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ABSTRACT:
Cells mount a transcriptional anti-oxidative stress (AOS) response program 

to scavenge reactive oxygen species (ROS) that arise from chemical, physical, 
and metabolic challenges. This protective program has been shown to reduce 
carcinogenesis triggered by chemical and physical insults. However, it is also 
hijacked by established cancers to thrive and proliferate within the hostile tumor 
microenvironment and to gain resistance against chemo- and radiotherapies. 
Therefore, targeting the AOS response proteins that are exploited by cancer cells 
is an attractive therapeutic strategy. In order to identify the AOS genes that are 
suspected to support cancer progression and resistance, we analyzed the expression 
patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors 
and 353 normal tissues. Thereby we identified a signature of 116 genes that are 
highly overexpressed in multiple cancers while being only minimally expressed in 
normal tissues. To establish which of these genes are more likely to functionally drive 
cancer resistance and progression, we further identified those whose overexpression 
correlates with negative patient outcome in breast and lung carcinoma. Gene-set 
enrichment, gene ontology, network, and pathway analyses revealed that members 
of the thioredoxin and glutathione pathways are prominent components of this 
oncogenic signature and that activation of these pathways is common feature of many 
cancer entities. Interestingly, a large fraction of these AOS genes are downstream 
targets of the transcription factors NRF2, NF-kappaB, and FOXM1, and rely on NADPH 
for their enzymatic activities highlighting promising drug targets. We discuss these 
findings and propose therapeutic strategies that may be applied to overcome cancer 
resistance.

INTRODUCTION

The stressful biological conditions that exist within 
the tumor microenvironment exert strong adaptive 
pressure on cancer cells which in turn exploit endogenous 
pathways to reprogram their transcriptome, proteome, and 

metabolism to survive and thrive under these conditions 
[1-6]. Therefore, proteins that facilitate these adaptation 
processes are attractive drug targets as they are expected 
to be active only in tumor tissues, which are exposed to 
stress, but not in non-stressed normal tissues [2, 7, 8]. 
Oxidative stress is commonly associated with cancer and 
cancer cells have been shown to promote expression of 
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ROS scavenging pathways in order to survive, proliferate, 
and resist radio- and chemotherapy [9-11]. While 
these basic biological principles have been extensively 
demonstrated and reviewed elsewhere [12], especially 
in the context of the transcription factor nuclear factor 
(erythroid-derived 2)-like 2 (NRF2 or NFE2L2) [13-
15], it is still not clear which groups of AOS genes are 
overexpressed in multiple cancers compared with normal 
tissues. Similarly, it is as yet not defined which groups 
of AOS genes predict for bad prognosis and in different 
cancer entities.

Here, we systematically evaluated the mRNA 
expression patterns of all genes (n=285) annotated by 
GO(Gene Ontology) as being involved in ‘oxidative stress’ 
(including AOS genes) in publicly available microarray 
data sets and identified a sub-group of genes that is highly 
overexpressed in multiple cancers compared to normal 
tissues. Subsequently, by using multiple unsupervised 
analyses, we found that the glutathione and thioredoxin 

pathways are significantly enriched among these genes. 
Interestingly, high expression of a significant number 
of these genes is negatively correlated with survival in 
breast and lung carcinoma, suggesting that they might 
play a protective role in cancer cells as opposed to merely 
reflecting a transcriptional response to oxidative stress. 
We discuss these genes, the regulators of their expression, 
their specific role in cancer, and possible therapeutic 
strategies that can hit these targets. 

