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Abstract. Frontotemporal dementia (FTD) is a heterogeneous clinical, genetic, and neuropathological disorder. Clinical
diagnosis and prediction of neuropathological substrates are hampered by heterogeneous pictures. Diagnostic markers are
key in clinical trials to differentiate FTD from other neurodegenerative dementias. In the same view, identifying the neu-
ropathological hallmarks of the disease is key in light of future disease-modifying treatments. The aim of the present review
is to unravel the progress in biomarker discovery, discussing the potential applications of available biological, imaging, and
neurophysiological markers.
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INTRODUCTION

Frontotemporal dementia (FTD) is a genetically
and pathologically heterogeneous clinical syndrome
characterized by progressive deficits in behavior,
executive functions, and language, associated with
frontal and temporal lobe degeneration [1–4]. FTD
is the second most common cause of dementia in the
presenile age group (<65 years of age), and accounts
for 5–15% of all cases of dementia, with a preva-
lence of 3–26 per 100,000 subjects in the age group
of 45–65 years [5, 6].
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Current redefined clinical criteria identify distinct
phenotypes on the basis of presenting clinical symp-
toms; these include the behavioral variant of FTD,
the agrammatic variant of primary progressive apha-
sia and the semantic variant of primary progressive
aphasia [7–9]. In addition, some patients have an
associated parkinsonism, as in progressive supranu-
clear palsy (PSP) and corticobasal syndrome, or
motor neuron disease (FTD-MND) [10–12].

Clinical FTD is associated with different types of
underlying neuropathology, and the term frontotem-
poral lobar degeneration (FTLD), characterized by
the relative selective degeneration of the frontal and
temporal lobes, is used to describe the pathologi-
cal hallmarks of the disease. Abnormal intracellular
inclusions containing Tau, TDP-43, or FUS protein
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have been identified in the majority of cases; how-
ever, the correlation between clinical syndrome
and underlying neuropathology remains still largely
unsatisfactory. Except for nearly 30% of familial
cases, accounted predominantly by the microtubule-
associated protein tau (MAPT), granulin (GRN), and
the hexanucleotide repeat expansion of the chromo-
some 9 open-reading-frame 72 (C9orf 72), it is still
challenging to predict the underlying pathological
process in vivo [13]. Furthermore, because of the
possible overlap of FTD with psychiatric disorders
or other neurodegenerative diseases, such as early
onset Alzheimer’s disease or atypical parkinsonisms,
diagnosis is often challenging [14, 15].

Taking into account these drawbacks, in recent
years numerous studies have made significant
progress in understanding the pathophysiology and
the progression of FTD from a multidimensional
approach. Indeed, biological, imaging, and neuro-
physiological markers have shed light on the very first
alterations in the presymptomatic phases of disease
[16–21], or to predict disease prognosis [22–24].

With the development of candidate therapies for
FTD likely to occur in the coming years, it is
of great importance to develop and validate reli-
able diagnostic and prognostic biomarkers, with
numerous implications regarding stratification for
disease-modifying clinical trials and for monitoring
disease progression.

The objective of the present work is to review and
evaluate available literature data in order to high-
light recent advances in biological, imaging, and
neurophysiological, markers for the diagnosis and
prognosis of FTD.

BIOLOGICAL MARKERS: LOOKING AT
PROTEIN-OPATHIES

Looking at biomarkers able to differentiate FTD
from other neurodegenerative dementias is one of the
hot issues in the current literature, concerning spe-
cific therapeutic strategies targeting either TDP-43 or
tau accumulations. If neuropathology is clearly pre-
dictable in monogenic FTD, in the other cases there
is no correspondence between clinical features and
neuropathological findings [25, 26].

One of the most comprehensively validated series
of biomarkers, which reflect the pathological hall-
marks of Alzheimer’ disease (AD), comprises
cerebrospinal fluid (CSF) total-Tau (tTau), phosho-
Tau181 (pTau), and amyloid-�1-42 (A�1-42). An

increase in CSF tTau and pTau, and a decrease in
A�1-42 (and thus an increased tTau or pTau/A�1-42
ratio), have been shown to identify AD pathology
with extremely high accuracy [27], excluding AD
in the diagnostic work-up of FTD. These findings
have been confirmed both in clinical and patholog-
ical cohorts [28–30] and may be particularly useful
for excluding focal variants of AD, which may be
clinically indistinguishable from FTLD [31–34].

