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Abstract: Introduction: Olfactory impairment is one of the earliest symptoms in neurodegenerative
disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a
very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function
that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective
Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE)
in an NPC1 mouse model. Methods: Proliferation in the VNE and OE was assessed by applying a
bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory
marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate
if degenerative effects of both olfactory systems can be prevented or reversed, some animals
were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin
(HPβCD), or a monotherapy with HPβCD alone. Results: Using BrdU to label dividing cells of the
VNE, we detected a proliferation increase of 215% ± 12% in Npc1−/− mice, and 270% ± 10% in
combination- treated Npc1−/− animals. The monotherapy with HPβCD led to an increase of 261%±
10.5% compared to sham-treated Npc1−/−mice. Similar to the OE, we assessed the high regenerative
potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1−/− mice was not
affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE
was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1
pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1−/−

mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.

Keywords: vomeronasal organ; immunohistochemistry; cyclodextrin; allopregnanolone; miglustat;
Niemann-Pick disease type C1; mouse model; neurodegeneration; bromodeoxyuridine; olfactory
marker protein; cathepsin-D

1. Introduction

Niemann-Pick disease type C1 is a rare autosomal-recessive lipid storage disorder with
neurodegenerative and neurovisceral phenotypes [1]. The reason is a mutation of the Npc1 gene
on chromosome 18q11 that encodes a transmembranous transport protein with late endolysosomal
localization [2,3] responsible for the release of cholesterol from lysosomes [4]. The resulting accumulation
of cholesterol, however, is found predominantly in viscera like liver or spleen [5–9], whilst in cells of
the nervous system, a different pathologic lipid pattern prevails, consisting of e.g., gangliosides GM2
and GM3 [5,10]. The range of symptoms reaches from hepatosplenomegaly and pulmonary ventilation
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disorders to neurologic/psychiatric symptoms such as ataxia, kataplexia, seisures, depression,
progressive dementia, and retarded language development [11–13]. First symptoms may occur as
early as 2–3 months after birth, or, in a later form, in later adulthood [14].

We used a mouse model with a BALB/c genetic background that shows similarities in the
clinical course of the severe infantile form of the disease. This animal, BALB/cNctr-Npc1m1N/J, has a
retrotransposon insertion into the N-terminus of the Npc1 gene, along with a 703-bp deletion, causing
premature termination of the coding region that excludes most of the sterol-sensing domain [15].
Whereas motor systems and visceral organs are well studied, there are fewer data available for sensory
systems such as vision [16,17], hearing [18,19], or, specifically, chemosensory systems such as olfaction
and vomeronasal perception. Within the nervous system, olfactory receptor neurons (ORN) are unique
in that they are able to continuously regenerate throughout life [20]. Olfactory neurogenesis is a
carefully regulated chain of molecular events that leads to appropriate proliferation and differentiation
of basal/precursor cells in the olfactory mucosa [20–22]. Since olfactory acuity has been shown to be
impaired in several neurodegenerative diseases such as Parkinson’s disease [23–25], we previously
studied the sense of olfaction in NPC1 and noted severe structural, electrophysiological, and behavioral
deficits [26,27]. These alterations included considerable loss of ORN, the presence of autophagosomes,
cathepsin-D (CathD)-positive lysosomal inclusions in all mucosal cells, and massive astrogliosis
and microgliosis in the olfactory bulb. These findings were accompanied by a 45% increase of
BrdU(+) proliferating cells in the olfactory mucosa, compared to wildtype controls [28]. In spite of this
considerable attempt of proliferative compensation, the animals performed worse in a buried pellet
test than normal controls [27].

Therapeutic options for NPC1 are limited, as there is no causal treatment of the disease. Miglustat,
introduced by Lachmann and Platt in 2001 [29] and approved for NPC1 treatment in Europe, Canada,
and Japan, is an inhibitor of glucosylceramide transferase [30]. Combined with allopregnanolone,
a neuroprotective agent solubilized in 2-hydroxypropyl-β-cyclodextrin (HPβCD) [31], it proved to be
effective in animal models and humans [27,28,32,33]. Later, it was discovered that the solvent, HPβCD,
was immediately responsible for the cholesterol-reducing effect (reviewed by [34]).

