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Abstract: Retinal vein occlusion (RVO) is a common retinal vascular disease. RVO may be complicated
by pronounced ischemia that often leads to severe loss of visual function. The present work aimed at
studying the retinal proteome of RVO complicated by ischemia. In six Danish Landrace pigs RVO
was induced with argon laser in the right eye of each animal. As four retinal veins were occluded,
the RVO best corresponded to a central retinal vein occlusion (CRVO). Left control eyes received
a similar laser treatment without inducing occlusion. RVO and retinal ischemia were verified by
angiography. The retinas were collected 15 days after RVO for proteomic analysis. RVO resulted in
a downregulation of proteins involved in visual perception, including rhodopsin, transducin alpha
chain, and peripherin-2. RVO also caused a downregulation of proteins involved in neurotransmitter
transport, including glutamate decarboxylase 1 (GAD1), glutamate decarboxylase 2 (GAD2), and
complexins 2–4. RVO lead to increased contents of proteins involved in inflammation, including
interleukin-18 (IL-18), S100A12, and annexin A1 (ANXA1). Immunohistochemistry revealed a general
retinal upregulation of IL-18 and ANXA1 while S100A12 was highly abundant in retinal ganglion
cells in RVO. IL-18 and S100A12 are likely to be driving forces in the inflammatory response
of RVO complicated by ischemia. Our findings also suggest that RVO results in compromised
neurotransmission and a downregulation of proteins involved in visual perception.

Keywords: retina; retinal vein occlusion; proteomics; mass spectrometry; interleukin; IL-18; S100A12;
annexin; complexin

1. Introduction

Retinal vein occlusion (RVO) is a potentially sight-threatening condition and one of the
most common vascular diseases of the retina [1]. RVO may be complicated by retinal ischemia
that is associated with a poor prognosis and severe loss of visual function [1,2]. Ischemia in
the retina also promotes other sight-threatening complications of RVO, such as macular edema,
neovascularization, and neovascular glaucoma [1,3]. RVO complicated by ischemia may also be
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resistant to modern treatments, such as intravitreal anti-vascular endothelial growth factor (VEGF)
agents and dexamethasone intravitreal implants [4,5]. Ischemia in RVO is known to potentiate the
upregulation of VEGF, VEGF receptor-2, platelet-derived growth factor and the inflammatory response
that contributes to vision loss in RVO [6–8]. The retinal proteome of RVO complicated by ischemia
remains largely unstudied. Studying the retinal protein profile in RVO complicated by ischemia may
help identify novel therapeutic targets and bring important insights into the pathological processes that
take place in RVO. In the present study, we report on large-scale protein changes in an experimental
model of RVO that develops retinal ischemia.

2. Results

2.1. Experimental Retinal Vein Occlusion (RVO)

RVO was successfully induced in the right eye of each animal based on stagnation of venous
blood and development of flame-shaped hemorrhages (Figure 1A). Control laser was given in the left
eyes without inducing occlusion (Figure 1B). Angiography performed five days after RVO showed no
re-canalization in RVO eyes (Figure 2A). Angiography also revealed that eyes with RVO developed
ischemia upstream of the occluded veins (Figure 2A).
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Figure 1. Funduscopic photos taken within 20 min after experimental retinal vein occlusion (RVO) 

was induced. (A) Eye with experimental RVO. By occluding four retinal veins a condition 

corresponding to central retinal vein occlusion (CRVO) was induced. Laser-induced occlusion 

resulted in dilation of the occluded vessels upstream of the occlusion sites. Flame-shaped 

hemorrhages developed shortly after vein occlusions were induced. Black arrows: Laser-induced 

occlusions. White arrow heads: Flame-shaped hemorrhages. (B) Control eye. Areas of laser 

applications were similar to the RVO eye. By ensuring that the laser burns in the control eye did not 

hit any vessels, no occlusions were induced. White arrows: Laser burns given without inducing 

occlusion. 

Figure 1. Funduscopic photos taken within 20 min after experimental retinal vein occlusion (RVO) was
induced. (A) Eye with experimental RVO. By occluding four retinal veins a condition corresponding to
central retinal vein occlusion (CRVO) was induced. Laser-induced occlusion resulted in dilation of
the occluded vessels upstream of the occlusion sites. Flame-shaped hemorrhages developed shortly
after vein occlusions were induced. Black arrows: Laser-induced occlusions. White arrow heads:
Flame-shaped hemorrhages. (B) Control eye. Areas of laser applications were similar to the RVO eye.
By ensuring that the laser burns in the control eye did not hit any vessels, no occlusions were induced.
White arrows: Laser burns given without inducing occlusion.
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Figure 2. Fluorescein angiography. Angiography conducted five days after RVO. (A) Eye with RVO. 
Angiography revealed that no re-canalization of the occlusions occurred. Retinal ischemia was seen 
as dark areas of retinal non-perfusion. Yellow arrows: Sites of occlusion. Blue arrow: Retinal 
ischemia. (B) Control eye. Laser burns were created without inducing RVO. No retinal ischemia was 
observed. White arrow: Retinal changes after laser applications. 

