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Abstract

Background and Aims: Tumor microenvironment (TME) heterogeneity

leads to a discrepancy in survival prognosis and clinical treatment response

for patients with HCC. The clinical applications of documented molecular

subtypes are constrained by several issues.

Approach and Results: We integrated 3 single-cell data sets to describe the

TME landscape and identified 6 prognosis-related cell subclusters. Unsuper-

vised clustering of subcluster-specific markers was performed to generate

transcriptomic subtypes. The predictive value of these molecular subtypes for

prognosis and treatment response was explored in multiple external HCC

cohorts and the Xiangya HCC cohort. TME features were estimated using

single-cell immune repertoire sequencing, mass cytometry, and multiplex

immunofluorescence. The prognosis-related score was constructed based on

a machine-learning algorithm. Comprehensive single-cell analysis described

TME heterogeneity in HCC. The 5 transcriptomic subtypes possessed differ-

ent clinical prognoses, stemness characteristics, immune landscapes, and

therapeutic responses. Class 1 exhibited an inflamed phenotype with better

clinical outcomes, while classes 2 and 4 were characterized by a lack of T-cell

infiltration. Classes 5 and 3 indicated an inhibitory tumor immune micro-

environment. Analysis of multiple therapeutic cohorts suggested that classes 5

and 3 were sensitive to immune checkpoint blockade and targeted therapy,

whereas classes 1 and 2 were more responsive to transcatheter arterial

chemoembolization treatment. Class 4 displayed resistance to all conventional

HCC therapies. Four potential therapeutic agents and 4 targets were further

identified for high prognosis-related score patients with HCC.

Abbreviations: BCR, B cell receptor; CNV, copy number variation; CyTOF, mass cytometry; ICB, immune checkpoint blockade; MDSC, myeloid-derived suppressor
cell; PPI, protein-protein interaction network; PRS, prognosis-related score; SCENIC, single-cell regulatory network inference and clustering; scRNA-seq, single-cell
RNA sequencing; SSMs, subcluster-specific markers; TACE, transcatheter arterial chemoembolization treatment; TCR, T cell receptor; TME, tumor microenvironment;
t-SNE, t-distributed stochastic neighbor embedding.
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Conclusions: Our study generated a clinically valid molecular classification to

guide precision medicine in patients with HCC.

INTRODUCTION

HCC is the most common type of primary liver cancer
and is the third leading cause of cancer-associated
death worldwide.[1] Studies have reported that high
tumor microenvironment (TME) heterogeneity may
cause discrepancies in survival prognosis and clinical
treatment responses of patients with HCC.[2] Therefore,
describing TME heterogeneity contributes to revealing
the biological characteristics of HCC and offers insights
into individualized treatment for patients with HCC.
Developing a reliable classification system for stratifying
patients in the context of TME heterogeneity may provide
prospective guidance for precision medicine in HCC.

In recent years, emerging single-cell RNA sequenc-
ing (scRNA-seq) technology has proven to be a
powerful tool for exploring cellular diversity and tumor
heterogeneity.[3] One study revealed intertumoral and
intratumoral transcriptomic heterogeneity in HCC and
discovered the molecular features correlated with TME
reprogramming.[4] scRNA-seq allows the classification
of malignant and nonmalignant cells based on aneu-
ploid copy number profiles and the identification of
clonal substructures in different subclusters.[5] scRNA-
seq enables the analysis of tissue heterogeneity at the
level of individual cell level and delves into the
contributions of distinct cell subclusters to biological
functions and pathogenesis.

Several classifications have been developed based
on conventional bulk-RNA and proteomic sequence
data, and are found to have different biological
characteristics and significant survival differences.[6,7]

However, the limited sample size and high classifier
complexity have hindered the development of a unified
and mature molecular classification. Currently, the
treatment of HCC still faces formidable challenges,
such as difficulties in prevention and limited treatment
targets, etc. In addition, there is still a lack of effective
molecular classifications to predict therapeutic efficacy
or provide treatment guidance for patients with HCC.

In this study, we used scRNA-seq data to describe the
TME landscape of HCC and identified 6 prognosis-
related subclusters. Subsequently, we developed 5
transcriptomic subtypes using unsupervised clustering
of subcluster-specific markers (SSMs) in the training
cohort. These molecular subtypes exhibited distinct
clinical outcomes, stemness characteristics, genomic
variations, and immune infiltration microenvironments.
The therapeutic responses to immune checkpoint block-
ade (ICB), transcatheter arterial chemoembolization

(TACE), and targeted therapy in patients with HCC with
distinct molecular subtypes were explored using publicly
available clinical treatment cohorts and the Xiangya HCC
cohort. The characteristics of TME were further validated
using scRNA-seq and single cell T cell receptor/B cell
receptor-sequencing, mass cytometry (CyTOF), and
multiplex immunofluorescence. In summary, the integra-
tion of scRNA-seq data and bulk RNA-seq cohorts
allowed us to generate clinically validmolecular subtypes,
providing a theoretical basis for the development of
individualized therapeutic approaches for patients
with HCC.

METHODS

Publicly available data collection and
preprocess

In total, 12 public RNA-seq or microarray data sets with
clinical information were collected. Clinical character-
istics of cohorts involved in this study are presented in
Supplemental Table S1, http://links.lww.com/HEP/I377.
Approximately 248,478 cells from 3 public scRNA-seq
data sets were collected.