We previously showed that survival of olfactory cells was increased and neurodegeneration
prevented upon treatment with HPβCD and/or a substrate reduction therapy with miglustat/HPβCD/
allopregnanolone [27,28]. This investigation aims to study if similar alterations also occur in a related
chemosensory system, the neuroepithelium of the vomeronasal organ of Npc1−/− mice, and how
it reacted upon treatment. As the proliferative activity can be regarded as a compensatory reaction
of the highly-plastic system to address cell damage, we used a BrdU protocol to determine the
proliferative activity of the vomeronasal epithelium. Further, we evaluated the lysosomal activity
by immunohistochemical reaction of CathD, and the integrity of vomeronasal receptor neurons with
olfactory marker protein (OMP).

2. Results

2.1. Histology of the Vomeronasal Epithelium (VNE)

The VNE lines a blind-ending bilateral semilunar duct situated in the ventral nasal septum
(Figure 1). The duct consists of a lateral, non-sensory and a medial, sensory epithelium. In the
latter, basal precursor cells are not arranged in a distinct cell layer, like in the OE, but occur basally,
extending from the anterior and posterior margins to the central area over the entire epithelium.
Differentiating sensory cells occupy the largest volume within the epithelium. The apical surface
of the vomeronasal duct is lined by supporting (sustentacular) cells, and intercalated dendrites of
vomeronasal receptor cells, which are situated in the middle and basal third of the epithelium, similar
to the OE (Figures 1 and 2). We did not find major differences in the overall histological structure of
the VNE between groups (Figures 3–6).
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Figure 1. Structural overview of the vomeronasal organ. (A) H&E-stained frontal section of the nasal 
cavity of a Npc1+/+ mouse, day 57, with the bilateral vomeronasal duct located in the ventral nasal 
septum. The vomeronasal duct (*) is lined by the receptor-bearing sensory neuroepithelium (VNE). 
The vomeronasal nerve (N) transfers sensory information along the nasal septum (S) to the accessory 
olfactory bulb in the telencephalon (not shown). OE, olfactory epithelium; (B) minute structure of the 
vomeronasal duct (*), the VNE, the receptor-free non-sensory epithelium (NSE), and blood vessels 
(V). S, nasal septum; SC, supporting (sustentacular) cell layer; B, surrounding bone clip; (C) 
immunohistochemical reaction of olfactory marker protein (OMP). OMP identifies olfactory (dorsal) 
and vomeronasal (ventral) receptor neurons; (D) detailed lamination of the pseudostratified VNE. 
Vomeronasal receptor cells are reactive to OMP; supporting cells (SC) and the opposite, lateral non-
sensory epithelial cells are OMP-negative. 

Figure 1. Structural overview of the vomeronasal organ. (A) H&E-stained frontal section of the
nasal cavity of a Npc1+/+ mouse, day 57, with the bilateral vomeronasal duct located in the ventral
nasal septum. The vomeronasal duct (*) is lined by the receptor-bearing sensory neuroepithelium
(VNE). The vomeronasal nerve (N) transfers sensory information along the nasal septum (S) to the
accessory olfactory bulb in the telencephalon (not shown). OE, olfactory epithelium; (B) minute
structure of the vomeronasal duct (*), the VNE, the receptor-free non-sensory epithelium (NSE),
and blood vessels (V). S, nasal septum; SC, supporting (sustentacular) cell layer; B, surrounding bone
clip; (C) immunohistochemical reaction of olfactory marker protein (OMP). OMP identifies olfactory
(dorsal) and vomeronasal (ventral) receptor neurons; (D) detailed lamination of the pseudostratified
VNE. Vomeronasal receptor cells are reactive to OMP; supporting cells (SC) and the opposite, lateral
non-sensory epithelial cells are OMP-negative.
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Figure 2. Frontal section of the vomeronasal organ displaying two distinct proliferation zones. Cells of the 
marginal compartments (green) migrate horizontally (white arrows); cells of the central compartment 
(blue) migrate vertically (black arrow) thereby following a basal-apical migration route. BL: Basal lamina; 
RC: nuclei of vomeronasal receptor cells; SC: layer of supporting cells; VN-SE: vomeronasal sensory 
epithelium, VN-NSE: vomeronasal non-sensory epithelium; VND: vomeronasal duct. 

 
Figure 3. BrdU immunoreactivity of sham-treated Npc1+/+ (A), sham-treated Npc1−/− (B), combination-
treated Npc1−/− (C) and HPβCD-treated Npc1−/− (D) animals. Whereas the structural integrity is 
maintained in all groups, the number of BrdU(+) cells is clearly increased in all mutant animal groups. 
(A) Most labeled nuclei belong to cells located in the boundary region between neuroepithelium and 
supporting cell layer; (B–D) mutant animals house BrdU(+) equally in all three layers (basal, 
intermediate and apical). Treated mutant mice also have increased cell numbers in the non-sensory 
epithelium. 