A number of studies have focused on either CSF
Tau or TDP-43 metabolism to identify diagnostic
markers in FTD patients. Indeed, CSF tTau, pTau,
or TDP-43 dosages did not yield convincing results
in predicting neuropathological hallmarks [35, 36].

A more recent study by Hu and colleagues has
identified in the CSF pTau/tTau ratio a viable
biomarker to identify FTLD with TDP-43 pathol-
ogy as compared to FTLD-Tau [19]. In this view,
pTau/tTau ratio has been proposed as useful in detect-
ing patients with amyotrophic lateral sclerosis, which
is associated with TDP neuropathology [20].

Later, this result was further corroborated in
patients with known Tau or TDP-43 pathology, with
high accuracy values in identifying TDP-43 cases [20,
21] (Fig. 1) and with prognostic significance [37].

The pathological mechanism leading to reduced
CSF pTau/tTau ratio in TDP-43 cases is currently
unknown but could possibly be explained by a more
extensive neuronal damage leading to increased tTau
levels, due to the concomitant inclusions of patients
with FTD-MND [19, 21, 37]. This hypothesis could
also be supported by the association between a
reduced pTau/tTau ratio and survival in patients with
FTD [37].

Another approach to identify TDP-43 pathology
was to directly measure levels of phosphorylated
TDP-43 (pTDP-43) aggregates in blood or CSF.
Significantly increased levels of CSF and plasma
pTDP-43 have been found in small cohorts of patients
with C9orf72 or GRN mutations [38]. However, in
a pathology-proven cohort, pTDP-43 levels did not
differ between FTLD-tau or FTLD-TDP [31]. The
quantification of CSF pTDP-43 still needs further
refinement to overcome technical issues, as the rel-
atively low concentrations of pTDP-43 in CSF with
possibly different isoforms, and the presence of var-
ious antibodies that recognize different epitopes and
thus vary in diagnostic accuracy [31, 32].

Intriguing results have been obtained by qualitative
analysis of CSF Tau protein instead of quantitative
evaluation. If CSF total Tau or CSF phospho-
Tau181 dosages were not able to identify different
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Fig. 1. Levels of CSF phospho Tau/total Tau (p/t) ratio in
FTLD-TDP and FTLD-Tau, compared to healthy controls (HC).
Horizontal thick lines illustrate median cerebrospinal fluid (CSF)
values, notches correspond to interquartile range, error bars depict
25th to 75th percentile range of data. HC: age-matched healthy
controls; FTLD-TPD: including patients carrying a GRN muta-
tion, TARDBP mutations, C9orf72 mutations and patients with
FTD-motor neuron disease; FTLD-Tau: including clinically diag-
nosed progressive supranuclear palsy (PSP) and patients carrying
a MAPT mutation.

neuropathological signatures, the assessment of post-
translational modifications of Tau protein in CSF
yielded more convincing findings.

Post-translational modifications of Tau protein
have been demonstrated to be crucial in FTLD-Tau
pathogenesis [39]. However, while the phospho-
rylation mechanism has been studied extensively,
proteolytic processing has received less attention. Lit-
erature data reported that different Tau fragments,
produced by endogenous proteases, may modulate
Tau aggregation itself [40, 41]. Accordingly, the
measure of CSF Tau proteolytic forms has been
demonstrated to be specifically altered in patients
with Tau pathology, namely in PSP cases. CSF Tau
isoforms ratio in PSP was 50% lower than in patients
with either neurodegenerative parkinsonism [42, 43]
or other Tau-related dementias such as Alzheimer’s
disease [44].

Accordingly, a previous autopsy study demon-
strated that Tau-related pathologies undergo a
different Tau proteolytic processing, generating

distinguishable deposits of cleaved Tau fragments
in PSP brains [45], and explaining biological dif-
ferences among Tauopathies in CSF. More recently,
neurofilament light chain (NfL) has been proposed as
diagnostic and prognostic marker in FTD [46]. Neu-
rofilaments are the major components of the neural
and axonal cytoskeleton and perform a fundamental
role in axonal transport and in synapse functioning,
and NfL is one of the most abundant subunits which
increases after neuronal death and axonal degenera-
tion [41].