Identification of oxidative stress response genes 
highly expressed in multiple cancers: enrichment 
in glutathione and thioredoxin pathways-related 
genes 

We wondered whether specific oxidative stress 
response genes are highly overexpressed in cancer 
as compared to normal tissues. Because we are 
primarily interested in how cancer cells adapt to their 
microenvironment found within solid tumors we focused 
our analysis on carcinomas as they constitute the 
most frequent type of solid tumors. Using hierarchical 
clustering, we observed that the 285 genes cluster into 6 
clusters (hereafter referred to as “groups”) (Figure 1; Table 
S1). Groups 2-5 were found to be cancer type specific 
(Figure 1; Table S1). While these may be interesting 
in the context of the corresponding cancers entity, they 
may also reflect genes highly expressed in the tissue of 
origin, and therefore will require further in-depth analysis. 
More interestingly, we identified a group of genes that is 
highly overexpressed in multiple cancers compared to 
normal tissues (group 6), as well as a group that is highly 
overexpressed in normal tissues compared to cancers 
(group 1).

Figure 1: Gene expression patterns of 285 oxidative 
stress  genes in 353 normal tissues and various 
carcinomas (total n=994, 10 different entities). Gene 
expression data were retrieved from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/gds) of published 
microarray studies (all Affymetrix HG-U133plus2.0). Normal 
tissue n=353 (GSE3526) [133]. Carcinomas: bladder n=102 
(GSE31684, GSE7476), breast n=107 (GSE36774), colorectal 
n=177 (GSE17536), gastric cancer (ga) n=43 (GSE22377), 
liver (hepatocellular carcinoma) n=91 (GSE9843), kidney (ki) 
n=52 (GSE11151), melanoma (melan) n=101 (GSE10282, 
GSE15605), lung (non-small-cell lung cancer, NSCLC) n=196 
(GSE37745), pancreas (pan) n=52 (GSE17891, GSE32676), 
ovary (ov) n=73 (GSE14001, GSE18520). All microarray 
data were normalized simultaneously by RMA [134] using 
custom brainarray (v15.0) ENTREZG CDF-files as previously 
described [132, 135, 136]. Hierarchical clustering of genes 
(1-Pearson correlation) and k-means clustering (2 signatures, 
10,000 iterations) of microarray samples were performed with 
GENE-E software (http://www.broadinstitute.org/cancer/
software/GENE-E/index.html). Gene expression data were log2 
transformed for depiction in a heat-map.
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Breast cancer ENTREZ ID
Gene (probe ID) P-value

Bad prognosis BTG3 10950 (360504) 0.00357
CASP3 836 (540397) 0.0000453
CDC2 983 (5360092) 0.0000105
ECT2 1894 (5420064) 0.00012
EGLN1 54583 (6130168) 0.00586
FOXM1 2305 (5390044) 2.51E-08
G6PD* 2539 (5700072) 0.00748
GAPDH 2597 (1940184) 0.00321
HMOX1* 3162 (6180100) 0.000294
LONP1 9361 (870538) 0.0031
NUDT1 4521 (6180369) 0.0016
PRDX4* 10549 (940131) 0.00276
PSMB5 5693 (3610041) 0.00337
SELS 55829 (7100450) 0.00844
SERPINE1 5054 (6840139) 0.00167
SRXN1* 140809 (3190176) 0.00336
TXNRD1* 7296 (6220603) 0.00000169

Good prognosis PON2 5445 (7040022) 0.00457
SIRT1 23411 (6940021) 0.00918

Lung cancer NCBI ID
NCBI ID (probe ID) P-value

Bad prognosis COL1A1 1277 (926) 0.000675
GAPDH 2597 (1738) 0.00185
GCLC* 2729 (14771) 0.00354
GSS* 2937 (267) 0.00934
NQO1* 1728 (20812) 0.0045
RNF7 9616 (12099) 0.00439
STK24 8428 (10957) 0.00195
TXN* 7295 (10753) 0.00789
TXNRD1* 7296 (8394) 0.00284