Figure 2. Frontal section of the vomeronasal organ displaying two distinct proliferation zones.
Cells of the marginal compartments (green) migrate horizontally (white arrows); cells of the central
compartment (blue) migrate vertically (black arrow) thereby following a basal-apical migration
route. BL: Basal lamina; RC: nuclei of vomeronasal receptor cells; SC: layer of supporting cells;
VN-SE: vomeronasal sensory epithelium, VN-NSE: vomeronasal non-sensory epithelium; VND:
vomeronasal duct.
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Figure 3. BrdU immunoreactivity of sham-treated Npc1+/+ (A), sham-treated Npc1−/− (B),
combination-treated Npc1−/− (C) and HPβCD-treated Npc1−/− (D) animals. Whereas the structural
integrity is maintained in all groups, the number of BrdU(+) cells is clearly increased in all mutant
animal groups. (A) Most labeled nuclei belong to cells located in the boundary region between
neuroepithelium and supporting cell layer; (B–D) mutant animals house BrdU(+) equally in all three
layers (basal, intermediate and apical). Treated mutant mice also have increased cell numbers in the
non-sensory epithelium.
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Figure 4. BrdU(+) cells within the vomeronasal epithelium of mutant and treated mice show a 
significant increase of proliferating cells in sham-treated Npc1−/− mice and both, HPβCD-treated and 
combination treated animals in comparison to sham-treated Npc1+/+ animals. * p < 0.05; ** p < 0.01; for 
p values see text. 

 

Figure 5. Comparison of OMP immunoreactivity (IR) in both nasal chemosensory organs. (A) OMP-
IR in sham-treated Npc1+/+- mice is regularly distributed in olfactory receptor neurons (OE) and in 
vomeronasal receptor neurons (VNE); (B) sham-treated Npc1−/− mice present highly damaged and 
almost OMP-IR absent neurons within the OE (arrows), whereas the VNE appears normal; (C,D) both 

Figure 4. BrdU(+) cells within the vomeronasal epithelium of mutant and treated mice show a
significant increase of proliferating cells in sham-treated Npc1−/− mice and both, HPβCD-treated and
combination treated animals in comparison to sham-treated Npc1+/+ animals. * p < 0.05; ** p < 0.01; for
p values see text.
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Figure 5. Comparison of OMP immunoreactivity (IR) in both nasal chemosensory organs. (A) OMP-IR
in sham-treated Npc1+/+ mice is regularly distributed in olfactory receptor neurons (OE) and in
vomeronasal receptor neurons (VNE); (B) sham-treated Npc1−/− mice present highly damaged and
almost OMP-IR absent neurons within the OE (arrows), whereas the VNE appears normal; (C,D) both
treated animal groups, however, show almost normal OMP-IR indicating a protective effect of both
treatment strategies. The VNE does not show changes of OMP-IR in neither condition.
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2.2. Quantification of BrdU(+) Proliferating Cells 

Most BrdU(+) proliferating cells were located in the anterior and posterior edges of the semilunar-
shaped VNE (Figures 2 and 3), giving rise to a horizontally-oriented way of cell migration (green area in 
Figure 2; see also [35,36]). A minor proliferative compartment exists in the basal layer of neuroepithelial 
precursors that migrate in a more vertical pathway (blue area in Figure 2) [35,36]. The former can be 
considered as a “pool for replacement”, and the latter as a “pool for growth” (Figure 2) [35]. 

In order to evaluate the proliferation of vomeronasal epithelial cells, we quantified BrdU-
labelled cells within the VNE of the left side, since previous investigations had not shown any side 
differences. Morphometric studies in rats did not observe any sex-related differences [35]. We defined 
the number of BrdU(+) cells per mm3 of sham-treated Npc1+/+ 100% with 37,827 (±3907) cells/mm3, and 
compared the cell densities. The proliferation in all other groups was significantly higher than in the 
control group (Figure 4; Table 1). The cell number in sham-treated Npc1−/− animals was significantly 
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BrdU(+) cells in combination-treated Npc1−/− animals significantly exceeded the level of Npc1+/+ mice 
by 270% (102,080 ± 10.097, p < 0.006). Monotherapy with HPβCD led to a significant increase of cell 
density compared to Npc1+/+ mice (98,626 ± 10,388/ mm3, p < 0.014), but this was not significant 
compared to sham-treated Npc1−/− mice (p > 0.221). Quantification of OE was published previously 
[28] (Table 1, right column). In the OE the density of BrdU(+) cells was lower than in the VNE, but 
treatments led to a significantly higher proliferation in the OE. 
  