Xiangya HCC cohort acquisition

Fresh tumor tissues were surgically collected from 129
patients pathologically diagnosed with HCC at the
Xiangya Hospital of Central South University and
immediately stored in liquid nitrogen. After surgery, 36
patients received ICB therapy, 40 patients received
targeted therapy, and 34 patients received TACE
therapy. Treatment responses were evaluated according
to mRECIST guidelines.[8] Detailed clinical information is
presented in Supplemental Table S1, http://links.lww.
com/HEP/I377. We then performed bulk RNA-seq (BGI-
Shenzhen, China), scRNA-seq (LC-Bio Technology,
Hangzhou), and mass cytometry (Polaris Biology,
Shanghai) analysis on 129, 6, and 16 patients of the
Xiangya HCC cohort, respectively.

Statistical analysis

All the statistical tests were performed using the R
software (v4.1.3). A comparison of continuous variables
was performed using the nonparametric tests,
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specifically, the Wilcoxon rank-sum test for 2 groups,
and the Kruskal-Wallis test for more than 2 groups. A
comparison of rates between 2 or more groups was
performed using the chi-square test and Fisher exact
test. The 95% CI for the population rate was estimated
using a binomial distribution. Correlation between
continuous variables was measured using Spearman
rank order correlation. Survival data analysis included
Kaplan-Meier survival analysis and log-rank test to
check the statistical significance between groups. For
statistical tests with multiple p values, the false
discovery rate adjusting method was performed.

Detailed descriptions of methods used in this study
are provided in the Supplemental Information, http://
links.lww.com/HEP/I391.

RESULTS

Single-cell transcriptomics landscape of
HCC

First, we integrated 3 scRNA-seq data sets
GSE156625, GSE149614, and GSE125449 for anal-
ysis after removing batch effects and quality control
(Supplemental Figure S1A, http://links.lww.com/HEP/
I369). Dimensionality reduction clustering of these cells
identified 7 major cell types according to canonical
marker genes (Figure 1A and Supplemental Figure
S1B, http://links.lww.com/HEP/I369). Subsequently, 40
distinct subclusters were reclustered, including 6
epithelial subclusters, 11 NK-cell and T-cell subclusters,
1 mast cell subcluster, 3 B-cell subclusters, 8 myeloid
subclusters, 6 endothelial subclusters, and 5 fibroblasts
subclusters (Figure 1A). For the identification of
epithelial subclusters, we inferred copy number
variation (CNV) of tumor cells and divided tumor cells
into 5 subclusters (CNV_1–5) based on their CNV
profiles (Figure 1B). The marker gene expression
showed significant transcriptional differences between
subclusters (Figure 1C). The cell subclusters were
distributed in a tissue-specific manner (Figure 1D).

Identification of prognosis-related
subclusters in HCC

The workflow of the identification of prognosis-related
subclusters is presented in Figure 2A. After filtration, a
total of 1587 SSMs were identified (Supplemental Table
S4, http://links.lww.com/HEP/I380). Furthermore, the
reference signature matrix of these 40 subclusters
was acquired based on the expression values of 1587
SSMs across all subcluster cells for subcluster decon-
volution (Supplemental Figure S1C, http://links.lww.
com/HEP/I369 and Supplemental Table S4, http://
links.lww.com/HEP/I380).

We then collected clinical cohorts with RNA-seq and
microarray transcriptomic data and separated these
cohorts into a combined training cohort, a combined
RNA-seq validation cohort, and a combined microarray
validation cohort. A summary of the clinical information
included in this study is presented in Supplemental Table
S1, http://links.lww.com/HEP/I377. The collected HCC
cohorts were applied for further analysis after removing
the batch effect (Supplemental Figure S2A, http://links.
lww.com/HEP/I370). To calculate the subcluster-specific
score, the SSM expression values for each subcluster
were z-score normalized and averaged in the combined
training cohort. To infer the subcluster percentages, the
CIBERSORT algorithm was conducted in a combined
training cohort based on the reference signature matrix.

Subsequently, we conducted a univariate Cox regres-
sion analysis to screen the prognosis-related subclusters
based on either subcluster percentage or subcluster-
specific score (Supplemental Table S5, http://links.lww.
com/HEP/I381). Using the threshold of adjusted p value
<0.01, a total of 6 prognosis-related subclusters were
identified, including CNV_2, CNV_4, Treg_2, Mono, pDC,
and FB_3 (Figure 2B). CNV_2, Treg_2, Mono, pDC, and
FB_3 indicated poor outcomes, while CNV_4 was
correlated with improved overall survival (Table 1). The
specific expression of SSMs in corresponding prognosis-
related subclusters was validated at the single-cell level
(Supplemental Figure S1D, http://links.lww.com/HEP/I369).
We further used CellPhoneDB to analyze the cell-cell
communications between subclusters and observed most
connections among fibroblasts, endothelial cells, and
epithelial cells (Supplemental Figure S1E, http://links.lww.
com/HEP/I369). Significant ligand-receptor interactions
were detected between prognosis-related subclusters
(Supplemental Figure S1F, http://links.lww.com/HEP/I369).

Construction of transcriptomic
classification in HCC

We used unsupervised consensus clustering in the
combined training cohort based on the expression of 103
SSMs of prognosis-related subclusters, and 5 transcrip-
tomic subtypes were identified (Figure 2C). The expression
profiles of 103 SSMs in 5 transcriptomic subtypes are
shown in Supplemental Figure S2B, http://links.lww.com/
HEP/I370. The 5 subtypes showed significant differences
in prognosis (Figure 2D, log-rank test, p=2e−6). The
subclusters of CNV_2, FB_3, Mono, pDC, and Treg_2
were significantly enriched in class 5, and class 1 was
characterized by enrichment of CNV_4 (Figure 2E).
Genomic analyses indicated that the TERT promoter,
TP53 (encoding p53), and CTNNB1 (encoding β-catenin)
were frequently mutated in HCC.[9] CTNNB1 mutation was
associated with a more differentiated tumor type and
prolonged overall survival,[10] while the TERT promoter and
TP53 mutation demonstrated higher tumor proliferation
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activity and a poor prognosis in patients with HCC.[11]