NfL blood and CSF levels have been shown to
be considerably increased in FTD patients compared
to healthy controls, being significantly associated
with disease severity and survival, and correlating
with decreased gray and white matter volume in
FTD-associated regions in the frontal and temporal
lobes [37, 46–49]. No difference in NfL levels were
observed between the different FTD endopheno-
types, whereas markedly increased levels have been
observed in FTD-MND [37, 46–49]. In presymp-
tomatic carriers, CSF and blood NfL levels have been
shown to be within normal range, with a distinct
increase after conversion to the symptomatic stage
[46]. Whereas some studies showed elevated levels
in FTD compared to AD [49], others did not reveal
group differences [48]. Furthermore, NfL levels have
been shown to be increased in patients with multi-
ple system atrophy, PSP, corticobasal syndrome, and
vascular dementia [47, 50, 51].

As other CSF biomarkers reported above, also NfL
levels could possibly discriminate between FTLD-
TDP and FTLD-Tau, resulting increased in patients
with TDP-43 pathology [37, 49]. However, this dif-
ference could be accounted for the co-occurrence of
FTD-MND in the TDP-43 cohort.

NfL could become a promising, non-invasive
biomarker for disease staging, and the strong corre-
lation between CSF and plasma levels [46] makes it
even more appealing for monitoring disease progres-
sion and treatment response.

NEUROIMAGING MARKERS: LOOKING
AT CONNECT-OPATHIES

In the last three decades, neuroimaging techniques
have shown a tremendous development, and have
been suggested as powerful tools to elucidate disease
mechanisms, track disease progression and explore
neuroanatomical correlates of clinical and genetic
characteristics [52]. Considering FTD, magnetic
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resonance imaging (MRI) has been widely used for
in vivo visualization of brain atrophy in the differ-
ent clinical phenotypes of FTD, clearly reporting
abnormalities in frontal and temporal grey matter
regions and related white matter bundles [53–55]. As
biomarkers of the underlying neurodegenerative pro-
cess, these structural perturbations have been used to
study the pattern of damage in the sporadic and mono-
genic forms of FTD [56–58] also tracking disease
severity and progression [59–62]. The visual assess-
ment of grey matter atrophy on MRI scans through
a series of visual rating scales has been described as
a fast, clinical reliable and inexpensive approach to
increase diagnostic accuracy in the everyday practice
[63, 64]. Interestingly, structural damage (in partic-
ular grey matter atrophy) has been considered as an
effective biomarker for FTD not only when the dis-
ease is overt [65], but also in the presymptomatic
stage, years before clinical onset [18, 66]. More
recently, several neuroimaging approaches for the
study of functional connectivity have been applied
to FTD, studying coherent patterns of activation
among brain regions, in particular at rest [67]. Spon-
taneous blood-oxygenation level dependent (BOLD)
fluctuations, in the context of functional brain net-
works, have been adopted as sensible and specific
biomarkers reflecting connectivity changes early in
the disease course, even before structural alterations
are detectable with conventional MRI at single-
subject level [16, 68–70]. In contrast with AD, which
shows a peculiar involvement of the default mode
network, FTD is characterized by a predominant
breakdown of anterior functional networks, in par-
ticular the salience network [71]. Altogether, FTD
functional connectivity approaches have shown a pro-
gressive functional network disruption [72–74], both
at the regional level [69] as well as the whole-brain
level [75, 76] using graph-theory measures. In line
with these findings, in presymptomatic FTD func-
tional connectivity perturbations (primarily involving
salience, frontoparietal, and executive networks)
were detectable years before the clinical onset, open-
ing the road for the utilization of these indexes as
preclinical biomarkers [16, 68–70]. However, the def-
inition of which markers, i.e., either structural or
functional, and which approach are best to track the
disease and to assess the response to disease mod-
ifying therapies remain challenging. Just recently,
Premi et al. adopted a machine-learning approach
with multivariate analysis (multi-voxel pattern anal-
ysis, MVPA) to different structural and functional
MRI metrics in order to study Granulin-related

disease, from presymptomatic carriers to symp-
tomatic patients with the same mutation GRN
mutation) (Fig. 2) [77]. Working as a classifier,
MVPA was able to maximize, for each considered
MRI measure, the separation between GRN carriers
and controls, in both preclinical and clinical phases of
disease. Interestingly, structural measures of grey and
white matter atrophy represented the best neuroimag-
ing biomarkers in the symptomatic stage, followed by
functional connectivity indexes, in particular regional
index like fractional amplitude of low frequency
fluctuation (fALFF). On the contrary, in the presymp-
tomatic phase, functional connectivity measures
(regional indexes like fALFF and degree centrality)
showed the best diagnostic accuracy for still asymp-
tomatic GRN mutation carriers, probably capturing
the initial disruption of local signal integration [78,
79]. Altogether, considering a global accuracy >80%
for either preclinical and clinical phases, fALFF
could be considered the best MRI biomarker in the
GRN disease continuum [77]. From this point of
view, different MRI biomarkers could be defined and
applied in the FTD spectrum, in particular with regard
to disease-modifying treatments. However, consider-
ing future international multicenter clinical trials, a
potential MRI biomarker (like fALFF, network and
graph-theory indexes) should also prove to be reli-
able and reproducible, regardless of differences in
MRI protocols and acquisition parameters [76].