Figure 6. Detailed images of OMP immunoreactivity (IR) of vomeronasal epithelial cells in Npc1+/+

(A) and Npc1−/− mice (B–D). Intensities and distribution of OMP-IR do not apparently differ within
the groups.

2.2. Quantification of BrdU(+) Proliferating Cells

Most BrdU(+) proliferating cells were located in the anterior and posterior edges of the
semilunar-shaped VNE (Figures 2 and 3), giving rise to a horizontally-oriented way of cell migration
(green area in Figure 2; see also [35,36]). A minor proliferative compartment exists in the basal layer
of neuroepithelial precursors that migrate in a more vertical pathway (blue area in Figure 2) [35,36].
The former can be considered as a “pool for replacement”, and the latter as a “pool for growth”
(Figure 2) [35].

In order to evaluate the proliferation of vomeronasal epithelial cells, we quantified BrdU-labelled
cells within the VNE of the left side, since previous investigations had not shown any side differences.
Morphometric studies in rats did not observe any sex-related differences [35]. We defined the number
of BrdU(+) cells per mm3 of sham-treated Npc1+/+ 100% with 37,827 (±3907) cells/mm3, and compared
the cell densities. The proliferation in all other groups was significantly higher than in the control group
(Figure 4; Table 1). The cell number in sham-treated Npc1−/− animals was significantly elevated by
215% (81,287 ± 9900; p < 0.014). Both treatments led to a significant increase of cell densities compared
to Npc1+/+ control animals, but not to sham-treated Npc1−/− mice. The number of BrdU(+) cells
in combination-treated Npc1−/− animals significantly exceeded the level of Npc1+/+ mice by 270%
(102,080 ± 10.097, p < 0.006). Monotherapy with HPβCD led to a significant increase of cell density
compared to Npc1+/+ mice (98,626 ± 10,388/ mm3, p < 0.014), but this was not significant compared to
sham-treated Npc1−/− mice (p > 0.221). Quantification of OE was published previously [28] (Table 1,
right column). In the OE the density of BrdU(+) cells was lower than in the VNE, but treatments led to
a significantly higher proliferation in the OE.
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Table 1. Summary of the mean values± SEM in cells/mm3 of the cell densities of proliferating BrdU(+)
cells in the vomeronasal epithelium.

Animal Group VNE
Cells/mm3 ± SEM

OE *
Cells/mm3 ± SEM

sham-treated Npc1+/+ 37,827 ± 3,907 17,417 ± 1,317

sham-treated Npc1−/− 81,287 ± 9,900 +215% 25,180 ± 1,605 +144%

HPβCD-treated Npc1−/− 98,626 ± 10,388 +260% 44,693 ± 4,191 +257%

Combination-treated Npc1−/− 102,080 ± 10.097 +269% 70,558 ± 8159 +405%

The percentages indicate the increase relative to the number of sham-treated Npc1+/+ mice. * Data of the OE were
assessed previously in the same animals [28].

2.3. Caspase-3(+) Immunohistochemistry

Cleaved caspase-3 (cas3) antibodies were used to estimate the extent of apoptosis in the VNE [37].
Most apoptotic cells were found in the middle compartment (Supplementary Figure S1), which is
in accordance with observations of De la Rosa-Prieto and co-workers [37]. Differences between the
groups were not observed. For quantification, the number of cells was too small (0–1) per section to
achieve informative values.

2.4. OMP(+) Mature ORNs and Vomeronasal Receptor Neurons

Olfactory marker protein (OMP) detects mature olfactory receptor neurons (ORNs), and is
involved in the olfactory signal transduction pathway [38–40]. It has also been described as a marker
for vomeronasal receptor cells in various animals [41–43]. OMP bound to cytoplasmic epitopes of
dendrites, and axons of the vomeronasal nerve, as well as to nuclear binding sites. OMP(+) cells
were regularly distributed in the VNE of sham-treated Npc1+/+ control animals, occupying all layers
of the sensory epithelium. Although not quantified, there was no apparent qualitative change of
distribution and density of OMP(+) cells, compared to all mutant mice investigated in this study
(Figure 5). However, OMP(+) nuclei of Npc1−/− mice, both with and without treatment, showed
a flattened morphology (Figure 6). The most remarkable intraindividual difference between both
chemosensory epithelia was the severe morphological alteration of the OE in sham-treated Npc1−/−

mice compared to that of the VNE.

