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We present a computational mechanistic study on the copper(I1ll)-catalysed carboarylation—ring closure reactions leading to the for-

mation of functionalised heterocycles. We have performed DFT calculations along selected routes and compared their free energy

profiles. The calculations considered two viable options for the underlying mechanism which differ in the order of the oxazoline

ring formation and the aryl transfer steps. In our model transformation, it was found that the reaction generally features the aryl

transfer—ring closing sequence and this sequence shows very limited sensitivity to the variation of the substituent of the reactants.
On the basis of the mechanism the origin of the stereoselectivity is ascribed to the interaction of the Cu ion with the oxazoline

oxygen driving the ring-closure step selectively.

Introduction

Recently a very efficient synthetic strategy has been developed
where diaryl iodonium salt 1 [1-8] and copper(I) catalyst 2 are
employed together to produce in situ Ar—Cu(IIl) species 3 for
the carbofunctionalisation of appropriate substrates 4 [9-28]. In

particular, the arylation—cyclisation reactions promoted by the
highly electrophilic Cu(Ill)-aryl intermediates 3 can allow
access to aryl-functionalised carbocyclic and heterocyclic mole-
cules 8 with valuable functionalities [9,29-44]. The mechanistic
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details of these cascade reactions are not clear as evidenced by
the different mechanistic proposals (see, e.g., [18,30,40,44]).
These mechanisms suggest the presence and existence of vinyl
cation 7, alkynyl-Cu(IIl) 5, or alkenyl-Cu(III) complexes 6
before the C—O bond formation in the ring closing step (see
Scheme 1).

As an example of the catalytic arylation—cyclisation strategy, an
efficient procedure to form substituted oxazoline derivatives
from alkyl and aryl propargylamides has been developed. The
process involves a 5-exo-dig cyclisation and an aryl group
transfer step affording a wide range of oxazoline derivatives
[44]. An intriguing issue is the order of the arylation and ring-
closure steps and whether this sequence can be affected by the
electronic or steric properties of the ligands. Although these
mechanistic variations have been postulated in the literature, the
exact sequence remained unclear. In this article we report our
theoretical studies addressing the mechanism of this reaction,
which could provide valuable information for other, analogous

copper-catalysed arylation—cyclisation reactions.

Results and Discussion

First, we explain our computational strategy and discuss the
possible reaction paths leading to the formation of 5-(diphenyl-
methylene)-4,5-dihydrooxazole in the reaction of propargylic
amides and diaryliodonium salts in the presence of a Cu(]) cata-

lyst. This is a simplified model of the original reaction scheme

formation of Ar—Cu(lll) intermediate
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[44] and allows the exploration of the possible reaction routes
of the carboarylation—ring-closure reactions in a computation-
ally efficient manner. As the first step of the reaction we consid-
ered the formation of the key Ar—Cu(Ill) species, followed by
the interaction of this intermediate with the alkyne (Scheme 2,
step 1). In the next step we compared the energetics of two dif-
ferent paths (paths A and B), to get insight into the order of the
arylation and cyclisation steps. Additionally, the relevance of

vinyl cation formation and the stereoselectivity were examined.

The energy profiles start with the interaction of the reactant
with the catalyst complex formed in the EtOAc medium. In this
process the complexing EtOAc ligand leaves and the reactant
N-(3-phenylprop-2-yn-1-yl)acetamide binds to the Cu(IIl) ion in
an 12 mode with its triple bond yielding Iy. The process occurs
via an associative substitution route often observed for the
16 electron metal complexes. We could locate a crucial struc-
ture (I.) where the incoming reactant and the leaving solvent
molecule occupy the equatorial position of the trigonal
bipyramid formed by the five ligands of the Cu(IIl) ion. We
decided to characterise this step by the free energy level of the
intermediate: 17.6 kcal/mol. There are two reasons behind this
choice: 1) the preceding and subsequent barriers were computed
to be very close in energy to that of this structure; ii) one of the
participants of this step is the solvent EtOAc molecule, i.e., the
solvent plays a two-fold role: it is a reactant and a solvating

agent; as it is known, such situations are difficult to describe by

®
PN + Culy —= Ar—Cu(ll) + Mesl
Ar Mes
1 2 3
reaction of Ar—Cu(lll) and alkyne
Ar—-Cu(ll) + R—— N
3 FG
4
suggested intermediates l
Ar--Cu(lll)
i Ar Cu(n) . Ar
R—==— N V= CFG N
5 FG R /R FG
alkynyl complex alkenyl complex vinyl cation

|

ring closure Ar FG
formation of carbo- and >_<
heterocycles R

selective aryl
incorporation

FG: Lewis basic or nucleophilic functional group
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Scheme 1: Possible intermediates of the interaction of alkynyl compounds with Ar—Cu(lll) species.
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step 1: formation of Ph—Cu(lll) species
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Scheme 2: Two possible reaction routes for the oxazoline formation explored by computations. The schemes indicate the possible stereochemical
outcomes. For the definition of the labels of intermediates and transition states see Scheme 3.

implicit solvent models [45]. The intermediate formed in this
step (Iy) is stabilised at 5.7 kcal/mol.