Good prognosis NFKB1 4790 (3750) 0.000849

* NRF2 targets

Table 1: List of AOS response genes highly expressed in cancers which correlate with 
outcome in breast or lung cancer. The cancer AOS response signature was analyzed 
using bioprofiling.de GENE_SRV to identify cancers in which these genes have significant 
predictive power. Only genes that were found to correlate with survival are shown. Gene 
name, ENTREZ ID, microarray probeset ID and p value are provided. Kaplan-Meier 
plots for all the indicated genes are displayed in Figure S1-S3.
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GO analysis using bioprofiling.de [16] (Table S2) 
confirmed that in both groups ‘response to oxidative stress’ 
and ‘response to hydrogen peroxide’ were the top two 
categories (p<10-15) confirming, as expected, that both 
lists (groups 1 and 6) are significantly enriched in genes 
involved in oxidative stress response. While the first two 
GO categories were similar between group 1 and group 6 
the third was different. ‘Aging’ was the third identified GO 
category in the list of genes that are highly expressed in 
normal tissues (group 1) (p<10-7) while ‘cellular response 
to hydrogen peroxide’ (p<10-12) was the third category 
found in the list of genes that are highly expressed in 
cancer (group 6) (Table S2). It is interesting to note that 
the expression of AOS genes that are linked to aging is a 
feature of normal tissue in light of the discussion on the 
similarities and differences between expression of stress 
genes in cancer and aging [10, 17].

To identify possible common biological features 
of the genes represented in each of the two lists we next 
queried common protein folds of the encoded proteins. 
Using Interpro (bioprofiling.de; [16]) we found that the 
list of genes that are highly expressed in cancer (group 
6) is significantly enriched (p<10-6; Table S3) in proteins 
that contain ‘Alkyl hydroperoxide reductase subunit C/ 
Thiol specific antioxidant’ domains, ‘Thioredoxin fold’, 
and ‘Thioredoxin like fold’, whereas the genes that are 
highly expressed in normal tissues (group 1) did not result 
in specifically enriched protein fold(s). Moreover, using 
pathway and network analysis (bioprofiling.de R_Spider; 
[18]), we found the ‘Glutathione metabolism’ pathway 
among the genes highly expressed in cancers (11 genes; 

p=0.01) with a specific sub-group of 9 genes (p<0.005) 
whose products are known to interact with one another, 
such as glutamate cysteine ligase catalytic subunit (GCLC) 
and glutamate cysteine ligase modifier subunit (GCLM) 
(Figure 2A)[19]. Collectively, these analyses suggest that 
elevated glutathione synthesis and thioredoxin pathway 
activity are common features of cancer cells.

Identification of AOS response genes highly 
expressed in cancers which predict negative 
patient outcome

In order to identify possible drug targets within the 
list of genes that are up-regulated in cancer (group 6) we 
used the bioprofiling.de GENE_SRV tool that screens a 
list of genes against publicly available expression and 
patient survival data [20]. Specifically, this tool identifies 
cancer entities in which a particular gene signature is 
significantly enriched for predictors of patient outcome. 
We found significant predictive power of some genes in 
group 6 (highly expressed in cancers) in breast and lung 
cancers (p=0.035) and in chronic lymphocytic leukemia 
(CLL) (p=0.037). Since this study exclusively addresses 
AOS genes in solid tumors, we focus our discussion on the 
first two cancer entities. Kaplan-Meier plots for all genes 
that exhibited significant predictive power are summarized 
in Table 1 and Figure S1-3 (typical plots are shown in 
Figure 2B).

In lung cancer, 9 genes correlated with poor 
prognosis, including GCLC, NAD(P)H dehydrogenase 

Figure 2: Enrichment of genes coding for enzymes involved in glutathione synthesis in the cancer AOS genes signature. 
A. The depicted gene network was identified by R_SPIDER as statistically enriched in the list of genes that are highly expressed in cancers 
(group 6) (Table S1). Genes are represented by red boxes, known interactions between the corresponding proteins are displayed as blue 
lines and metabolites by green circles. B. Typical Kaplan-Meier plots are shown.
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(quinone) 1 (NQO1) and thioredoxin (TXN), and 1 with 
good outcome (Figure 2B and Figure S1). In breast 
cancer, 17 genes were associated with poor prognosis, 
such as glucose-6-phosphate dehydrogenase (G6PD), 
heme oxygenase (decycling) 1 (HMOX1) and thioredoxin 
reductase 1 (TXNRD1), and only 2 with good outcome 
(Table 1 and Figure S2-S3). The finding that the majority 
of the genes are predictors for negative patient outcome 
supports the model that the AOS response genes, which 
are up-regulated in cancer, may facilitate cancer cell 
adaptation to the tumor environment and/or resistance to 
therapy. We therefore argue that the genes identified by 
our analyses as being highly overexpressed in carcinomas 
and correlating negatively with prognosis may constitute 
attractive drug targets as well, which will be further 
discussed below.