2.5. Cathepsin D Immunohistochemistry

Cathepsin D (CathD) was used to detect lysosomes that usually react strongly positively in
ORN and macrophage-like cells within the OE of sham-treated Npc1−/− animals [28]. In contrast,
CathD immunoreactivity was almost absent in sham-treated Npc1+/+ animals. Some faint, if any,
CathD reactivity occurred in cells located in the VNE edges. A difference between the CathD
immunoreactivities was not apparent in the treatment groups (Figure 7).
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no reaction in the OE of sham-treated Npc1−/− animals; (C) sham-treated Npc1−/−: Cath D(+) reaction in 
proliferative marginal zones (arrowheads), NSE (arrow) and underlying connective tissue, but barely 
within the VNE. (D) In contrast, the same animal presents numerous Cath D(+) lysosomes in the OE, 
probably of macrophages (arrowheads); also within olfactory ensheathing cells around olfactory 
nerve fiber bundles in the lamina propria (arrows). Combination-treated Npc1−/− mice (E,F) and 
HPβCD-treated Npc1−/− (G,H) animals presented a somewhat changed nuclear morphology (flattened 
nuclei), but markedly reduced Cath D-reactive deposits (arrow in G; arrowheads in F) indicating that 
treatment did not completely prevent pathologic alterations. 

Figure 7. Cathepsin D (Cath D)-immunohistochemical comparison of lysosomal activity between
vomeronasal (left column) and olfactory mucosa (second endoturbinate; right column) of the
correspondent animals. (A) Apart from a slight positive reaction of non-sensory epithelium (NSE) and
intraepithelial capillaries (c), sham-treated Npc1+/+ mice show almost no Cath D(+) cells; (B) almost no
reaction in the OE of sham-treated Npc1−/− animals; (C) sham-treated Npc1−/−: Cath D(+) reaction in
proliferative marginal zones (arrowheads), NSE (arrow) and underlying connective tissue, but barely
within the VNE. (D) In contrast, the same animal presents numerous Cath D(+) lysosomes in the
OE, probably of macrophages (arrowheads); also within olfactory ensheathing cells around olfactory
nerve fiber bundles in the lamina propria (arrows). Combination-treated Npc1−/− mice (E,F) and
HPβCD-treated Npc1−/− (G,H) animals presented a somewhat changed nuclear morphology (flattened
nuclei), but markedly reduced Cath D-reactive deposits (arrow in G; arrowheads in F) indicating that
treatment did not completely prevent pathologic alterations.
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3. Discussion

In this report, we compared the proliferative behavior of vomeronasal epithelial cells with cells
of the main OE in NPC1. A main finding of this study was enhanced proliferation of VNE cells in
all Npc1−/− groups, however, to a much lesser degree than in cells of the OE. Accordingly, the OMP
reactivity was maintained in the VNE, whereas it appeared to be severely disrupted in the OE (detailed
data of the OE were previously reported [28]).

3.1. Vomeronasal vs. Main Olfactory Epithelium

Chemosensation in rodents relies on a subset of diverse structures, namely the classical olfactory
mucosa, the vomeronasal organ (VNO), the septal organ of Masera [44,45], and the Grüneberg
ganglion [46,47]. The VNO (organ of Jacobson) is an accessory olfactory organ that receives chemical
stimuli in order to elicit neuroendocrine, behavioral or reproductive responses among individuals
of the same species [41,48–51]. In many species, it constitutes a complex system including the
VNE, the vomeronasal nerve, and the first CNS relay, the accessory olfactory bulb. Canonical
neuroanatomical pathways are well described for main olfactory and vomeronasal perception.
Structural similarities are OMP(+) neuroepithelial cells and overall principles of the G-protein-coupled
signaling cascade. Vomeronasal receptors, however, are unrelated to olfactory receptors and integrated
in membranes of microvillar processes belonging to apical (V1R) or basal (V2R) vomeronasal receptor
cells [52]. Furthermore, they project to different glomeruli of the accessory OB.