From this intermediate, the two reaction paths diverge. On path
A (blue in Scheme 2 and Scheme 3) the ring formation takes
place with an activation free barrier of 22.6 kcal/mol (TS;").
Along this path this is the rate determining step. The calcula-
tions revealed that once the ring is formed, the aryl transfer
spontaneously occurs and a significant amount of free energy is
released (more than 70 kcal/mol) by the formation of the adduct
of the protonated product and the catalyst (free energy level of

—50.5 kcal/mol, not shown in Scheme 3).

In contrast the route starting with the aryl transfer from Cu(III)
to the activated reactant features a two-step mechanism (red in
Scheme 2 and Scheme 3): the aryl-transfer leads to the forma-
tion of a quite stable intermediate I,® with a ca. —20 kcal/mol
exergonicity with respect to the first intermediate (I;). We can
also notice that this step requires a smaller, 18.9 kcal/mol acti-
vation free energy (TS,) as compared to TS,A. The aryl
transfer is followed by the O—C bond formation which results in

the oxazoline ring. This step requires a moderate 6.5 kcal/mol
activation energy (TS,.B) which indicates that this step is very
fast under the reaction conditions. After the ring is formed the
system is stabilised by releasing a large amount free energy to
arrive at the same state as postulated for path A.

Comparison of the two free energy profiles indicates that the
preferred route is the one where the aryl transfer precedes the
oxazoline ring formation. On the other hand, the calculated acti-
vation free energy barriers are compatible for both routes with
the experimental conditions and indicate that both mechanisms
can operate at the relatively low, 50 °C temperature.

As the reaction profiles indicate the final state is highly stable.
Further stabilisation is expected when the product is formed by
deprotonation (presumably at the work-up stage). However, de-
protonation may occur earlier if this is thermodynamically
favourable in the presence of a suitable base. In the reaction
mixture such potential bases are the triflate anion and the reac-
tant. As they are very weak bases we can expect that deproton-

ation does not take place before the final product formation.
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Scheme 3: Free energy profiles for the possible reaction routes. The final energy state (-50.5 kcal/mol) is not shown. Red profile: first the aryl transfer
occurs followed by the oxazoline ring closure; blue profile: ring closing takes place first followed by spontaneous aryl transfer. The dashed lines are
only guides to the eyes. Colour code for the structures: green: C; red: O; light green: CI; blue: N; yellow: S; violet: F; bronze: Cu.

Indeed, the calculations show that none of the reactants and
intermediates is strong enough acids to deprotonate:
+55 kcal/mol, +18 kcal/mol and +25 kcal/mol of free energy are
required to deprotonate the reactant and intermediates I; and
I,B, respectively.

As Scheme 2 indicates the products oxazoline can be cis- or
trans-isomers regarding the relative positions of the oxazoline
oxygen and the incoming aryl group at the double bond. Forma-
tion of a vinyl cation would imply a non-stereospecific oxa-
zoline formation. The calculations, however, revealed that its
formation requires ca. 3 kcal/mol more free energy investment
than the barrier toward the intramolecular ring closure (TS,cB).
Therefore, we can exclude that the reaction path goes through a
vinyl cation intermediate. In contrast, the mechanism obtained
from the calculations shows that the catalyst steadily interacts
with the substrate via Cu—C bonds along the full path. Further
inspection reveals a crucial interaction between the carbonyl
oxygen and the catalyst Cu ion (see, e.g., I;B in Scheme 3
where the Cu-O bond length is 1.87 A). In fact, this coopera-

tion drives selectively the reaction toward the formation of the

cis-isomer, which is consistent with the experimental results.

Although the above 3 kcal/mol energy difference is large
enough to guide the reaction toward the intermolecular ring
closure, it is important to note that this also indicates an oppor-
tunity to influence the reaction mechanism: stabilisation of the
vinyl cation [17,42] may induce a deviation toward a path with
less efficient stereocontrol.