2.2. Quantification with Tandem Mass Tags (TMT) Based Proteomics 

A total of 3791 proteins were successfully identified and quantified in all samples 
(Supplementary File 1). Unfiltered mass spectrometry data is provided in Supplementary File 2. A 
statistically significant change was observed in 147 proteins following experimental ischemic RVO. 
Among these proteins, 106 proteins were upregulated and 41 proteins were downregulated. The 
entire list of significantly changed proteins is given in Supplementary File 3. The principal 
component analysis (PCA) plot revealed that the proteome of ischemic RVO was highly different 
from laser controls (Figure 3). 
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involved in very different biological functions (Figure 4A–F). 

Figure 2. Fluorescein angiography. Angiography conducted five days after RVO. (A) Eye with RVO.
Angiography revealed that no re-canalization of the occlusions occurred. Retinal ischemia was seen as
dark areas of retinal non-perfusion. Yellow arrows: Sites of occlusion. Blue arrow: Retinal ischemia.
(B) Control eye. Laser burns were created without inducing RVO. No retinal ischemia was observed.
White arrow: Retinal changes after laser applications.

2.2. Quantification with Tandem Mass Tags (TMT) Based Proteomics

A total of 3791 proteins were successfully identified and quantified in all samples (Supplementary
File S1). Unfiltered mass spectrometry data is provided in Supplementary File S2. A statistically
significant change was observed in 147 proteins following experimental ischemic RVO. Among these
proteins, 106 proteins were upregulated and 41 proteins were downregulated. The entire list of
significantly changed proteins is given in Supplementary File S3. The principal component analysis
(PCA) plot revealed that the proteome of ischemic RVO was highly different from laser controls
(Figure 3).
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Figure 3. Principal component analysis (PCA). The PCA plot revealed that retinas with ischemic RVO
could be separated from laser controls based on proteome changes.

The bioinformatic analyses revealed that upregulated and downregulated proteins were involved
in very different biological functions (Figure 4A–F).
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Figure 4. Gene Ontology analysis of differentially regulated proteins. Downregulated and upregulated
proteins were analyzed as two individual groups. Numbers refer to the number of proteins that
represented a given process, compartment, or pathway. (A) RVO resulted in a downregulation of
proteins involved in visual perception. Downregulated biological processes also included processes
related to neurotransmitter regulation and neurotransmitter transport as well as synaptic transmission.
(B) Upregulated biological processes that were upregulated in RVO included response to wounding,
wound healing, blood coagulation, and response to wounding. Nineteen upregulated proteins were
involved in the inflammatory response in RVO (see also Table 3). (C) The analysis of cellular components
indicated a downregulation of proteins pertaining to neuron part, photoreceptor outer segment, and
neuron projection. (D) Gene ontology analysis of upregulated cellular components indicated that
ischemic RVO causes extracellular changes. RVO resulted in an upregulation of extracellular space,
extracellular exosome, and extracellular region. (E) Downregulated Kyoto Encyclopedia of Genes and
Genomes KEGG pathways included GABAergic synapse, phototransduction, and glutamateric synapse.
(F) KEGG pathways that were upregulated in ischemic RVO included complement and coagulation
cascade, lysosome, and focal adhesion.

2.3. Experimental RVO Results in Downregulation of Visual Perception and Neurotransmitter Transport

RVO resulted in a downregulation of proteins involved in visual perception (Figure 4A). RVO
also lead to a downregulation of proteins involved in neurotransmitter transport, regulation of
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neurotransmitter levels, neurotransmitter secretion, and synaptic transport (Figure 4A). RVO was
associated with decreased levels of proteins pertaining to photoreceptor outer segment, neuron
part, and neuron projection (Figure 4C). Pathway analysis revealed a downregulation of GABAergic
synapse and glutamateric synapse in RVO (Figure 4E). Downregulated proteins clustered into at least
three groups (Figure 5). Downregulated clustering proteins were involved in visual perception and
neurotransmitter transport (Figure 5).
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Figure 5. Cluster analysis of downregulated proteins with interactions. Proteins that were
downregulated in ischemic RVO grouped into at least three clusters. One cluster was centered around
photoreceptor proteins, such as rhodopsin, transducin alpha-1, and transducin gamma chain. A second
cluster consisted of glutamate decarboxylase 1 (GAD1), glutamate decarboxylase 2 (GAD2), glutaminase,
glutamine synthetase, and aspartate aminotransferase. The third cluster consisted of complexins 1–4 and
protein LIN-7 homolog A. Gene ontology analysis showed that proteins in the cluster of photoreceptor
proteins were predominantly involved in visual perception (blue color) whilst complexins and proteins
involved in glutamate metabolism were involved in neurotransmitter transport (yellow color).