Relevance of the glutathione and thioredoxin 
pathways as essential components of multiple 
cancers and potential drug targets

Thioredoxin pathway

The thioredoxin system is highly conserved 
throughout evolution and we observed that multiple 

members of this system are highly overexpressed in 
multiple cancers (Figure 1; group 6) and confer dismal 
prognosis in lung and breast cancers (Table 1 and Figure 
S1-S3). TXN is a small protein that reduces oxidized 
proteins and supports peroxiredoxin (PRDX)-mediated 
H2O2 clearance (Figure 3) [21]. It also positively 
regulates the activity of PTP1B, the phosphatase of the 
tyrosine kinase PDGF-beta, leading to increased PDGF-
beta signaling [20] and it negatively regulates the tumor 
suppressor PTEN [22, 23]. These functions point to an 
oncogenic role of TXN. 

In support to this notion, the expression of a number 
of TXN-related genes has been reported to predict 
negative patient outcome in multiple cancers [24]. Among 
the TXN-related genes we identified to be up-regulated 
in cancers (group 6), TXN expression was associated 
with reduced survival in various cancers, such as gastric, 
colorectal, non-small cell lung cancers and squamous 
cell carcinoma [25-27], whereas TXNRD1 expression 
was correlated with poor survival in breast cancer and 
squamous cell carcinoma [28, 29]. Furthermore, PRDX1 
level was found to predict poor patient survival in non-
small cell lung, ovarian, and breast cancers [30-32], and 
PRDX3 and PRDX4 expression were correlated with poor 
prognosis in hepatocellular carcinoma and squamous cell 

Figure 3: Glutathione and TXN systems. Genes that are highly expressed in tumors versus normal tissues are highlighted in gray 
and those associated with bad prognosis in lung or breast cancer are highlighted in yellow. The redox state of proteins and metabolites is 
depicted in color (red=reduced and blue=oxidized). Metabolites are boxed and inhibitors are circled. This scheme is adapted from [137].
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carcinoma respectively [33, 34].
Among TXN pathway inhibitors, the TXN 

inhibitor PX-12 was shown to be well-tolerated in phase 
I trials [35]. However, in a phase II trial it exhibited 
limited therapeutic benefits possibly related to its 
pharmacokinetics [36], which prompted the development 
of better TNX inhibitors. An alternative strategy to inhibit 
TXN is to block TXN reductases [37], such as TXNRD1, 
that reduce and recycle TXN (Figure 3). TXNRD1 is 
an interesting drug target as its gene was found in our 
analysis to be up-regulated in cancers compared with 
normal tissues (Figure 1A; group 6). Moreover its high 
expression correlates with worse prognosis in both lung 
and breast cancer (Table 1 and Figure S1-S2). Indeed, 
its inhibitor Auranofin [38] can induce apoptosis and 
inhibit cancer cell growth in vitro, and is currently tested 
in clinical trials for CLL (phase II). Moreover, Auranofin 
was suggested to be used for treatment of glioblastoma 
[39], breast [40], lung [41-43], and other cancers [44]. 
Interestingly, Auranofin is an example of drug repurposing 
as it is a well-tolerated FDA-approved drug being already 
used for treatment of rheumatoid arthritis [38].
Glutathione pathway

Glutathione is the most abundant antioxidant in 
the cell and is involved in resistance of cancer cells 
to oxidative stress arising from detachment, hypoxia, 
radio- and chemotherapy [45-52]. GCLC and glutathione 
synthetase (GSS), whose genes were identified by our 
analysis to be highly overexpressed in cancers (Figure 
2) and to confer bad prognosis in patients (Figure S1), 
are both essential enzymes catalyzing the synthesis of 
glutathione from glutamate, cysteine and glycine (Figure 
3). 