Besides MRI, also molecular imaging, like
positron emission tomography (PET), has been
applied in FTD. The evaluation of metabolic brain
alterations by fludeoxyglucose (18F) tracer provided
additional clues into the study of FTD, demonstrating
a substantial concordance between cortical atrophy
and reduced metabolism [80, 81], with different pat-
terns of damage considering the different clinical
phenotypes [82, 83]. Moreover, the visual evalua-
tion of FDG-PET images provided greater diagnostic
accuracy in differentiating FTD from other demen-
tias [84]; more recently, this single-subject approach
has been standardized using an optimized statisti-
cal parametric mapping (SPM) [85]. However, the
most attractive aspect of molecular imaging relies on
the availability of PET radiotracers to identify dif-
ferent proteinopathies in FTD [86]. In the last years,
specific tracers for Tau pathology have been devel-
oped [86, 87]. At the moment, different Tau tracers
are commercially available, i.e., [18F]AV-1451 [88]
and [11C]PBB3 [89], with different affinity for neu-
rofibrillary tangles and for Tau isoforms (3R and
4R) [86]. Considering FTD, PET Tau imaging has
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Fig. 2. Bar chart showing the classification results (discrimina-
tive power) of the different structural and functional measures.
The black dotted line represents the significant (>55% of right
classification) performance for each measure. Blue is for FTD-
GRN+ versus oHC and red is for aGRN+ versus yHC. FTD-GRN+,
frontotemporal dementia carrying Granulin mutation; aGRN+,
asymptomatic carriers of Granulin mutation; oHC, old healthy
controls; yHC, young healthy controls; GM, grey matter; WM,
white matter; VBM, voxel based morphometry; fALFF, fractional
amplitude of low frequency fluctuations; DC, degree centrality.

been recently applied in FTD patients with MAPT
mutations (and thus with a known Tau pathology),
demonstrating an increased Tau binding in tempo-
ral poles and frontal lobes [90, 91]. Interestingly,
PET amyloid tracers (like 11C-Pittsburgh compound
B or Florbetapir) can aid in the differential diagnosis
between FTD and AD, ruling out A� pathology [92].

NEUROPHYSIOLOGICAL MARKERS:
LOOKING AT NEUROTRANSMITTER-
OPATHIES

Several neurophysiological techniques have been
implemented for the study of FTD and the historical
initial reports on the use of electroencephalogra-
phy (EEG) did not identify significant changes in
patients with FTD, as opposed to patients with AD
[93–95]. Subsequent reports using quantitative EEG
(qEEG), showed that the typical qEEG pattern for
FTD patients was characterized by a decrease in all
of the fast activities (�, �1-�3) relative to healthy

controls, but did not differ in slow activities (δ and
θ rhythms), possibly reflecting the degeneration of
frontal regions in FTD patients [96–98]. Compared
to AD patients, FTD showed a diffuse higher θ power
and a decreased �2 and �1 values in central/temporal
regions [99, 100].

Moreover, EEG microstates, which are subsecond
(60–120 ms) periods of stable brain state that repeat
across time and individuals [101], have been shown
to differ significantly in FTD patients compared to
AD, schizophrenia, and healthy controls [102].

Just recently, EEG abnormalities have been
observed also in a group of genetic FTD patients.
In particular, FTD due to GRN mutations showed an
increase in high � and decrease in θ oscillations as
compared to non-carriers [103].

Other neurophysiological techniques, particu-
larly transcranial magnetic stimulation (TMS), have
become promising tools to assess specific corti-
cal circuits in the central nervous system. In the
context of dementia, different paired-pulse TMS
paradigms have been implemented to assess intracor-
tical inhibitory and excitatory interneuronal activity,
namely short interval intracortical inhibition and
facilitation (SICI-ICF), dependent on GABAA and
glutamatergic transmission [104, 105], long-interval
intracortical inhibition, dependent on GABAB trans-
mission [106], and short-latency afferent inhibition
(SAI), dependent on central cholinergic activity
[107]. Furthermore, specific paradigms of paired
associative stimulation [108] or repetitive TMS [109,
110] have shown to increase or decrease the excitabil-
ity of corticospinal projections of the primary motor
cortex (M1), representing a form of long-term poten-
tiation or depression and thus a method of assessing
synaptic plasticity.