Therefore, we explored the TERT promoter mutation in 5
transcriptomic subtypes. In addition, the results of somatic
mutation analysis revealed that the mutation frequency of
TP53 was significantly increased in classes 4 and 5
(16.8%, 21.8%, 32.7%, 54.3%, and 50% for classes 1, 2, 3,
4, and 5, respectively. Supplemental Figures S2C, D; http://
links.lww.com/HEP/I370). In comparison, the mutation of
CTNNB1 was mainly enriched in classes 1 and 2
(Supplemental Figure S2C, http://links.lww.com/HEP/
I370). We further compared the differences in prognosis
and enriched pathways between classes 2 and 4, between
classes 3 and 5 (Supplemental Figures S3A–S3D, http://
links.lww.com/HEP/I371), between classes 1 and 2, and

between classes 3 and 4 (Supplemental Figures S3E–
S3G, http://links.lww.com/HEP/I371). We found the cancer
stemness activity of class 5 and class 4 was higher than
class 3 and class 2, respectively (Supplemental Figure
S3D, http://links.lww.com/HEP/I371).

To validate the survival prediction value of tran-
scriptomic classes, we then developed a machine-
learning–based model to predict transcriptomic classes
in external validation cohorts. We evaluated the
predictive accuracy of our classification system of 8
distinct machine-learning algorithms in the combined
training cohort. Finally, support vector machine
achieved the best performance with multiclass AUC
values of 1 for the training set and 0.938 for the internal
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F IGURE 1 Single-cell transcriptomic analysis identified distinct cell subclusters. (A) t-SNE visualization of 248,478 cells annotated in 7 major
cell types and 40 subclusters. Cells from different subclusters are marked by color code. (B) The tumor cells were divided into 5 CNV subclusters
by applying the k-means clustering based on inferred single-cell CNV profiles. (C) Heatmap of marker gene expression in each cell subcluster. (D)
Barplot displaying the number of cells, tissue type (adjacent normal or tumor), and the fraction of cells in each cell subcluster from left to right.
Abbreviations: CNV, copy number variation; t-SNE, distributed stochastic neighbor embedding.
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validation set (Figure 2F and Supplemental Materials
and Methods, http://links.lww.com/HEP/I391). There-
fore, support vector machine was chosen to predict
transcriptomic classes in external validation cohorts.
Kaplan-Meier analysis showed remarkably different
overall survival of 5 transcriptomic classes in the
external microarray validation cohort (Figure 2G, log-
rank test, p= 0.0066) and the RNA-seq validation
cohort (Figure 2H, log-rank test, p=0.031). CNV_2
markers (TFF2 and AGR2) were highly coexpressed in
hepatoma cells (Figure 2I). FB_3 markers (THBS4 and
ACTG2) were coexpressed in fibroblasts (Figure 2J).

The higher CNV_2 (TFF2 and AGR2) and FB_3
(THBS4 and ACTG2) expression was correlated with
worse prognosis in the combined training cohort and the
Xiangya HCC cohort (Supplemental Figures S4A, B,
http://links.lww.com/HEP/I372).

Cancer stemness characteristics of HCC
transcriptomic subtypes

Cancer stemness was closely correlated with cancer
progression, prognosis, and treatment resistance.[12]
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First, we analyze the cancer stemness of tumor cells at
the single-cell level (CNV subclusters). CNV subclus-
ters were annotated in the t-distributed stochastic
neighbor embedding plot (Figure 3A). Non-negative
matrix factorization identified 5 gene metaprograms, of
which the hub-genes represented a cluster of
coexpression genes across all CNV subclusters
(Figure 3B and Supplemental Table S6, http://links.
lww.com/HEP/I382, details see “Method”). Function
enrichment analysis revealed metaprograms 3 and 5,
which were significantly concentrated in CNV_2, were
enriched in pathways of cell cycle, cancer stem cell, and
TP53 signaling, as well as pathways of hypoxia,
glycolysis, and epithelial mesenchymal transition.
Whereas metaprograms 2 and 4, which were mainly
upregulated in CNV_4, were enriched in coagulation
and immune response (Figure 3B). We conducted
scRNA-seq analysis to detect the expression of
CD133, EpCAM, and cytokeratin 19 (KRT19), and
surprisingly discovered that these well-known HCC
stem cell markers were significantly enriched in the
CNV_2 cluster (Figure 3C). CNV_2 also had the highest
cancer stemness score of cancer stem cell (Palmer,
2012)[13] and Stem.Sig (Zhang, 2022)[14] (Figure 3D).
Single-cell regulatory network inference and clustering
(SCENIC) analysis revealed that regulons of TP53 and
MYC, the critical transcription factors driving cancer
stemness, were significantly activated in CNV_2
(Figure 3E). Cell trajectory analysis also demonstrated
that CNV_2 was populated at the initial position of the
developmental tree and had the lowest pseudotime and
the highest CytoTRACE score (Figure 3F). All of this
evidence indicated that CNV_2 had the strongest
stemness among the CNV subclusters.