Previous reports have highlighted the clinical 
relevance for some of the glutathione-related genes 
we identified to be up-regulated in melanoma only 
(group 5) and in all cancers (group 6). The importance 
for glutathione S-transferase pi 1 (GSTP1) expression 
as a factor of bad prognosis and of poor response to 
chemotherapy has been reported in head and neck, gastric, 
colon, breast and ovarian cancers [53-60]. In addition, 
high GCLC and GCLM levels were associated with poor 
progression-free survival in diffuse large B-cell lymphoma 
[61], and glutathione peroxidase (GPX) activity was 
found to be specifically high in prostate and lung cancers 
compared to corresponding normal tissues [62, 63].

The glutathione pathway can be inhibited using 
specific drugs such as buthionine sulfoximine (BSO). 
The latter is a well-known inhibitor of GCLC [64] and 
has been shown to have only little adverse effects in 
humans [65, 66]. However, its efficacy as an anticancer 
drug is limited possibly due to bypass effects by other 
detoxification pathways such as the TXN pathway. In 
line with this notion, it was recently demonstrated that 

only when both the glutathione and the TXN pathways 
were inhibited simultaneously, using BSO and Auranofin, 
respectively, there was significant inhibition of head and 
neck squamous cell carcinoma growth in vitro and in vivo 
[67]. The synergistic effects were efficiently blocked by 
N-acetyl cysteine (NAC), that replenishes glutathione, 
but not by catalase suggesting that the simultaneous 
inhibition of TXN and the glutathione pathways rather 
than redcution of total anti-oxidant cellular capacity is 
responsible for the growth inhibitory effect [67]. Similarly, 
it was shown that simultaneous inhibition of TXN and 
glutathione systems resulted in synergistic killing of lung 
cancer cells [41]. This was demonstrated using Auranofin 
and the AKT inhibitor MK2206, whose efficacy depends 
on the activity of KEAP1. KEAP1 is a known inhibitor of 
the transcription factor NRF2 that promotes the expression 
GCLC and other key enzymes in the glutathione synthesis 
pathway [68-71]. These data once more underscore that 
there is a synergistic effect caused by simultaneous block 
of the TXN system and the glutathione pathway. Our 
finding that genes enriched for both pathways are highly 
overexpressed in multiple cancers further supports this 
strategy of inhibiting both pathways simultaneously to 
achieve effective targeted anti-cancer therapy. 

Transcription factors regulating the cancer AOS 
response genes and their clinical relevance

NRF2

Our first analysis is based on gene expression 
data that reflects the sum activities of regulators of 
gene expression including those of transcription factors. 
We observed that in the genes list that predict poor 
outcome, 9 are known NRF2 targets (Table 1 and Figure 
S1-S3). These include genes involved in glutathione 
and TXN pathways, G6PD that is involved in NADPH 
generation (Figure 2) and NQO1 and HMOX1 that encode 
detoxification enzymes [68, 69, 72-79]. Because NRF2 
promotes the expression of oxidative stress detoxifying 
proteins, it is not surprising that NRF2 depletion results 
in increased tumor formation in mice challenged with 
carcinogens [80-83]. However, cancer cells also exploit 
NRF2 to reduce oxidative stress and resist chemotherapy 
[84-87]. In line with these two seemingly opposing NRF2 
functions, recent data provides evidence that NRF2 
knockout mice develop more K-RAS induced tumors on 
the one hand, but these are less aggressive on the other 
hand [88]. These observations support the concept that 
cancer cells exploit NRF2 to adapt to oxidative stress and 
to resist chemotherapy. This concept gained support by 
identification of somatic mutations in NRF2 itself and in 
its inhibitor, KEAP1, that lead to increased NRF2 activity 
in tumors (reviewed [13, 84, 87, 89, 90]). It is therefore an 
attractive strategy to block NRF2 in order to reduce the 
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expression of its downstream target genes that are involved 
in both the glutathione and TXN pathways. Interestingly, 
the natural compound Brustatol was recently found to 
inhibit NRF2 in cells and to promote tumor sensitization 
to chemotherapy in vivo [91], suggesting that NRF2 is 
druggable and that using an NRF2 antagonist may be a 
feasible therapeutic strategy. 
FOXM1