Proteins involved in visual perception included rhodopsin, peripherin-2, arrestin C, cone
cGMP-specific 3′,5′-cyclic phosphodiesterase (PDE6C), transducin alpha subunit, long-wave sensitive
opsin, isoform 2 of cGMP-gated cation channel alpha-1 (CNGA1) and guanylyl cyclase-activating
protein 1 (GCAP1) (Figure 5, Table 1).

Immunohistochemistry revealed a general retinal thickening in RVO compared to controls
(Figure 6A,B) and confirmed a downregulation of rhodopsin in RVO (Figure 6C,D). Downregulated
clustering proteins involved in neurotransmitter transport included protein LIN-7 homolog A,
complexins 2–4, glutamate decarboxylase 1 (GAD1), glutamate decarboxylase 2 (GAD2), glutaminase,
glutamine synthetase, and aspartate aminotransferase (Figure 5, Table 2).
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Table 1. Proteins involved in visual perception that were downregulated in experimental retinal vein
occlusion (RVO).

UniProt
Accession

Gene
Name RVO/Control p-Value Protein Name

O18766 RHO 0.15 0.000278 Rhodopsin
Q7YS78 ARR3 0.15 1.80 × 10−7 Arrestin-C
P29973-2 CNGA1 0.15 0.000027 Isoform 2 of cGMP-gated cation channel alpha-1
P43080 GUCA1A 0.17 0.000056 Guanylyl cyclase-activating protein 1
P51160 PDE6C 0.19 7.73 × 10−7 Cone cGMP-specific 3′,5′-cyclic phosphodiesterase
P23942 PRPH2 0.2 0.0003223 Peripherin-2
P04000 OPN1LW 0.2 0.000014 Long-wave-sensitive opsin 1
P11488 GNAT1 0.23 0.000019 Transducin alpha-1 chain

Table 2. Proteins involved in neurotransmitter transport that were downregulated in RVO.

UniProt Accession Gene Name RVO/Control p-Value Protein Name

Q6PUV4 CPLX2 0.13 0.000077 Complexin-2
P46410 GLUL 0.13 0.0000056 Glutamine synthetase
P48321 GAD2 0.17 0.000014 Glutamate decarboxylase 2
Q9Y2J RPH3A 0.18 0.000013 Rabphilin-3A
O14910 LIN7A 0.2 0.00014 Protein lin-7 homolog A

Q8WVH0 CPLX3 0.22 0.00020 Complexin-3
Q3I5G7 SNCA 0.22 0.00032 Alpha-synuclein
P48319 GAD1 0.22 0.000026 Glutamate decarboxylase 1

Q7Z7G2 CPLX4 0.23 0.000042 Complexin-4
O94925 GLS 0.23 0.000023 Glutaminase kidney isoform
Q96E17 RAB3C 0.24 0.000039 Ras-related protein Rab-3

2.4. Blood Coagulation, Focal Adhesion, and Inflammatory Response are Upregulated in RVO

RVO was followed by an upregulation of response to wounding, blood coagulation, wound
healing, and response to stress (Figure 4B). RVO also activated cell adhesion and extracellular
matrix organization (Figure 4B). Furthermore, ischemic RVO was associated with an upregulation
of proteins involved in the inflammatory response, including interleukin-18 (IL-18), S100A12, and
annnexin A1 (ANXA1) (Figure 4B, Table 3). RVO also resulted in increased contents of proteins
pertaining to extracellular space, extracellular exosome, extracellular region part, extracellular region,
and extracellular matrix (Figure 4D). RVO also caused an upregulation of proteins associated with
vesicles (Figure 4D). Pathway analysis revealed that ischemic RVO was associated with increased
levels of proteins involved in complement and coagulation cascades, extracellular matrix-receptor
interaction, and focal adhesion (Figure 4F). RVO resulted in an upregulation of clustering plasma
proteins (Supplementary File S4). These plasma proteins were involved in blood coagulation and
included fibrinogen chains, coagulation factors, apolipoproteins, prothrombin, antithrombin-III, and
serum albumin (Supplementary File S5).

2.5. Inflammation in RVO-Interleukin-18 (IL-18), S100A12, and Annexin (ANXA1)

Nineteen proteins involved in inflammatory response were increased in content in ischemic RVO
(Table 3). Proteins involved in inflammatory response included scavenger receptor cysteine-rich type
1 (CD163), ANXA1, IL-18, S100A12, and lysozyme c-2 (Table 3). Furthermore, a number of plasma
proteins were identified to be involved in the inflammatory response (Table 3). As inflammation
contributes to visual impairment in RVO, the inflammatory proteins, IL-18, S100A12, ANXA1 and
fibronectin, (Table 3) were selected for further validation.