According to the inferred subcluster percentages in
the training cohort, class 5 contained the highest
proportion of the CNV_2 subcluster (Figure 3G).
Consistently, the cancer stemness score was
significantly elevated in class 5 (Figure 3H). Hallmark
pathways in 5 transcriptomic subtypes were presented
in Supplemental Figure S5A, http://links.lww.com/HEP/
I387). Next, we reconstructed transcription factor
regulatory networks in bulk RNA-seq data from the

training cohort. We noticed distinct regulon expression
patterns across 5 transcriptomic subtypes (Supplemen-
tal Figure S5B, http://links.lww.com/HEP/I387). The
significantly activated regulons of class 5, such as
PITX2, MYBL2, and FANCB, were associated with
cancer stemness, MYC targets, and TP53 signaling
pathways (Figure 3I, Supplemental Figure S5C, http://
links.lww.com/HEP/I387, and Supplemental Table S7,
http://links.lww.com/HEP/I383). Then, we constructed
protein-protein interaction networks (PPI) of stemness-
related regulons activating in class 5, where TP53 and
MYC were located at the core nodes (Figure 3J). We
identified robustly coactivated regulons related to
cancer stemness in CNV_2 and class 5, such as
PITX2, MYBL2, and ELF3 which were reported
(Figure 3K and Supplemental Figure S5D, http://links.
lww.com/HEP/I387).[15–17] Immunofluorescence staining
confirmed the high expression of EPCAM, TP53,
PITX2, and MYBL2 in class 5 compared to class 1
(Figure 3L). We further explored the expression of
PITX2 and MYBL2 in HCC cells and discovered that
PITX2 and MYBL2 were significantly upregulated in
HCCLM3 and Hep3B cell lines (Supplemental Figures
S6A, B, http://links.lww.com/HEP/I373). Then, we con-
structed 3 shRNA to knock down PITX2 and MYBL2 in
HCCLM3 and Hep3B cell lines, respectively. RT-qPCR
and western blot analysis were used to assess the
knockdown efficiency of PITX2 and MYBL2 (Supple-
mental Figures S6C, D, http://links.lww.com/HEP/I373).
Downregulated PITX2 and MYBL2 decreased the size
and number of spheroids formed in the HCCLM3 and
Hep3B cells (Figure 3M).

Immune profiles of HCC transcriptomic
subtypes

We further analyzed the genomic profiles of 80 immune-
related genes (37 immunostimulatory genes, 20 inhibitory
immune checkpoints, 12 major histocompatibility complex
class I genes and 11 major histocompatibility complex
class II genes) (Supplemental Figure S7A, http://links.
lww.com/HEP/I388). Subsequently, we applied the

TABLE 1 The univariate Cox regression analysis of 6 prognosis-related subclusters based on CIBERSORT proportion and SSS score

CIBERSORT proportion SSS score

Subcluster HRs (95% CI) p FDR HRs (95% CI) p FDR

Treg_2 5800 (280–120,000) 2.20E−08 4.40E−07 1.5 (1.2–1.8) 5.00E−05 0.00017

CNV_4 0.086 (0.034–0.21) 1.20E−07 1.60E−06 0.72 (0.59–0.87) 0.00072 0.00198

FB_3 2.6e+08 (31,000–2.2e+12) 2.70E−05 0.00027 1.9 (1.5–2.6) 3.60E−06 1.98E−05

CNV_2 71 (9.2–540) 4.30E−05 0.00034 1.7 (1.4–2) 2.50E−09 2.75E−08

Mono 260,000 (300–2.2e+08) 3.00E−04 0.002 1.6 (1.3–1.9) 1.20E−05 5.66E−05

pDC 2.9e+21 (8.7e+07–4.9e+32) 0.0014 0.008 1.7 (1.3–2.2) 2.20E−05 9.08E−05

Abbreviations: FDR, false discovery rate; SSS, subcluster-specific score.
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F IGURE 3 Correlation between transcriptomic subtypes and cancer stemness. (A) t-SNE visualization of CNV subclusters in tumor cells. (B)
Hierarchical clustering of NMF programs identified 5 prominent metaprograms in epithelial subclusters. (C) The expression of HCC stem cell
markers CD133, EpCAM, and KRT19 in 5 CNV subclusters. (D) Violin plot displaying the stemness scores of cancer stem cell (Palmer, 2012) and
Stem.Sig (Zhang, 2022) across CNV subclusters. (E) t-SNE plot showing the regulon activity of TP53 and MYC. (F) Differentiation trajectory of
CNV subclusters (left) displaying pseudotime (middle) and CytoTRACE score (right). Colored dots indicate cells annotated in (A). (G) The
proportion of CNV subclusters in distinct transcriptomic classes. (H) Stemness scores of cancer stem cells (Palmer, 2012) and Stem.Sig (Zhang,
2022) for 5 transcriptomic classes. (I) Specific activated or suppressed regulons for 5 transcriptomic classes and the enrichment pathways of
activated regulons of class 5 (right). (J) The hub PPI network of stemness-related regulons in class 5. (K) The activities of PITX2 and MYBL2
regulons in CNV subclusters (left) and HCC transcriptomic classes (right). (L) Multiplex immunofluorescence staining of stemness regulons
including TP53, EPCAM, PITX2, andMYBL2 in tumor cells of HCC (marked Glypican3). Scale bars=50 µm. (M) Sphere-forming assays of Hep3B
and HCCLM3 cells after PITX2 and MYBL2 knockdown. Representative images are shown, and the number of spheroids is quantified in bar
graphs. Scale bars=200 µm. **p< 0.01, ***p< 0.001. Abbreviations: CNV, copy number variation; NMF, non-negative matrix factorization; PPI,
protein-protein interaction; t-SNE, t-distributed stochastic neighbor embedding.
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F IGURE 4 Immune characteristics of HCC transcriptomic subtypes in the training cohort and the Xiangya real-world cohort. (A) Comparing the
infiltration level of 22 immune cell types in 5 distinct transcriptomic classes. (B) Violin plot of immune score and T-cell exclusion score in 5
transcriptomic classes. (C) Violin plot of the expression of inhibitory immune checkpoint genes PDCD1, CD274, CTLA4, and TIGIT in 5 tran-
scriptomic classes. (D) Activities of different cancer immunity cycle steps in transcriptomic subtypes. (E) Heatmap showing the overall status,
BCLC stage, cirrhosis, vascular invasion, ICB response, targeted therapy response, TACE response, and the expression of 15 immune
checkpoint genes in the transcriptomic classes of the Xiangya HCC cohort. (F) Overall response rate of 5 transcriptomic classes after ICB therapy
in the Xiangya real-world cohort (chi-square test, p=7.6e−06). (G) Kaplan-Meier survival curves displaying the OS (log-rank test, p=0.0025) and
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regulatory T cells (Treg; CD3+, CD8−, and FOXP3+). Scale bar=100 µm. (J) The heatmap showed the association between the immune cell
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CIBERSORT algorithm and the immune cells gene set
curated by Charoentong et al[18] to investigate the
infiltration level of immune cells. Class 5 showed a
significantly increased proportion of myeloid-derived
suppressor cells (MDSCs) and regulatory T cells
(p<0.001, Figure 4A and Supplemental Figure S7B,
http://links.lww.com/HEP/I388). Classes 5 and 3 dis-
played higher levels of immune score, T-cell exclusion
score (Figure 4B), and immunosuppressive markers
(such as PDCD1, CD274, CTLA4, and TIGIT,
Figure 4C). We further explored the steps of the cancer
immune cycle, including tumor antigen presentation,
immune cell recruitment, tumor cells recognition, and
killing.[19] The activities of most steps, such as cancer
antigen presentation, CD8+ T-cell recruiting, and killing of
cancer cells, were significantly upregulated in class 1,
while these steps were significantly suppressed in
classes 2 and 4. Recruitment of MDSCs, neutrophil,
Th22, and Treg cells were significantly increased in
classes 3 and 5. However, the downregulated activities of
T cells recognizing and killing tumor cells were observed
in class 5 (Figure 4D). All of these findings indicated
that class 1 might be an inflamed phenotype, classes 2
and 4 might be immune-deserted phenotypes, and
classes 5 and 3 might be inhibitory tumor immune
microenvironments. Consistently, responsiveness of ICB
predicted from the TIDEwebsite showed that classes 1, 3,
and 5 had higher ICB reactivity (chi-square test, p=3.9e
−06, Supplemental Figure S7C, http://links.lww.com/
HEP/I388).