To obtain further insight into the mechanism we have calcu-
lated these paths for a large number of reactions where the R!,
R? and R3 substituents of the reactants are varied (see reaction
scheme in Table 1). A selection of these routes is summarised in
Table 1 whereas the data of the full set of reactions are given in
Supporting Information File 1. The reactions collected in
Table 1 represent the scope of the methodology [44]. Inspec-
tion of Table 1 shows that the aryl transfer route is always
preferred to the one where the oxazoline ring formation occurs

first (the barriers of the ring closure are consistently higher than
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Table 1: Effect of the substituents on the barrier heights (kcal/mol). Selection of the substituents is based on [44].

(0]
= NRe NN
s =
R P =

CuCl
EtOAc

barrier of (kcal/mol)

R? R2 R3 complex formation aryl transfer first ring closure first
Ph t-Bu Ph 16.9 17.6 19.8
o-Me-Ph t-Bu Ph 19.4 18.8 21.3
p-Me-Ph t-Bu Ph 15.4 17.5 20.9
p-OMe-Ph t-Bu Ph 15.8 17.7 20.3
p-COOEt-Ph t-Bu Ph 18.5 18.8 21.7
p-Ac-Ph t-Bu Ph 18.6 18.9 20.3
p-Cl-Ph t-Bu Ph 16.6 17.8 19.1
m-Br-Ph t-Bu Ph 17.0 18.7 20.3
Ph Ph Ph 16.5 18.5 21.9
Ph p-MeO-Ph Ph 12.3 11.8 16.1
Ph p-NO,-Ph Ph 17.0 19.5 23.9
Ph t-Bu m-Br-Ph 18.8 171 19.4
Ph t-Bu p-Ac-Ph 18.1 17.6 18.8
2-thiophene t-Bu Ph 16.9 18.5 18.5
Ph Et Ph 18.0 18.6 21.0
Et t-Bu Ph 17.9 17.2 19.5

those of the aryl transfers). It is also interesting to note that in
some cases the initial complex formation is the rate deter-
mining step along the aryl-transfer path although in most cases

the differences in the two barrier heights are very small.

The full set of reactions also shows that the aryl transfer as the
first step after the complex formation with the catalyst is
preferred over the route where the ring closure precedes the aryl
transfer. Only three cases from the calculated ca. fifty reactions
show a reverse trend. We could not identify a common motif
behind this discrepancy; instead we attribute these exceptions to
the limitations of the methodology.

Conclusion

In summary, we have shown with the selected model reaction
that the above copper-catalysed carboarylation-ring closure
reaction of alkynyl substrates with diaryliodonium salts can be
depicted as follows: first the Cu(Ill)-aryl electrophile forms an
intermediate with the triple bond of the reactant, then the aryl
moiety migrates to the activated triple bond which is followed
by a fast ring-closing step. The calculations provided several
new chemical insights: deprotonation can take place only after

the tandem arylation—cyclisation sequence; the mechanism

shows a very limited sensitivity in a wide range of substituents
installed on the reactants; a crucial copper—oxygen interaction is
responsible for the very high stereoselectivity of the reaction
and it also excludes the formation of vinyl-cation intermediates.
The obtained results could serve as a useful and more general
description of the mechanism of the carboarylation—-ring closure
strategy based on the utilisation of alkynes and diaryliodonium
salts, beyond the selected and studied oxazoline synthesis.

Experimental

The calculations have been performed using the Gaussian 09
program package [46]. The M06 exchange—correlation func-
tionals have been employed to solve the Kohn—Sham equations
[47]. For the geometry optimisations, transition state searches
and vibrational calculations the 6 31G* basis set was used. All
the stationary structures obtained by the optimisation proce-
dures were further recalculated using the 6 311++G(3df,3pd)
basis set and the SMD implicit solvent model [48] employing
ethyl acetate as solvent. The equilibrium structures of the reac-
tant, product and intermediate states had only positive frequen-
cies. The transition states have been verified having a single
imaginary frequency and connecting the corresponding interme-

diate structures. The discussions are based on Gibbs free ener-
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gies obtained within the ideal-gas model using the rigid-rotor
harmonic-oscillator model for 323.15 K (experimental condi-
tion). The present methodology and its close variants have been
successfully applied to explore the mechanisms of Cu-cata-
lysed organic reactions [49-51].

Supporting Information

Supporting Information File 1

Full version of Table 1, total energies and Cartesian
coordinates of all stationary points.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-148-S1.pdf]
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