Mass spectrometry revealed a seven-fold upregulation of IL-18 in ischemic RVO (Table 3). Western
blotting confirmed the upregulation of IL-18 (Figure 7A,B). Immunohistochemistry confirmed a general
upregulation of IL-18 in ischemic RVO compared to laser control (Figure 6E,F).
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Figure 6. Histology and immunohistochemistry. Scale bar = 31 µm. Reaction color: brown.
(A,B) Hematoxylin and eosin (HE) staining. In RVO complicated by ischemia, increased thickness
was observed in the nerve fiber layer (NFL), the ganglion cell layer (GCL), the inner plexiform
layer (IPL), and the outer plexiform layer (OPL). (C,D) In RVO, rhodopsin was downregulated
in the outer nuclear layer (ONL), the photoreceptor inner segments (IS), and outer segments
(OS). (E,F) Immunohistochemistry confirmed a general upregulation of IL-18 in ischemic RVO.
(G,H) S100A12 was abundant in retinal ganglion cells in RVO. (I,J) ANXA1 was abundant in the
inner retinal layers in RVO.
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Table 3. Proteins involved in inflammatory response that were upregulated in RVO.

UniProt
Accession

Gene
Name RVO/Control p-Value Protein Name

P14287 SPP1 15.59 0.000069 Osteopontin
P29700 AHSG 11.95 0.00044 Alpha-2-HS-glycoprotein
P30034 PF4 11.57 0.0015 Platelet factor 4

P02671-1 FGA 11.49 0.00031 Fibrinogen alpha chain
P07996 THBS1 11.38 0.00087 Thrombospondin-1
P02751 FN1 10.9 0.000099 Fibronectin

P0C0L4-1 C4A 10.78 0.00064 Complement C4-A
Q2VL90 CD163 9.64 0.000056 Scavenger receptor cysteine-rich type 1 protein M130
P79263 ITIH4 8.9 0.0014 Inter-alpha-trypsin inhibitor heavy chain H4
P19619 ANXA1 8.16 0.000074 Annexin A1
P50447 SERPINA1 7.89 0.0011 Alpha-1-antitrypsin
Q8SPS7 HP 7.88 0.0023 Haptoglobin
Q19AZ8 F2 7.79 0.00069 Prothrombin
O19073 IL18 6.91 0.000022 Interleukin-18
P01025 C3 6.79 0.00076 Complement C3
P32394 HMOX1 6.69 0.000025 Heme oxygenase 1
P12068 LYZ 5.36 0.00055 Lysozyme c-2
P80310 S100A12 5.12 0.00018 S100-A12
P38571 LIPA 4.46 0.00024 Lysosomal acid lipase/cholesteryl ester hydrolase
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Figure 7. Western blot analysis of IL-18 and S100A12. (A) Protein content of IL-18 (approximately
22 kDa). (B) Densitometric data presented as the change of relative IL-18 expression between ischemic
RVO and control samples, normalized to relative β-actin expression. Western blot analysis supported
the data from mass spectrometry, though not statistically significant (p = 0.078). (C) Protein content of
S100A12. (D) Densitometric data confirmed an upregulation of S100A12 in ischemic RVO (p = 0.016).
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RVO resulted in a five-fold upregulation of S100A12, which was confirmed by Western blotting
(Figure 7C,D). In ischemic RVO, S100A12 was particularly abundant in retinal ganglion cells and their
dendritic processes (Figure 6G).

Immunohistochemistry confirmed an upregulation of ANXA1, which was abundant in layers
with increased thickness, such as the nerve fiber layer, the ganglion cell layer, the inner plexiform
layer, and the outer plexiform layer (Figure 6I). Proteomic analysis revealed a strong upregulation of
fibronectin. However, the upregulation of fibronectin was not confirmed by immunohistochemistry
(Supplementary File S6).

3. Discussion

3.1. Experimental Retinal Vein Occlusion (RVO)

In this study, four retinal veins were occluded in the RVO eye. Therefore, the condition that
was induced corresponded best to a central retinal vein occlusion (CRVO). The porcine retina has no
central vein that is accessible for laser induced vein occlusion [9]. Occlusion of four retinal veins was
observed to be complicated by retinal ischemia. We previously conducted studies in which only one
retinal vein was occluded [10–13]. Occlusion of a single retinal vein in healthy pigs does not result
in retinal ischemia and retinal thickening [11,14]. However, the present study revealed that retinal
thickening occurs when four retinal veins are occluded. Retinal thickening observed as macular edema
is a frequent complication in humans with RVO [6,15,16]. Thus, retinal thickening, as observed in the
present study, is a complication that is likely to occur. Indeed, an RVO model with occlusion of four
retinal veins may be better suited for studying retinal thickening following RVO.