3.2. VNE Proliferation is Enhanced in Npc1−/− Mice, But Without Signs of Degeneration

The proliferation of OE cells in sham-treated Npc1−/− mice may be understood as a compensation
mechanism for the dramatic loss (approx. 40%) of olfactory neurons [28,53]. Although not fully
balanced by respective numbers of apoptotic cas-3(+) cells, the reduced number of OMP(+) cells
can be explained by the failure of the olfactory progenitor/basal cells to compensate for the high
number of dying ORNs [28,53]. Under normal conditions, the fate of newly-born cells in the VNE is
either maturation into OMP(+) cells or apoptosis, the extent of which is dependent on the location
within the epithelium. In the marginal compartments, the maturation prevails, whereas in the central
compartment neurogenesis and apoptosis, it is balanced [37]. However, it must be considered that
neurogenesis declines steeply with age [35], and relevant cell renewal in the central VNE may not be
seen after P56, when our data were collected.

Hence, the increased proliferation in the VNE is neither accompanied by enhanced apoptosis
in sham-treated Npc1−/− mice, nor by reduction in OMP reactivity. This indicates (1) a proliferative
force being independent of degeneration phenomena as hypothesized for the OE, and (2) a less
sensitive nature of mature vomeronasal epithelial cells towards the pathologic effects of Npc1 mutation.
The latter is supported by the virtual absence of Cath D inclusions in VNE cells, whereas OE cells
contained numerous Cath D(+) plaques, a sign of enhanced lysosomal activity typically seen in
NPC1 [33,54,55] and other neurodegenerative disorders [56,57].

3.3. Distinct Differences of Regeneration Mechanisms in OE and VNE

What is more, both epithelia are different in terms of cell replacement mechanisms, as the OE
reconstitutes from vertical maturation and differentiation of basal cells, whereas regeneration of the
VNE is initiated in the margins of the epithelium, leaving the horizontal areas largely empty of newborn
neurons [35,36]. Weiler et al. [35] argued that after termination of growth in adults, newly-generated
cells were quickly eliminated, keeping the effective rate of neuronal turnover low and not replacing
existing neurons.

Therefore, it can be assumed that cells in the central, almost BrdU-negative compartment (“pool
for growth”, [35]) have a longer life span than cells of the “pool of replacement” in the margins of
the VNE (see Figure 2). Also, traces of lysosomal Cath D activity, if visible at all, occur in these
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compartments of regeneration (arrowheads in Figure 7E). It can be speculated that, at least in the
VNE, proliferative tissues are more responsive to NPC1-specific cell pathology than non-proliferative
ones. Our own observations in visceral organs in this Npc1 mouse model indicate that tissues are
differently vulnerable; e.g., cardiac muscle, apart from endothelium, shows almost no inclusions of lipid
substances in autophagosomes, whereas lung, liver, and the CNS are much more susceptible. In the
olfactory bulb, astroglia and oligodendroglia tend to accumulate earlier and more myelin-like deposits
than neurons [33]. However, the minute nature of reasons leading to different tissue pathophenotypes
in NPC1 remains unclear. Destructive tissue integration at the levels of OE and olfactory bulb also
led to reduced olfactory performance in a simple olfactory screening test [27], but the more complex,
pheromone-induced behavioral consequences in Npc1 animals were not yet tested.

3.4. Treatment: Both Strategies Do Increase Proliferation, But Do Not Change the VNE Phenotype

NPC1 remains a fatal disease, as there exists no causal therapy option. However, plenty of data
illustrate the beneficial effects of current symptomatic treatments. The combination of miglustat,
HPβCD and allopregnanolone [27,28,32,33,58] leads to effective prevention of neurologic symptoms,
and also reduced hepatopathology [6,59]. HPβCD seems to be the effective agent [9,34] by directly
replacing the function of NPC proteins within endosomal and lysosomal compartments [60,61].
The toxic potential of this drug is apparently low, as revealed in a range of concentrations comparable
to those applied in this study [9,62]. The only major adverse effect in human patients consists of hearing
loss, apparently caused by toxic interaction of HPβCD with outer hair cells [63–65]. The main olfactory
system, both central and peripheral portions, respond well to therapeutic intervention, i.e., the OE
barely showed pathologic cell inclusions or ORN loss [28], as well as reduced CNS inflammatory
events, normalized olfactory gene expression patterns and behavior tests [27,53]. These significant
differences were, of course, not documented in the VNE, for the simple reason that dramatic pathologic
changes had not occurred. The only hint of a pharmacologically-induced alteration is the increased
proliferation rate, but, being lower than that of the OE, even this did not reach significant values
compared to sham-treated Npc1−/− mice.

