad immunization (10). Only a limited number of tools are available to monitor the dynamic
migration events that occur during an immune response in vivo, with each tool presenting their
own advantages, challenges, and limitations.

While two-photon microscopy allows for in vivo imaging in real time, it requires a challenging
experimental setup when inner tissues are studied and limits the observation to the fluorescent cell
types that can be visualized using reporter mouse strains (11, 12).

A more unbiased approach is achieved by cannulating the lymphatic vessels and collecting
lymph ex vivo. While small amounts of lymph can be collected via a glass capillary from many
locations we can only gain insights into its temporal composition (11). Access to large lymphatic
vessels is necessary for the cannulation and continuous collection of lymph. This procedure
has been successfully performed for thoracic duct cannulations in mice and rats and allows for
the direct assessment of lymph migratory cell populations at steady state and after intestinal
immunization (12–14). However, migrating cell populations from other tissues are harder to assess
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as the smaller diameter and sequential positioning of lymph
nodes along smaller lymphatic vessels makes the insertion of a
cannula at the right location challenging (15).

With the development of photoconvertible fluorescent
proteins (namely mEosFP, tdEosFP, Dendra, Dronpa, Kaede,
KikGR, and mOrange) and the availability of transgenic mouse
strains that either ubiquitously or selectively express these
proteins in all cells or certain cell types or organelles (16),
tissues of interest can now be photoconverted and migrating cell
populations tracked to non-converted tissues.

To conduct a successful photoconversion experiment in vivo,
several important details need to be considered:

A) An appropriate light source needs to be chosen that emits
the optimal wavelength to photoconvert the fluorescent
protein, allows for deep penetration into the tissue to ensure
complete photoconversion, and does not cause damage,
cell activation or inflammatory reactions that could cause
unspecific cell migration.

B) The selection of the experimental model and the cell
types studied need to ensure that a distinct photoconverted
signature can be detected when cells are collected and that the
fluorescent signal is not diluted due to cellular degradation of
the photoconverted protein or excessive cell division.

C) The timing of the photoconversion needs to take into account
that only cells present at this specific timepoint will be
photoconverted, while cells that have already migrated away
or subsequently arrive in the tissue will not be distinguishable
from non-migrating cells.

When these parameters are appropriately selected,
photoconvertible mouse strains are an easy-to-use and flexible
option to study the migration kinetics of immune cells at steady
state or in response to immunization.

Using ubiquitously expressing Kaede mice, the migration
of dendritic cell subsets from the skin and intestine has
been well-characterized and were found to be the only
tissue migrating immune cell that migrates from the tissue
to the lymph node via the lymphatics under steady state
conditions (17–19). To study cellular migration during an
immune response a large variety of models have been used
that range from inducing unspecific inflammation through
tape-stripping, the epicutaneous application of irritants
or cell labeling dyes, to the subcutaneous or intradermal
injection of dyes, adjuvanted proteins, nanoparticles,
or pathogens.

To better define the phenotype and kinetics of skin
migrating cells after Alum/LPS treatment, Hayes et al. treated
photoconvertible Kaede mice with Alum/LPS and tracked
the photoconverted cells from the site of treatment to the
draining lymph node (10). By combining data from lymph
nodes collected at different time points after photoconversion
and immunization and modeling the resulting cell migration
kinetics mathematically, the authors conclude that migratory
cell populations first accumulate in the footpad after Alum/LPS
treatment, migrate to the lymph node at a fixed rate and

remain in the lymph node for a prolonged period of time
compared to the administration of saline (10). While previous
studies show that migrating dendritic cells are first detected
3–8 h after egress from the skin (20, 21), Hayes et al. show
here that the majority of dendritic cells that accumulate in
the lymph node after Alum/LPS treatment accumulate in the
tissue 8–12 h after immunization and migrate to the lymph node
at a peak time of 24–36 h (10). In contrast to other models
that use tape stripping or deliver non-adjuvanted antigens by
injection (13, 20, 22), the current study further indicates that the
majority of migrating immune cells are not already present in the
tissue, but first need to be recruited to the skin after Alum/LPS
treatment (10).

While it is assumed that depot formation and the slow
release of antigen or inflammatory mediators are responsible for
the adjuvanticity of alum (and could explain the accumulation
of immune cells), the same laboratory has shown that both
alum and CpG induced similar uptake of antigen in the lymph
node, regardless of depot formation (23). This suggests that
the majority of migrating cells that migrate after Alum/LPS
treatment are recruited from outside the tissue and poses
the question if the identified population of dendritic cells are
indeed conventional tissue-resident dendritic cells. Alternatively,
monocyte derived dendritic cells, which accumulate at the site
of immunization, have been reported after alum treatment (9),
and can express similar levels of MHCII and CD11c after
activation (24) could have been reported in this study. It
therefore remains to be determined if the migrating dendritic
cells observed here are monocyte derived dendritic cells (10),
or if they represent conventional dendritic cells that have
developed from rapidly arriving dendritic cell progenitors
as recently reported for viral infections (25). If identified
as monocyte derived dendritic cells, this study would be
the first to provide formal evidence that monocyte derived
dendritic cells can migrate from the inflamed tissue to
the draining lymph nodes via the lymphatics, and do not
enter the lymph node via the bloodstream, as currently
believed (26).

This would suggest that a therapeutic intervention or targeting
of migrating cell populations after Alum/LPS treatment or
Alum-based vaccinations should be delayed to account for their
accumulation in the tissue and could be developed as an effective
tool to influence the outcome of adaptive immune responses in
the lymph node.
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