Based on the histological analyses, retinal thickening mainly occurred in the nerve fiber layer,
the ganglion cell layer, the inner plexiform layer, and the outer plexiform layer (Figure 6). This finding
is consistent with the fact that retinal veins drain the inner two thirds of the retina [6,9,17]. On the
other hand, the morphology of the retinal pigment epithelium (RPE) remained largely unchanged
(Figure 6). The RPE is not likely to be affected in RVO as the RPE is drained by the choroid.

3.2. Quantification by Mass Spectrometry

Protein studies of RVO have mainly focused on a limited number of specific proteins [10]. Our
study revealed a statistically significant change in more than 100 proteins following ischemic RVO.
Thus, our data indicate that pathological changes in RVO are driven by alterations in multiple proteins
rather than a few vasoactive proteins.

The PCA plot (Figure 3) revealed that the proteome of ischemic RVO was highly different from
laser controls. Similar differences may be observed in a clinical setting. Indeed, the proteome of an eye
with ischemic RVO is likely to be highly different from a healthy fellow eye. Thus, a patient may have
severe loss of visual function in one eye due to ischemic RVO whilst the fellow eye may have normal
visual acuity [1,2].

3.2.1. Visual Perception

A number of proteins involved in visual perception were downregulated following ischemic
RVO (Table 1). A large proportion of these proteins were photoreceptor proteins involved in
phototransduction, including rhodopsin, long-wave-sensitive opsin 1, transducin alpha subunit,
PDE6C, CNGA1, and GCAP1. Compromised function of these proteins is known to cause retinal
degeneration [18–20]. Thus, the downregulation of these proteins in RVO may represent an early stage
of retinal degeneration.

Ischemic RVO was also associated with a decreased level of peripherin-2, an integral membrane
glycoprotein located in the outer segments of cone and rod photoreceptors [21–23]. Peripherin-2 is
required for rod and cone photoreceptor outer segment formation and function [24,25], and a decreased
content of peripherin-2 may affect the maintenance of photoreceptor structure.
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3.2.2. Neurotransmitter Transport

Downregulated proteins involved in neurotransmitter transport included the glutamate
decarboxylase isoforms named GAD1 and GAD2, which catalyze the production of
gamma-aminobutyric acid (GABA), the main retinal inhibitory transmitter [26,27]. Thus, inhibitory
neurotransmission may be compromised in ischemic RVO due to the decreased levels of GAD1 and
GAD2. The downregulation of GAD1 and GAD2 may be associated with ischemic processes as
decreased levels of GAD1 and GAD2 have previously been observed with retinal ischemia [28].

Downregulated proteins involved in neurotransmitter transport also included complexins 2–4
(Table 2). Complexins are small presynaptic proteins that control synaptic vesicle fusion and prevent
spontaneous neurotransmitter release [29]. Decreased levels of complexins are likely to affect synaptic
vesicle fusion and neurotransmitter release.

3.2.3. Inflammation in RVO

A statistically significant increase was identified in 19 proteins involved in inflammatory response
(Figure 4B, Table 3). The increased content of inflammatory proteins in RVO is likely to be associated
with the ischemia that was observed in the RVO model. Previous studies have demonstrated that
increased levels of IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1) in RVO are closely
associated with the severity of retinal ischemia [7,8,30,31]. Studies of the inflammatory response
in RVO have primarily focused on a small number of cytokines. However, results from the present
study indicated that numerous inflammatory proteins changed following ischemic RVO (Table 3).
Inflammatory proteins that have not previously been associated with RVO included IL-18, S100A12,
lysozyme C-2, and CD163.

A number of plasma proteins were also classified as proteins involved in the inflammatory
response (Table 3). The biological role of these plasma proteins is difficult to interpret as the
blood-retinal barrier is known to be compromised in RVO [14]. A compromised blood-retinal barrier
results in an influx of plasma proteins [14]. Thus, the increased levels of plasma proteins may primarily
represent a disruption of the blood-retinal barrier.

3.2.4. IL-18

IL-18 is a cytokine that is produced by monocytes, glial cells, and dendritic cells [32]. IL-18
increases in content under inflammatory conditions where it promotes upregulation of other cytokines,
chemokines, and adhesion molecules [33]. The increased level of IL-18 in ischemic RVO is of interest
as it is not among the interleukins that are normally associated with RVO. While other cytokines, such
as IL-6 and IL-8, are known to be involved in inflammatory processes in RVO [7,8,30], there are very
few reports of IL-18 in RVO.

Results from animal studies indicate that IL-18 is involved in inflammation caused by ischemia.
Qi et al. [34] demonstrated that retinal IL-18 was upregulated in retinal ischemia in an experimental
rat model of ischemia-reperfusion. Myocardic IL-18 is also increased following myocardial
ischemia-reperfusion injury [33,35]. IL-18 neutralizing antibodies have been found to reduce the
size of myocardial infarction in animal studies [33].