Neurophysiological studies in FTD have shown
central motor circuit abnormalities, even in cases
without clinical evidence of motor involvement [10,
111–114]. No significant alterations in motor thresh-
old [10, 112–116], SICI-ICF [112, 114], and SAI
[111] have been observed in FTD [117, 118]. How-
ever, these studies have been hindered by the small
number and by the selection of patients, which has
been made exclusively on a clinical basis and not
taking into account the significance of CSF proteins
(A�42, tTau, and pTau) to exclude possible focal vari-
ants of AD, or the genetic contribution of known
pathogenic mutations.

In this view, Burrell et al. have observed in a large
cohort of 40 FTD patients, a significant decrease in
SICI and a trend toward a reduced ICF, compared to
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Fig. 3. Intracortical connectivity and LTP-like plasticity profiles
in presymptomatic GRN carriers, in symptomatic FTD and AD
patients, compared to healthy controls. Pre-FTD, presymptomatic
granulin (GRN) carriers; FTD, frontotemporal dementia patients;
AD, Alzheimer’s disease patients; GABAa, GABAAergic activ-
ity evaluated with average short interval intracortical inhibition
(1, 2, 3 ms); Glutamate, glutamatergic activity evaluated with aver-
age intracortical facilitation (7, 10, 15 ms); GABAB, GABABergic
activity evaluated with average long interval intracortical inhibi-
tion (50, 100, 150 ms); Ach, cholinergic activity evaluated with
average short latency afferent inhibition (+0, +4 ms); Plasticity,
LTP-like plasticity evaluated with paired associative stimulation
(mean +10, +20, +30 min). Values are expressed as percentage of
activity in healthy controls.

healthy controls [10]. These findings have been repli-
cated in an even larger study on 64 FTD patients,
in which a striking impairment of SICI-ICF was
observed compared to 79 AD patients and 32 healthy
controls. Furthermore, as expected, an impairment
of central cholinergic circuits evaluated with the
SAI paradigm, was observed only in AD patients
[119] (Fig. 3). Combining both measures of GABAer-
gic and cholinergic transmission (SICI-ICF and SAI
respectively), Benussi et al. determined the diagnos-
tic accuracy of TMS to discriminate between AD,
FTD, and healthy controls, with levels of sensitivity
and specificity >80–85%, even in patients with a high
biomarker confidence (CSF A�42 and tau determina-
tion or amyloid PET imaging) and in the early phases
of disease [119].

The impairment of intracortical inhibitory and
excitatory circuits (SICI-ICF) has been observed also
in a cohort of presymptomatic carriers and symp-
tomatic patients bearing a pathogenic GRN mutation,
with a progressive decline in GABAergic trans-
mission in the symptomatic phases of disease. In
addition, long-term potentiation-like cortical plastic-
ity, assessed by the paired associative stimulation

protocol, has been shown to be strikingly impaired in
the presymptomatic phases of disease, at more than
18 years before expected symptom onset [17] (Fig. 3).

CONCLUSIONS

The field of biomarkers in FTD has made signif-
icant progress in the past few years and numerous
studies have tried to shed light on the most signifi-
cant issues in the realm of FTD. In the first place, the
study of the earliest physiopathological modifications
in FTD has gained much drive from the observations
in presymptomatic carriers of known FTD gene muta-
tions. Secondly, biomarkers have shown to increase
the diagnostic accuracy of FTD, both between dif-
ferent diseases, as for AD, and between different
subtypes of FTD, as for FTLD-TDP and FTLD-Tau.
Thirdly, the prognostic capacity has amply improved.

Taken together, these findings have led to major
advances in the knowledge of FTD pathophysi-
ology. However, a more profound integration of
these biomarkers probably holds the key to unravel
the most cunning issues in the realm of FTD, by
investigating multiple interconnections between the
domain of protein-opathies, connect-opathies, and
neurotransmitter-opathies.

With a new emphasis on multi-modal approaches,
the next years hold promise for even greater under-
standing of the physiopathology of FTD, with crucial
implications for clinical management, diagnosis and
therapeutic trials.
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