We then validated the immune characteristics and ICB
response of transcriptomic subtypes in the Xiangya HCC
cohort. As expected, the expression of inhibitory immune
checkpoints was higher in classes 3 and 5 compared to
classes 2 and 4. The patients in class 5 also presented
higher vascular invasion, Barcelona Clinic Liver Cancer
stage, and cancer stemness score (Figure 4E and
Supplemental Figure S7D, http://links.lww.com/HEP/
I388).

Surprisingly, the response rate of patients in class 1
(75%; 95% CI: 54.1%–100%), class 3 (66.7%; 95% CI:
9.40%–99.20%), and class 5 (100%; 95% CI: 54.1%–

100%) who received ICB therapy was significantly higher
than that of patients in class 2 (0%; 95% CI: 0%–41%)
and class 4 (8.3%; 95% CI: 0.2%–38.5%) (Figure 4F).
These results were consistent with the immune profile of
transcriptomic subtypes characterized by the training
cohort. Due to the excellent ICB responsiveness of class
5 patients, their overall survival was improved, whereas
class 4 patients had the worse prognosis in the Xiangya

real-world cohort (Figure 4G, log-rank test, p=0.0025).
We did not observe significant PFS differences between
the 5 transcriptomic subtypes (Figure 4G, log-rank test,
p=0.11). The therapy response was assessed through
an enhancement MRI scan (Figure 4H). Furthermore, we
evaluated the immune cell infiltrations of transcriptomic
subtypes, including T helper cells, CTLs, Tregs, B cells,
M1, and M2 macrophages, through the corresponding
tissue sections (Figures 4I, J). The level of infiltrating
immune cells was increased in classes 3 and 5
compared to classes 2 and 4, especially CTLs and
Tregs cells.

Subsequently, we conducted CyTOF analysis on 16
collected samples derived from the Xiangya HCC
cohort. All CyTOF data were preprocessed, and living
single immune cells (CD45+) were retained after
gating for further analysis (Figure 4K). Based on the
canonical cell markers, we defined 8 major cell
clusters, including CD8+ T cells, exhausted CD8+ T
cells, Treg cells, CD4+ T cells, CD33+ MDSCs,
neutrophils, CD38+ tumor-associated macrophages,
and CD115+ tumor-associated macrophages (Figures
4L, M and Supplemental Figure S8A, http://links.lww.
com/HEP/I389). The expression of immune checkpoint
CTLA4 was mainly localized in exhausted CD8+ T cells
and Treg cells (Figure 4N). Compared to classes 2 and 4
subtypes, the samples with classes 3 and 5 subtypes
were characterized by a high proportion of immune cell
infiltration (Figure 4O). The analysis of the density of
infiltrating cell clusters in these samples revealed that
class 1 was characterized by the presence of CD4+ and
CD8+ cells, classes 2 and 4 were characterized by a lack
of CD45+ cells. Classes 3 and 5 samples showed higher
levels of infiltration by Treg cells, exhausted CD8+ T
cells, MDSCs, and tumor-associated macrophages, all of
which possessed remarkable immunosuppressive
capabilities (Figure 4P). These results are consistent
with previous findings.

scRNA-seq and immune repertoire
sequencing revealed the immune
microenvironment and T/B-cell receptor
clonotypes in transcriptomic subtypes