A protective role of IL-18 has also been proposed. Shen et al. [36] found that aqueous IL-18
increased in patients with retinal vein occlusion after anti-VEGF intervention and detected a positive
correlation between intraocular IL-18 and improved visual acuity. IL-18 has also been found to reduce
retinal neovascularization in mice with ischemic retinopathy and to counteract VEGF-induced vascular
leakage [36].

Using an exploratory design the present study aimed at identifying novel proteins associated
with ischemic RVO. Additional studies operating with larger samples sizes than in our study will be
necessary to further establish the role of IL-18 in ischemic RVO.
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3.2.5. S100A12 and ANXA1

S100A12 belongs to the S100 family of calcium binding proteins. S100A12 is secreted by activated
granulocytes [37] and constitutes approximately 5% of the total cytosolic amount of proteins in
neutrophil granulocytes [38,39]. S100A12 has chemotactic activity for mast cells and monocytes [40].
Serum S100A12 is a marker of inflammatory disease as well as infectious disease [39,41–43].

Serum S100A12 is elevated in various types of uveitis [44,45]. The present study indicates that
S100A12 is also associated with inflammation following ischemic RVO and ischemia. In ischemic
RVO, S100A12 was highly abundant in the cell bodies and dendritic processes of retinal ganglion
cells. The expression of S100A12 in retinal ganglion cells has not previously been described and may
represent local inflammation following ischemic RVO.

ANXA1 belongs to the annexin superfamily of Ca2+-dependent phospholipid-binding proteins.
ANXA1 is an important regulator of the innate immune system. ANXA1 mediates resolution of
inflammatory processes and anti-inflammatory actions of glucocorticoids [46,47]. Based on the
anti-inflammatory features of ANXA1, it may be considered that ANXA1 counteracts the inflammatory
response in ischemic RVO.

4. Materials and Methods

4.1. Animal Preparation

The experiments were approved by the Danish Animal Experiments Inspectorate (permission
number, 2016-0201-00971, 1 July 2016). Six Danish Landrace pigs (30–40 kg) were used for the
experiments. A 12-h light/dark cycle was used during the entire housing. On the day prior to
the experimental procedures, the animals were fed in the morning and had access to unlimited
amounts of water until the experiments were performed. Animal anesthesia was performed in
accordance with Danish legislation on the care and use of laboratory animals. The procedures
for animal anesthesia were approved by the Danish Animal Experiments Inspectorate (permission
2016-0201-00971). The animals were anesthesized with an intramuscular injection of Zoletil mixture
consisting of ketamine 6.25 mg/mL and tiletamine 6.25 mg/mL, zolazepam 6.25 mg/mL, butorphanol
1.25 mg/mL, and xylazine 6.5 mg/mL. The dose of the Zoletil mixture was 1 mL/10 kg. Local
anesthesia was performed with Oxybuprocaine Hydro 0.4% eye drops (Mydriacyl: Bausch & Lomb)
and Phenylephrine 10% eye drops (Metaoxidrin; Bausch & Lomb). Dilation of the pupils was performed
as previously described [10,11].

4.2. Experimental Vein Occlusion

Ischemic RVO was induced in the right eye of each animal while the left eye served as a control
(Figure 1). Laser induced vein occlusion was induced as previously described [10,11]. Briefly, ischemic
RVO was induced in the right eyes by occluding four retinal veins close to the optic nerve head with
a standard argon green laser given by indirect ophthalmoscopy using a 20 diopter lens. For each
occlusion, 30–40 laser applications were used. Laser applications were performed with an energy of
400 mW and an exposure time of 550 ms. Identical laser burns were made in the left control eyes
without inducing occlusion by applying the laser to areas close to the optic nerve head that were
devoid of any major vessels. Fluorescein angiography was conducted five days after RVO to confirm
that the veins remained occluded and to confirm that retinal ischemia developed. The eyes were
enucleated 15 days after RVO was induced. Enucleation was performed by surgical removal of the
eyelids and adnexa. The eye ball was then removed by cutting the optic nerve without causing any
damages to the optic nerve head. Immediately after enucleation, the animals were euthanized with an
intravenous injection of Euthasol 400 mg/mL (Virbac Danmark A/S, Kolding, Denmark) 0.5 mL/kg.
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4.3. Sample Preparation for Mass Spectrometry