Another transcription factor we found to be 
deregulated in multiple cancers is FOXM1, an oncogenic 
protein known to control proliferation, DNA damage 
repair, angiogenesis, and AOS response [92, 93]. Indeed, 
our analysis showed that FOXM1 is highly expressed 
in multiple cancers (Figure 1) and associated with bad 
prognosis in breast cancer (Table 1 and Figure S2). These 
findings further reinforce previous studies reporting highly 
abnormal expression of FOXM1 in vast number of cancers 
and its correlation with poor prognosis [92, 94-97].

FOXM1 is known to regulate the expression of 
important AOS genes including catalase, superoxide 
dismutase 2 (SOD2) and PRDX3 [97, 98] which we found 
to be highly overexpressed in multiple cancers (group 
6) (Table S1), at the exception of catalase, exclusively 
overexpressed in hepatocellular carcinoma (group 3) 
(Table S1). Like NRF2 [99], FOXM1 is induced by active 
RAS [97] and required for mutant RAS-mediated invasion, 
anchorage independent growth [100], and development of 
lung abnormalities in vivo [101].

FOXM1 can be inhibited by classic proteasome 
inhibitors [96, 102, 103], by piperlongumine that acts as a 
proteasome inhibitor [104] and promotes autophagic cell 
death [11], by a peptide derived from ARF [105] and by 
the CDK4/6 inhibitor PD0332991 [106]. Interestingly, 
PD0332991 is currently tested in clinical trials (phase II) 
in breast cancer patients emphasizing the importance of 
FOXM1 in breast cancer (for review see [95]). Because 
proteasome inhibitors are already used in the clinic to 
treat multiple myeloma [107, 108], it is possible that 
these inhibitors might prove being beneficial in breast 
cancers patients, whose tumors highly express FOXM1. 
Consistently, several ROS inducers effectively killed 
breast cancer cells when combined with proteasome 
inhibitors or siRNA-mediated knockdown of FOXM1 
[103]. 
NF-kappaB 

Our analysis revealed that among the cancer 
oxidative stress response genes identified (group 6), a 
number of them are NF-kappaB targets (Table 1). NF-
kappaB is essential for proliferation, cell adhesion, 
inflammatory response and AOS response [109, 
110], and its activity is deregulated in cancers [111]. 
Interestingly, a number of oxidative stress response genes 
are transcriptionally controlled by NF-kappaB including 
SOD1, SOD2, GPX1, GSTP1 and the NRF2 targets GCLC, 
GCLM, NQO1 and HO-1 [112, 113]. This transcriptional 

regulation forms the basis for the protective role of NF-
kappaB under oxidative stress [112]. This is especially 
relevant in the tumor context as we found that a number 
of these NF-kappaB targets are highly upregulated in 
multiple cancers (group 6, Table 1), supporting the notion 
of an elevated NF-kappaB activity in cancers as a strategy 
to manage oxidative stress conditions. 