We conducted paired scRNA, scTCR, and scBCR
sequencing on the operative specimen of 6 patients with
HCC, which were classified as class 1, class 3, class 4,
and class 5 based on the corresponding bulk-RNA
sequencing. After quality control and dimensionality

infiltration percentage and the transcriptomic classes among the Xiangya HCC cohort. Annotation of immune cells based on canonical markers.
(K) Gating strategy for identifying CD45 immune cell populations. (L) Dimplot of transcriptomic subtypes and cell clusters based on CyTOF. (M) A
heatmap showing the differential expression of 29 immune markers in the 9 cell clusters. (N) The distribution of immune checkpoint CTLA4 in
different cell clusters. (O) The proportion of CD45 immune cells in the 5 HCC transcriptomic subtypes (ANOVA, p=0.0062). (P) Frequency
diagram of immune cell subclusters in each patient with different transcriptomic subtypes. Abbreviations: BCLC, Barcelona Clinic Liver Cancer;
ICB, immune checkpoint blockade; OS, overall survival; TACE, transarterial chemoembolization.
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reduction clustering, we annotated 10 main cell types
(Figures 5A, B and Supplemental Figure S8B, http://links.
lww.com/HEP/I389). The FB_3 cluster (in fibroblasts)
and the CNV_2 cluster (in epithelial cells) were enriched
in our identified transcriptomic subtypes (Supplemental
Figure S9A, http://links.lww.com/HEP/I374). We also
observed that the myeloid cells of classes 4 and 5
expressed elevated levels of immunosuppressive mac-
rophage markers (FOLR2, SPP1, and SELENOP).[20,21]

In addition, major histocompatibility complex class II
molecules (HLA-DRB1, HLA-DQA1, and HLA-DQB1)
were downregulated in class 5, indicating a reduced
capacity of tumor antigens presentation from macro-
phages to T cells in class 5 (Figure 5C). We then
explored the phenotype and clonotype characteristics of
T cells and B cells in the 4 subtypes.We identified 12,931
T cells as 5 distinct phenotypes according to the
expression of canonical phenotypical markers (Figures
5D, E). Faster RNA velocity and higher mRNA
expression of FOXP3 and CTLA4 were presented in
Treg cells (Figure 5F).

We further identified top 10 T cell receptor clonotypes
by leveraging paired scTCR and scRNA sequencing
(Figure 5G and Supplemental Table S8, http://links.lww.
com/HEP/I384). Class 3 was mainly characterized by
clonotype 1 and clonotype 2, and class 5 was charac-
terized by diverse clonotypes (Figure 5H). The clonal
TCRs were mainly distributed in CD8 CTL and
exhausted CD8 cells (Figure 5I). T-cell functions of
distinct transcriptomic subtypes and T cell receptor clonal
expansion were scored. Intriguingly, expanded T cells in
class 5 showed an enhancement of cytotoxicity and
exhausted signal accompanied by a weakened
costimulatory signal, which was the second signal
triggering T-cell activation (Figure 5J). This may be a
possible reason why class 5 had lack of activity killing the
tumor cells, as T cell receptor clonotypes were unable to
fully activate and exert their cytotoxic function. A high
level of clonal dominance was presented in class 1, class
3, and class 5. Large exhausted CD8 cells and Treg cell
proportion existed in class 3 and class 5, whereas class 4
lacked T-cell infiltration and expansion (Figures 5K, L).
Researchers reported that exhausted T cells were a
major cell type responding to PD1 blockade and the
stage of exhausted T cells was significantly correlated
with responsivity of ICB therapy.[22] We discovered that
the feature of precursor-exhausted CD8 T cells (Ly108
+/CD69−) in classes 5 and 3 was increased, which
indicated with better efficacy of ICB therapy (Figure 5M).
Immunofluorescence staining also revealed the high
expression of PD1/PD-L1 in classes 3 and 5 (Figure 5N).

In addition, 4 distinct B cell receptor (BCR) pheno-
types were identified according to the expression of
canonical phenotypical markers (Supplemental Figures
S9B, C, http://links.lww.com/HEP/I374). We further
integrated B-cell phenotypes and BCR clonotypes
(Supplemental Figure S9D, http://links.lww.com/HEP/

I374) and found that the clonal expansion of BCR
mainly existed in IgA+ and IgG+ plasma cells (Supple-
mental Figure S9E, http://links.lww.com/HEP/I374). The
distribution of BCR phenotypes and clonotypes in
transcriptomic subtypes were presented in Supplemen-
tal Figures S9F, G, http://links.lww.com/HEP/I374.

Development of prognosis-related score
based on machine learning

First, using the bootstrapping method, we identified 25
SSMs from 103 SSMs of prognosis-related subclusters.
Subsequently, we performed a random survival forest to
screen the identified SSMs and confirmed 8 genes with
the best performance. Finally, a robust prognosis-
associated model was constructed by calculating the
multivariate Cox regression coefficient of these 8 genes
(Figure 6A and Supplemental Table S9, http://links.lww.
com/HEP/I385). This model performed well in prognostic
prediction in the combined training cohort, microarray
validation cohort, RNA-seq validation cohort, and Xian-
gya HCC cohort (Figure 6B). Figure 6C shows the
correlation between the transcriptional subtypes and
prognosis-related score (PRS) groups. The AUC value of
PRS was superior to conventional clinical features, such
as age, TNM stage, and Barcelona Clinic Liver Cancer
stage, in the TCGA-LIHC, CHCC-HBV, and LIRI-JP
cohorts (Figure 6D). The univariate and multivariate Cox
regression analyses revealed that PRS was an
independent prognostic factor in the TCGA-LIHC,
CHCC-HBV, and LIRI-JP cohorts (Figure 6E). These
findings confirmed the excellent prognostic value of PRS
in patients with HCC.