Paired retinal samples from five pigs were used for tandem mass tags (TMT) based MS. Thus,
samples with ischemic RVO (n = 5) were compared with laser controls (n = 5). The dissection was
performed as described in previous works [11,12]. Briefly, eyes used for mass spectrometry were
placed on ice immediately after enucleation and blood residues were removed by rinsing the eyes
with cooled saline water. The eyes were kept on ice during the entire dissection, which was performed
under a microscope. The anterior segment was removed and the vitreous body was gently aspired with
an 18 G needle (diameter = 1.2 mm) into a 5 mL syringe. The neurosensory retina was peeled from the
retinal pigment epithelium with surgical tweezers. The neurosensory retina was peeled carefully from
the RPE to ensure that the RPE remained in the eye cup. Samples containing the neurosensory retina
were stored at −80 ◦C until further use. When sample preparation for mass spectrometry was initiated,
the samples were thawed and each sample was lysed with 500 µL lysis buffer consisting of 50 µL
10% SDS added to 450 µL mM triethyl ammonium bicarbonate (TEAB). The protein concentration
was determined with a non-interfering assay (NI Protein Assay, Geno Technology Inc., St. Louis, MO,
USA) according to the manufacturer’s instructions. In short, small volumes of the protein solutions
were precipitated with the universal protein precipitating agent (UPPATM) supplied with the kit.
One hundred µL of the copper solution was added to the precipitated protein. BSA was used as
standard. Samples were incubated for 15–20 min. at room temperature and the absorbance at 480 nm
was measured immediately after.

Reduction of disulfide bonds, alkylation with iodoacetamide, and acetone precipitation were
performed as described in a previous work [13]. Digestion, TMT labeling, C18 spin column purification,
and high pH reversed-phase peptide fractionation into 8 fractions were performed essentially as
previously described [10].

4.4. Mass Spectrometry

The 8 fractions containing the peptides were resuspended in 0.1% formic acid (FA) prior to
liquid chromatography mass spectrometry. Peptide concentrations of the fractions were measured
by fluorescence using tryptophan as the standard and by anticipating that 0.0117 g of tryptophan
corresponds to 1 g of protein, as it is the case for human and mouse proteins [48]. One microgram of
each fraction (between 1 to 4.1 µL) was loaded for each run into a Dionex UltiMateTM 3000 RSLC nano
system coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific, Waltham, MA, USA)
equipped with an EasySprayTM ion source and an Easy-IC using fluoranthene as internal calibrant.
The ion transfer tube temperature was 275 ◦C. Liquid chromatography and mass spectrometry using
the TMT synchronous precursor selection MS3 mode were performed as described in detail in a recent
study [13]. Briefly, peptides were separated on an Easy SprayTM analytical column at 40 ◦C (500 mm ×
75 µm PepMap RSLC, C18, 2 µm, 100 Å, Thermo Scientific, Waltham, MA, USA). The nanoflow was set
to 300 µL/min. Buffers included buffer A (0.1% FA) and buffer B (80% acetonitrile, 20% water, 0.1% FA).
A gradient of 240 min was applied using a gradient of buffer B from 6 to 90%. In the Orbitrap, full
scans were obtained with a mass range of 380–1500 m/z at a resolution of 120,000 with an automatic
gain control (AGC) of 2 × 105 and maximum injection time of 50 ms. To perform MS2 acquisitions,
the precursor ions were isolated with a quadrupole mass filter. MS2 acquisitions were then performed
in the linear ion trap in m/z normal auto scan range mode, applying collision-induced dissociation
(CID) with a collision energy of 35%, an AGC target of 1 × 104, and a maximum injection time of
50 ms. A maximum of 10 precursor ions were isolated with synchronous precursor selection using
and detected in MS3 in the Orbitrap in the mass range of 120–500 m/z with high energy CID using
a collision energy of 65% and an AGC target of 1 × 105 and a maximum injection time of 120 ms.
The quantitative data obtained with TMT labelling is reporter based with isobaric tags. Data in each
channel were normalized to the total peptide amount generating data from which relative fold changes
of proteins can be calculated between groups.
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Raw data files were processed in Proteome Discoverer 2.1. as described in our previous study [10].
Databases were downloaded in Proteome Discoverer from ProteinCenter. The Sequest HT search
engine was used to search against the SwissProt Homo sapiens databse (SwissProt TaxID = 9606 and
subtaxonomies, v2016-11-30) and the SwissProt Sus scrofa database (SwissProt TaxID = 9823 and
subtaxonomies, v2016-11-30). For protein identification, a false discovery rate (FDR) < 0.01 was
applied. Mass spectrometry raw data was uploaded to ProteomeXchange.

4.5. Statistics

The data was uploaded to Perseus version 1.6.0.7. for filtration and statistical analyses.
Contaminants were removed from the dataset based on a contaminants database downloaded with the
MaxQuant software, Max Planck Institute of Biochemistry, Martinsried, Germany. TMT abundances
were log2 transformed. Technical replicates were averaged by mean. Proteins that were not quantified
in all the 10 samples were excluded from the dataset. At least 2 unique peptides were required for
successful identification. A paired t-test was conducted in Perseus using the FDR method by Benjamini
and Hochberg [49]. The S0 constant in Perseus was set to 2. A protein was considered statistically
significantly changed if p < 0.05, FDR < 0.01 and fold change >4.0 or fold change <0.25. Prior to
calculation of fold changes, the log2 transformation of TMT values was reversed. Fold changes were
then calculated as the average ratio of TMT abundance right eye/TMT abundance left eye. A PCA was
conducted in Perseus with an FDR < 0.01 according to the method of Benjamini and Hochberg [49].

