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Abstract

Background: Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural 

dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the 

sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG 

recordings. However, this process is time-consuming and often suffers from low inter- and intra-

rater reliability and invasiveness. Therefore, an automated sleep state classification method that 

operates on WFCI data alone is needed.

New method: A hybrid, two-step method is proposed. In the first step, spatial-temporal 

WFCI data is mapped to multiplex visibility graphs (MVGs). Subsequently, a two-dimensional 
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convolutional neural network (2D CNN) is employed on the MVGs to be classified as 

wakefulness, NREM and REM.

Results: Sleep states were classified with an accuracy of 84% and Cohen’s κ of 0.67. 

The method was also effectively applied on a binary classification of wakefulness/sleep 

(accuracy=0.82, κ = 0.62) and a four-class wakefulness/sleep/anesthesia/movement classification 

(accuracy=0.74, κ = 0.66). Gradient-weighted class activation maps revealed that the CNN 

focused on short- and long-term temporal connections of MVGs in a sleep state-specific manner. 

Sleep state classification performance when using individual brain regions was highest for the 

posterior area of the cortex and when cortex-wide activity was considered.

Comparison with existing method: On a 3-hour WFCI recording, the MVG-CNN achieved a 

κ of 0.65, comparable to a κ of 0.60 corresponding to the human EEG/EMG-based scoring.

Conclusions: The hybrid MVG-CNN method accurately classifies sleep states from WFCI data 

and will enable future sleep-focused studies with WFCI.
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1. Introduction

Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators enables 

recording of regional neuronal depolarization in mice across the entire cortex on a sub-

second temporal scale with simultaneous examination of neurovascular coupling and cell 

type specificity (Ma et al., 2016a; Kozberg et al., 2016; Ma et al., 2016b; Matsui et al., 

2016). Given these capabilities, WFCI has been employed to study mouse brain physiology 

during quiet wakefulness (Ma et al., 2016b), decision-making behavior (Allen et al., 2017), 

anesthesia (Wright et al., 2017) and under disease states (Balbi et al., 2019). Recently, it 

has also been employed to characterize the dynamics of neural activity during sleep (Brier 

et al., 2019). In these studies, WFCI has revealed several novel findings including sleep 

slow-oscillations during non-rapid eye movement (NREM) linked to changes in functional 

connectivity (Brier et al., 2019), selective increases in cerebral blood volume during NREM 

(Turner et al., 2020), and highly active neuronal subpopulations (Niethard et al., 2018; 

Niethard et al., 2021). Thus, WFCI is a powerful new tool to uncover the neural correlates of 

sleep.

To effectively apply WFCI to the study of sleep, brain neural activity must be classified 

into various sleep-wake states such as wakefulness, NREM and REM. Currently, sleep state 

classification of WFCI data relies on the simultaneous recording of electroencephalogram 

(EEG) and electromyogram (EMG) signals. These signals provide information on the 

electrical activity of the brain and on muscle tone that together allow for the unambiguous 

determination of sleep-wake states (Mang et al., 2014). Unfortunately, acquisition of the 

EEG signal requires meticulous placement of electrodes near the surface of the mouse cortex 

under deep anesthesia, which is invasive, increases the risk of infection, and obscures the 

imaging field of view. Additionally, sleep scoring by EEG/EMG is time-consuming because 
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it requires trained professionals to manually inspect EEG/EMG signals and subjectively 

assign brain states, with low inter- and intra-rater reliability (Bliwise et al., 1984; Collop, 

2002; Danker-Hopfe et al., 2009; Drinnan et al., 1998; Lord et al., 1989; Loredo et al., 

1999; Norman et al., 2000; Rosenberg et al., 2013; Silber et al., 2007; Whitney et al., 

1998). As a result, it is highly desirable to eliminate the need for adjunct EEG/EMG data 

by developing a method that can classify sleep states from WFCI data alone. However, there 

are currently no established rules governing sleep state classification based on WFCI data, 

and human scoring of WFCI data is impractical due to the high number of measurements 

(up to thousands of pixels per time point). Therefore, an automated sleep state classification 

method for use with WFCI data is desired to advance sleep research with WFCI.