4. Methods

4.1. Animals

Heterozygous breeding pairs of Npc1 mice (BALB/cNctr-Npc1m1N/-J) were obtained from
Jackson Laboratories (Bar Harbor, ME, USA) for generating homozygous Npc1−/− mutants and
Npc1+/+ control wild type mice. Mice were maintained under standard conditions with free access to
food and water with a 12 h day/night cycle, a temperature of 22 ◦C and a relative humidity of 60%.
Genotypes were determined until postnatal day P7 by PCR analysis. 15 Npc1−/− mutants and 5 wild
type controls of both sexes, aged to 8 weeks, were used for different therapeutic treatment schedules.

This study was carried out in accordance with the recommendations of the German legislation on
protection of animals and the Committee on the Ethics of Animal Experiments at the University of
Rostock. The protocol was approved by the Landesamt für Landwirtschaft, Lebensmittelsicherheit
und Fischerei Mecklenburg-Vorpommern (approval ID: 7221.3-1.1-030/12, 14 June 2012).

4.2. Genotyping

For genotyping by PCR analysis, 1–2 mm of the tails were clipped at postnatal day P6 and
homogenized in DirectPCR-Tail and 1% proteinase K (Peqlab, Erlangen, Germany) at 55 ◦C with
750 rpm for 16 h overnight on a Thermo Mixer (Eppendorf, Hamburg, Germany). Extracts were
centrifuged for 30 s with 6000 rpm, and PCR analysis was performed twice with 2 µL of the lysate and
two different primer pairs under equal cycling conditions. For detecting the mutant allele (obtained
fragment size 475 bp) primers 5′-ggtgctggacagccaagta-3′ and 5′-tgagcccaagcataactt-3′ and for the wild
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type allele (obtained fragment size 173 bp) 5′-tctcacagccacaagcttcc-3′ and 5′-ctgtagctcatctgccatcg-3′

were used.

4.3. Pharmacologic Treatment

The following 4 groups were evaluated: (1) Sham-treated Npc1+/+ (wild type) mice; (2)
sham-treated Npc1−/− mutant mice; (3) Npc1−/− mutant mice, which received a combination therapy;
(4) Npc1−/− mutant mice, which received a HPßCD monotherapy.

Two different therapeutic schedules for the Npc1−/− mutants and their Npc1+/+ controls were
applied: (1) a combination treatment (combi) of synergistically working drugs utilizing HPβCD,
allopregnanolone and miglustat, starting at postnatal day P7 with an injection of allopregnanolone
(Pregnan-3alpha-ol-20-one; 25 mg/kg; Sigma Aldrich, St. Louis, MO, USA) dissolved in
2-hydroxypropyl-β-cyclodextrin (HPβCD); 4000 mg/kg, i.p.; Sigma Aldrich, in Ringer’s solution, once
a week, as described earlier [27,28,32]). Additionally, 300 mg/kg miglustat (N-butyl-deoxynojirimycin;
generous gift of Actelion Pharmaceuticals, Allschwil, Schwitzerland) dissolved in normal saline
solution was intraperitoneally injected daily from P10 to P22. Then, miglustat powder was
administered mixed with food (summarized in Figure 8). And (2) allopregnanolone and miglustat were
omitted and only HPβCD was injected weekly. Controls included treated and sham-treated Npc1+/+

animals as well as sham-treated Npc1−/− mutants. Sham-treated mice received Ringer solution instead
of pharmacologic treatments, but were physically handled in the same way like treated animals.
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4.4. BrdU Injections

BrdU (5-bromo-2′-deoxyuridine) is a thymidine analogue, which is incorporated in DNA during
the S-phase of DNA synthesis. Consequently, it is a reliable marker for the quantification of the
proliferative potential of tissues [66,67]. All mice were i.p. injected with BrdU (solubilized in normal
saline, 50 mg/kg, Sigma, St. Louis, MO, USA) twice a day from P40 to P46. Additionally, a final single
dose was given 1 h before perfusion at P55–56 for labeling the dividing cells of the sensory epithelium.
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4.5. Sample Preparation