Next, we analyzed the correlation between PRS and
activities of hallmark and PROGENy pathways, cancer
stemness scores, and stemness-related regulons. The
hallmark pathways of proliferation, DNA repair,MYC and
TP53 signaling, PROGENy pathways of hypoxia, EGFR
and TP53 signaling, stemness-related regulons, and
cancer stemness scores were significantly positively
correlated with PRS (Figure 6F). In the TCGA-LIHC and
CHCC-HBV cohorts, more advanced clinical stages
(including histological grade, Barcelona Clinic Liver
Cancer, and TNM staging systems), extensive vascular
invasion, and increased AFP levels were found to be
correlated with higher PRS. Interestingly, a higher
mutation frequency of TP53 was observed along with
the increasing PRS (Figures 6G, H).

We also discovered that PRS was significantly
associated with immune checkpoint expression
(Figure 6I). The expression of PDCD1 and CTLA4
was upregulated in the high PRS group (Figure 6J).
CytoF analysis suggested that the proportion of CD45+
cells was also elevated in the high PRS group
(Figure 6K). Our Xiangya HCC cohort indicated that
the patients with higher PRS were more sensitive to ICB
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therapy (Figure 6L). The expression of PD1, PD-L1, and
CTLA4 in the high PRS and low PRS groups of the
Xiangya HCC cohort is presented in Figure 6M.

To formulate a clinically relevant quantitative
method for predicting the probability of 1-year, 3-year,
and 5-year overall survival in patients with HCC, we
constructed a nomogram combining PRS and TNM
stages, which was also an independent clinical
prognostic factor in the training cohort (Supplemental

Figure S10A, http://links.lww.com/HEP/I375). The cal-
ibration curves of multiple cohorts suggested that the
nomogram had a similar performance compared to an
ideal model for predicting overall survival probability
(Supplemental Figure S10B, http://links.lww.com/HEP/
I375). The subgroup Cox regression of PRS was
presented in the TCGA-LIHC, CHCC-HBV, LIRI-JP
cohorts (Supplemental Figures S10C–E, http://links.
lww.com/HEP/I375).
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F IGURE 5 Single-cell RNA-seq and scTCR/BCR-seq revealed the immune repertoire of transcriptomic subtypes. (A) UMAP visualization
annotated with 10 major cell types in classes 1, 3, 4, and 5. (B) The proportion of 10 major cell types in different transcriptomic subtypes. (C) The
expression of immunosuppressive markers (FOLR2, SPP1, and SELENOP) and MHC class II genes (HLA-DRB1, HLA-DQA1, and HLA-DQB1) in
myeloid cells across identified transcriptomic subtypes. (D) UMAP visualization of T-cell phenotypes and steady-state RNA velocity of T-cell
phenotypes. (E) RNA velocity and expression of FOXP3 and CTLA4. (F) Violin plot displaying the expression of canonical markers in distinct T-cell
phenotypes. (G) UMAP plot annotated with TCR clonotypes. (H) The proportion of 10 TCR clonotypes in different transcriptomic subtypes. (I) TCR
expansion frequency in distinct T-cell phenotypes. (J) Resident, exhausted, cytotoxicity, and costimulatory scores in T cells of different tran-
scriptomic subtypes. (K) TCR expanding frequency in transcriptomic subtypes. (L) The percentage of T-cell phenotypes in transcriptomic sub-
types. (M) The expression pattern of precursor-exhausted CD8 T cells (Ly108+CD69−) and terminal exhausted CD8 T cells (Ly108−CD69+) in
different transcriptomic subtypes. (N) Multiplex immunofluorescence staining of CD3/CD8/FOXP3/PD1/PD-L1 in different transcriptomic subtypes.
Scale bars= 50 µm. Abbreviations: BCR, B cell receptor; MHC, major histocompatibility complex; TCR, T cell receptor; UMAP, uniform manifold
approximation and projection.
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Exploration of potential drugs and targets
for HCC transcriptomic subtypes

To explore whether constructed transcriptomic sub-
types had different responses to systemic therapies, 2
treatment cohorts of HCC, including patients who
received sorafenib therapy (GSE109211) and TACE
(GSE104580), were retrieved. support vector machine
was used to classify the transcriptomic subtypes of
these patients. Surprisingly, classes 3 and 5 were much
more sensitive to sorafenib compared to other tran-
scriptomic subtypes, with response rates of 77.8%
(95% CI: 40%–97.2%) and 81.8% (95% CI: 48.2%–

97.7%), respectively (Figure 7A, chi-square test,
p=7.8e−7). Whereas the sensitivity of TACE therapy
declined in class 5 (Figure 7B). We further predicted the
IC50 value of sorafenib among 5 subtypes in the
combined training cohort based on 2 different
databases CGP2016 and CTRP2, which revealed that
classes 3 and 5 had the lowest IC50 (Figure 7C).
Subsequently, 2 methods were used to screen
potentially effective compounds for the high PRS
group (Spearman r <−0.40), and 6 CGP2016-derived
compounds and 7 CTRP-derived compounds were
identified (Figure 7D). All of these compounds had
lower IC50 values in the high PRS group (Figure 7E).
The CMap score of these compounds on HCC cell lines
revealed that Tipifarnib, JW-74, and Etoposide were
possibly beneficial to the high PRS group (Figure 7F).

Next, we screened the therapeutic drug targets
correlated with PRS. Correlation analysis between the
expression of druggable genes and PRS was con-
ducted in the training cohort, and 221 targets were
identified with a correlation coefficient > 0.5 (p< 0.05,
Figures 7G, H). We further confirmed 27 druggable
targets based on the correlation analysis between
CERES score and PRS in HCC cell lines with a
correlation coefficient <−0.5 (p<0.05, Figures 7G, H).
Four targets, including ACLY, HK2, PPIA, and PPIH,
were identified through both aforementioned analyses
(Figure 7G). We further validated the affinity of the
predicted small molecular compound to the 4 targets
through molecular docking analysis (Supplemental
Figure S11, http://links.lww.com/HEP/I376). Significant
correlations were observed between PRS and the
mRNA expression and CERES scores of the 4
intersected targets (Figure 7I). The pathways of
hypoxia, MAPK, EGFR, VEGF, and TP53 signaling
were remarkably activated in class 5, which also
indicates the potential interventional pathways
(Figure 7J).