Several targeting approaches are being developed to 
inhibit NF-kappaB activity in cancers. The current strategy 
is to block NF-kappaB to sensitize tumors to chemotherapy 
and radiotherapy, since previous reports showed that 
inhibiting NF-kappaB leads to radiosensitization in 
radioresistant cancer cells [114, 115]. This is in agreement 
with the capacity of NF-kappaB to support an antioxidant 
program of which tumor cells may take advantage to 
resist oxidative stress-inducing therapies [116]. Thus, 
few natural compounds, such as curcumin, resveratrol 
and genistein, have been shown to inhibit NF-kappaB 
and to enhance the response to chemotherapeutic agents 
(for review[117]). A specific inhibitor of NF-kappaB 
nuclear translocation, namely dehydroxy-methylepoxy-
quinomicin (DHMEQ), was shown to increase antitumor 
activities of taxane in a mouse model of thyroid cancer 
[118]. In addition, NF-kappaB activity can be blocked by 
direct inhibition of its upstream activator IKK, and the 
IKK inhibitor Bay 11-7082 leads to enhanced efficacy of 
cisplatin or paclitaxel in an ovarian tumor model [119, 
120].

The cancer oxidative stress response metabolic 
program: NADPH is a key factor

Our analysis showed that the TXN and glutathione 
pathways are up-regulated in multiple cancers at the 
transcriptional level and that high expression of a 
significant number of these genes is correlated with 
poor survival. Because both of these pathways rely on 
NADPH (Figure 3) it raises the possibility that cancer 
cells will be highly sensitive to NADPH depletion. 
Indeed, it was demonstrated that the survival of cancer 
cells requires activation of the AMPK pathway to maintain 
NADPH levels under metabolic stress, which is usually 
encountered within solid tumors [7, 121, 122]. Similarly, it 
was demonstrated that survival of cells under detachment 
conditions, a hallmark of transformation, is dependent on 
the pentose phosphate pathway that generates NADPH 
[10, 123]. Moreover, NRF2 was shown to promote cancer 
cell proliferation by increasing NADPH generation 
through transcriptional up-regulation of a number of 
enzyme-encoding genes including G6PD [74] (Figure 3). 
Another study showed that TAp73, a transcription factor 
that is a member of the p53 family [124-128], facilitates 
the growth of transformed and of cancer cells in vitro 
and in vivo by up regulating the expression of G6PD and 
therefore NADPH levels [129].
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In our analysis, G6PD was found to be up-regulated 
in cancer (Figure 1) and bad prognosis in breast cancer 
(Table 1 and Figure S3). As G6PD fuels the TXN and 
glutathione pathways with NADPH (Figure 3), we 
speculate that G6PD might represent a highly attractive 
novel drug target. It is therefore encouraging that 
compounds that inhibit G6PD in vitro were synthesized 
recently [130]. However, more work is needed in order to 
find lead G6PD inhibitors as candidate anti-cancer drugs.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

The concept that the AOS response is utilized by 
cancer cells to promote their proliferation, adaptation, 
and resistance is now widely accepted by the scientific 
community and, therefore, numerous attempts to target 
AOS response genes as a therapeutic approach have been 
reported [10, 116, 131]. However, targeting endogenous 
proteins raises the concern of adverse off-target effects. 
Thus it is required to determine which proteins play a 
critical role in cancer as compared with normal tissues, as 
these are expected to offer a sufficient therapeutic window 
for intervention. Owing to the increasing availability of 
patient-derived gene expression, mutation, epigenetic, and 
survival data, it is now possible to use bioinformatics tools 
to screen for such targets in large cohorts for individual 
cancer entities as well as across histological entities [132].

Here, we used publicly available patient-derived 
gene expression and survival data, and identified genes 
that belong to two major detoxification pathways.  
Specifically, we show that genes belonging to the 
glutathione and TXN pathways are highly overexpressed 
in multiple cancers versus normal tissues and demonstrate 
that their high expression correlates with worse patient 
survival, pointing to a possible role of these genes as 
drug targets. Moreover, transcription factors such as 
NRF2, FOXM1, and NF-kappaB as well as key metabolic 
enzymes such as G6PD that altogether drive the activity of 
these pathways, were identified in our analysis providing 
further support to the argument that these are important 
drug targets. Because the TXN and glutathione pathways 
are hyperactive in multiple cancers, we hypothesize that 
simultaneous inhibition of both pathways via targeting 
common regulators such as NRF2 or common metabolic 
requirements such as NADPH, may be highly efficient and 
should be prioritized in drug development. 
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