4.6. Network Analysis

Bioinformatic analyses were conducted using the STRING database (version 10.5) [50].
Upregulated proteins and downregulated proteins were analyzed as two individual groups. The
multiple proteins function was selected in STRING. The background organism was set to Homo sapiens
and UniProt Homo sapiens accession numbers of the differentially changed proteins were used. The
minimum required interaction score was set to 0.700, corresponding to high confidence. For cluster
analysis, the Markov Cluster algorithm was used with an inflation parameter set to 4. STRING was
also used to perform Gene Ontology and KEGG pathways analyses with a Fisher’s exact test corrected
by the FDR method of Benjamini and Hochberg [49,51].

4.7. Western Blotting

Western blotting was performed as previously described [13] using a primary monoclonal mouse
anti-β-actin antibody 1:5000 (clone AC-15, Sigma-Aldrich, St. Louis, MO, USA), a primary polyclonal
rabbit anti-IL-18 antibody 1:500 (MBS2026569, MyBioSource, San Diego, CA, USA), and a primary
polyclonal rabbit anti-S100A12 antibody 1:100 (MBS2026249, MyBioSource, San Diego, CA, USA),
diluted in 2.5% (w/v) skim milk blocking buffer. Log transformed densitometric data was used to
perform a paired t-test.

4.8. Immunohistochemistry

Eyes from one animal were used for immunohistochemistry. Dissection and fixation were
performed as previously described [13]. Hematoxylin and eosin staining was performed as described
by Kiernan [52]. Anti-bodies used for staining included a polyclonal IgG antibody directed at IL-18
(MBS2026569, MyBioSource, San Diego, CA, USA), a polyclonal IgG antibody directed at S100A12
(MBS2026249, MyBioSource, San Diego, CA, USA), a polyclonal IgG antibody directed at ANXA1
(MBS2001804, MyBioSource, San Diego, CA, USA), a poly-clonal IgG antibody directed at fibronectin
(ab23751, Abcam, Cambridge, UK), and a monoclonal IgG1 antibody directed at rhodopsin (ab190307,
Abcam, Cambridge, UK). The antibodies were diluted in (1:200–1:800) in PBS + 0.3% Triton X100.
The sections incubated overnight at 4 ◦C and were processed with EnVission (DakoCytomation) DAB.
Controls were incubated with rabbit IgG2b or irrelevant rabbit anti-bodies.



Int. J. Mol. Sci. 2018, 19, 3328 14 of 17

5. Conclusions

Proteome changes were studied in an RVO model that best corresponded to CRVO. This RVO
model was complicated by retinal ischemia. RVO resulted in a downregulation of proteins involved
in visual perception, including rhodopsin, transducin alpha subunit, transducin gamma chain, and
long-wave sensitive opsin. The decreased contents of these photoreceptor proteins may represent
an early stage of retinal degeneration. The decreased levels of GAD1 and GAD2 may indicate that
neurotransmission is compromised in ischemic RVO, while downregulation of complexins 2–4 may
affect synaptic fusion and neurotransmitter release. RVO was associated with increased retinal contents
of IL-18, S100A12, and ANXA1. IL-18, and S100A12 may be important driving forces of inflammatory
processes caused by ischemia. Additional studies will be required to further establish the roles of IL-18
and S100A12 in RVO. The potential of IL-18 and S100A12 as therapeutic targets may be addressed in
future studies once the roles of these proteins in RVO have been established.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
11/3328/s1. Mass spectrometry raw data was uploaded to ProteomeXchange. Supplementary File S1—mass
spectrometry data after filtering. Supplementary File S2—unfiltered mass spectrometry data. Supplementary File
S3—list of all statistically significantly changed proteins. Supplementary File S4—cluster analysis of upregulated
proteins. Supplementary File S5—biological processes of upregulated clustering proteins. Supplementary File
S6—immunohistochemical staining for fibronectin.
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CNGA1 Isoform 2 of cGMP-gated cation channel alpha-1
CRVO Central retinal vein occlusion
HE
FDR

Hematoxylin and eosin
False-discovery rate

GAD1 Glutamate decarboxylase 1
GAD2 Glutamate decarboxylase 2
GABA Gamma-aminobutyric acid
GCAP1 Guanylyl cyclase-activating protein 1
GCL Ganglion cell layer
IL-18 Interleukin-18
ILM
IPL

Inner limiting membrane
Inner plexiform layer

IS Photoreceptor inner segment
ONL Outer nuclear layer
OPL Outer plexiform layer
OS Photoreceptor outer segment
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PCA Principal component analysis
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Retinal pigment epithelium
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TEAB Triethyl ammonium bicarbonate
TMT Tandem mass tags
VEGF Vascular endothelial growth factor
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