DISCUSSION

TME heterogeneity is the pivotal determinant for the
difference in prognosis and drug sensitivity in patients

with advanced HCC.[23] The widespread application of
scRNA sequencing has revealed the characteristics of
malignant cells, tumor-associated stromal cells, and
tumor immune infiltration, which offer novel insights for
tumor classification, tumor initiation and evolution,
mechanisms of drug resistance, and the selection of
therapeutic agents.[24] In this study, we integrated the
scRNA-seq data of 33 patients with HCC to reveal
distinct cell subclusters and observed significant inter-
patient and intratumor heterogeneity. CNV analysis
showed malignant cell subclusters exhibited anomalous
increases or decreases in copy numbers. Six cell
subclusters were identified, including CNV_2, CNV_4,
FB_3, Mono, pDC, and Treg_2, which played crucial
roles in the clinical prognosis for HCC.

Unsupervised clustering further identified 5 HCC
transcriptomic subtypes with different overall survival
rates. Studies have shown that the exploration of tumor
metastasis and recurrence at the transcriptomic
level could promote individualized treatment of tumors
and accelerate drug development.[25,26] In addition,
researchers considered that HCC could be roughly
categorized into 2 major molecular subtypes (prolifera-
tion class and nonproliferation class) regardless of the
particular nomenclature applied to each class.[27,28]

These HCC classifications constructed by the scholars,
as mentioned before, partially explained the differences
in patient prognosis or treatment response. Our study
integrated single-cell sequencing data from multiple
HCC cohorts and constructed transcriptomic subtypes
applying specific markers of prognosis-related subclus-
ters, which give enough consideration to the intra-
tumoral and interindividual heterogeneity at the single-
cell level. The results should be reliable because we
validated the prognostic value of these subtypes in
multiple bulk RNA-seq and microarray cohorts, as well
as real-world large clinical samples.

Our study further described the biological character-
istics of the 5 subtypes. Tumor stemness is also an
important factor causing HCC heterogeneity and is
closely associated with HCC relapse and drug
resistance.[29] Various cancer stemness markers have
been identified, including PITX2, MYBL2, MYC, SOX9,
ELF3, and KLF5, etc.[30–32] In this study, the class 5
subtype with the highest proportion of CNV_2 sub-
cluster had a remarkably upregulated cancer stemness
score, which may explain the reason for the poorest
prognosis in class 5.

Although multiple clinical trials suggest the significant
efficacy of immunotherapy in the treatment of malignant
tumors, not all patients respond positively to this
therapy.[33] The distinct molecular characteristics of
the transcriptomic classes indicate that specific thera-
pies may have different effects on these patients. Only
by accurately resolving the types and status of immune
cells in TME can a systematic tumor immune profile be
obtained, thereby assisting in the discovery of effective
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tumor immune biomarkers and the development of
tumor immunotherapy. The 5 transcriptomic subtypes
that we identified demonstrated significant discrepant
immune phenotypes. Immune infiltration analysis and
the steps of the cancer immune cycle indicated that
class 1 might be an inflamed phenotype, classes 2 and
4 might be immune-deserted phenotypes lacking T-cell
infiltration, while classes 5 and 3 might be inhibitory
tumor immune microenvironment-enriched Treg cells
and suppressive immune checkpoints. Our single-cell T
cell receptor/B cell receptor-sequencing sequencing
and CyTOF analysis further validated these findings.
The description of the tumor immune microenvironment
in transcriptomic subtypes indicates that classes 1, 3,
and 5 might possess positive reactiveness to ICB.
Notably, our Xiangya real-world HCC cohort showed
that the response rate of classes 1, 3, and 5 patients
reached 75%, 66.7%, and 100% after receiving ICB
therapy, which is consistent with the immune character-
istics of these transcriptomic subtypes.

Machine learning has been gradually applied to
prognosis research.[34] In our present study, we gener-
ated a risk score (PRS) to predict the overall survival of
patients with HCC based on the random survival forest.
PRS performed well in prognostic prediction and was
correlated with ICB response. In addition, 4 potential
therapeutic targets (ACLY, HK2, PPIA, and PPIH) and
corresponding compounds were identified for patients
with high PRS with HCC. These targets were closely
associated with the proliferation, metastasis, metabolism,
and immune infiltration of cancer.[35–37] The evidences
suggest the feasibility of developing corresponding
agents and targeting proteins for patients with high PRS
with HCC.

In conclusion, the comprehensive single-cell analysis
offers a high-resolution depiction of the TME heteroge-
neity in HCC and confirms 6 cellular subclusters of
prognostic relevance. Furthermore, 5 transcriptomic
subtypes were constructed with different clinical prog-
nosis, stemness characteristics, immune landscape,
and therapeutic responses through integrating single-
cell data and bulk cohorts. Our work provides a robust
classification system for prognostic prediction and
personalized medicine. Nevertheless, some limitations
of this study should be acknowledged. First, this
research was conducted retrospectively, and prospec-
tive studies should be designed to further validate the
efficacy of categorization. In addition, the cohorts
incorporated in this study exhibited variations in
etiologies and clinical characteristics. A multicenter,
large-sample data set encompassing eligible patients
undergoing distinct treatments (targeted therapy, TACE,
and immunotherapy) should be further implemented to
evaluate clinical effectiveness. Finally, the potential
therapeutic targets and agents identified in this study
should be subjected to further investigation through
experimental validation and clinical trial research.
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