Mice were deeply anesthetized with a mixture of 50 mg/kg ketamine hydrochloride (Bela-Pharm
GmbH & Co KG, Vechta, Germany) and 2 mg/kg body weight of xylazine hydrochloride (Rompun;
Bayer HealthCare, Leverkusen, Germany), and then intracardially perfused with normal saline solution,
followed by 4% paraformaldehyde (PFA) in 0.1 M PBS. Mice were then decapitated, skinned, spare
tissue was removed and the remaining skull, including the anterior nasal septum with the VNO,
and nasal turbinates were post-fixed in 4% PFA for 24 h at 4 ◦C. Subsequently, heads were decalcified
in 10% EDTA for 5–6 days at 37 ◦C, dehydrated and embedded in paraffin. The heads were serially cut
in 10 µm in frontal direction from the tip of the nose to the anterior olfactory bulb and collected.

4.6. Histology and Immunohistochemistry

For routine inspection, sections of the nasal septum were stained with hematoxylin & eosin
(H&E) with an interval of 500 µm. For the quantification of proliferating cells every 10th section
(spaced 100 µm apart) was subjected to anti-BrdU immunohistochemistry (Abd Serotec, Puchheim,
Germany). Sections were deparaffinized, rehydrated, and pretreated with microwaves in 0.1 M
citrate buffer (5 min, 680 W), followed by incubation with 3% H2O2 in PBS to block endogenous
peroxidases for 30 min, and 5% normal goat serum (NGS) in PBS for 45 min to block nonspecific
binding sites. Subsequently, sections were exposed to the primary antibody against BrdU (1:2000) in
3% NGS/PBS overnight at 4 ◦C. One section of each slide was used for negative control. After washing
in PBS, the sections were sequentially incubated for 1 h with the secondary anti-rat IgG (1:200; Vector,
Burlingame, CA, USA), the avidin-biotin-complex (ABC) reagent for 1 h (Vectastain-Elite; Vector),
and finally visualized with H2O2-activated 3,-3,-diaminobenzidine (DAB, Sigma, Munich, Germany).
Sections were dehydrated, mounted with DePeX and coverslipped.

For the qualitative evaluation of the VNE and its receptor cells adjacent sections were pretreated
with microwaves in 0.1 M citrate buffer (5 min 850 W and 5 min 340 W). After blocking procedures,
sections were exposed either to rabbit anti-OMP (1:6000, Cat No. O7889, Sigma, Saint Louis, MO,
USA), cas-3 (1:500, clone Asp175, Cat No. 9661, Cell Signaling Technology, Danvers, MA, USA),
or anti-cathepsin D (1:6000, Cat No. PU205-UP, BioGenex Laboratories, San Ramon, CA, USA)
overnight at 4 ◦C and subsequently developed as described above. For controls, primary antisera were
omitted. In negative controls, no reactivity was observed.

4.7. Stereology and Statistic Evaluation

For quantification, BrdU-positive cells of the VNE in 4–5 sections of each mouse were counted,
using an unbiased stereological method: the optical fractionator [68]. The vomeronasal duct and the
lateral non-sensory epithelium were excluded. For each group and each genotype, 4–6 animals were
counted using a computer-aided microscope (Olympus BX-51, Hamburg, Germany) and stereology
software (Stereo Investigator v7.5, MBF Bioscience, Williston, ND, USA). The whole VNE was first
outlined using a 2× or 4× objective lens. Counting was realized at 40×magnification. The cell density
of proliferating cells per mm3 of VNE was averaged, and the four different groups (summarized
in Table 1) were compared. Therefore, the sham-treated mutants served as a reference for both
combination-treated and HPβCD-treated mice.

Results are expressed as mean values±SEM. Statistical evaluation was done with a Mann-Whitney
U-test by SPSS (v.15.0.1, Chicago, IL, USA) using genotype and treatment group as independent
variables. p < 0.05 was considered significant.

5. Conclusions and Hypotheses

The vomeronasal neuroepithelium in mice underlies the mechanisms of replacement/growth
which differ from those of the olfactory mucosa. Here, the VNE in Npc1−/− mice seems to be
less susceptible to pathologic effects of Npc1 mutation. A possible speculation could be that the
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VNO constitutes not only an accessory chemosensory organ with a distinct set of receptors and
neuroanatomical pathways, but may also rely on main-olfactory-independent alternative security
systems that protect in case of any endotoxic (genetic) or exotoxic environmental stress. However,
to validate this assumption, a complete set of cell biological, genetic, and behavioral investigations
is necessary.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/11/
3563/s1.
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