Sleep state scoring by human experts is based on the occurrence of discrete neuronal events 

such as K-complexes, spindles, theta rhythms and slow waves that are known to spread 

spatially and temporally across the cortex (Buzsaki, 2006; De Gennaro and Ferrara, 2003; 

Halász, 2016). As such, the establishment of a sleep state classification method that exploits 

discriminative features regarding spatiotemporal calcium dynamics obtained through WFCI 

and avoids the complexities of training deep spatial-temporal neural networks could be 

beneficial to accurate sleep state classification. One approach to describe the dynamics of 

multivariate time series is the multiplex visibility graph (MVG) introduced by Lacasa et al. 

(Lacasa et al., 2015; Lacasa et al., 2008). When applied to neural activity, a visibility graph 

focuses on visible peaks within time series and, therefore, can capture discrete neuronal 

events over time. As each layer of a visibility graph is combined across brain regions into a 

multiplex, the method effectively incorporates the spatial nature of the data. Several recent 

neuroimaging applications have employed MVGs within a feature extraction procedure to 

build feature vectors that can be used to accurately classify neurological disorders and 

brain states in modalities such as functional magnetic resonance imaging (fMRI), function 

near-infrared spectroscopy (fNIRS), and WFCI (Sannino et al., 2017; Zhu et al., 2018a; Zhu 

et al., 2018b).

Designing optimal MVG-based features for use in performing specific inferences that have 

been manually selected can be tedious and time-consuming. Fortunately, deep learning 

is capable of extracting important features from raw input data and eliminates the 

need for manual feature extraction. Deep learning methods such as convolutional neural 

networks (CNNs) and long short-term memory (LSTM) networks have been developed to 

automatically and adaptively learn hierarchical features of sleep EEG/EMG recordings to 

classify sleep states in mice (Barger et al., 2019; Cai, 2021; Svetnik et al., 2020; Yamabe 

et al., 2019). While deep learning-based methods hold promise for wide-spread application 

in sleep research, a deep learning-based sleep state classification method for use with WFCI 

data alone has not yet been implemented.

In this work, we propose a hybrid MVG-CNN method for automated sleep state 

classification from WFCI data that avoids the use of adjunct EEG/EMG data. The spatial-

temporal WFCI data are first mapped to MVGs, where each layer of MVG corresponds 

to a single brain region. Subsequently, a two-dimensional (2D) CNN is employed with 

the MVGs to classify the sleep state as wakefulness, NREM or REM. To investigate the 

temporal characteristics of MVGs that are important for sleep state classification, gradient-
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weighted class activation maps (Grad-CAM) (Selvaraju et al., 2020) were computed. Taking 

advantage of the spatial-temporal nature of WFCI, the effect of the epoch duration and the 

amount of spatial information on sleep state classification performance was evaluated. We 

find that the proposed hybrid MVG-CNN method accurately identifies sleep states by use of 

spatial-temporal information afforded by WFCI data.

2. Materials and methods

2.1. Mice

This study was approved by the Washington University School of Medicine Institutional 

Animal Care and Use Committee and performed in accordance with National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. Transgenic mice (12–

16 weeks of age) expressing GCaMP6f in excitatory neurons (driven by a Thy1 

promotor) were acquired from Jackson Laboratories (JAX strain: C57BL/6J-Tg (Thy1-

GCaMP6f)GP5.5Dkim; stock: 024276) and used for experimental studies (total n = 17, 

all males; n = 12 in Section 2.1.1, n = 5 in Section 2.1.2). Mice were housed in 12-hour 

light/dark cycles with lights on at 6:00 AM and given ad lib access to food and water.

2.1.1. Experiment 1: Wakefulness, NREM, and REM imaging—The first 

experiment recorded WFCI data with simultaneous EEG/EMG of head-fixed mice during 

wakefulness, NREM and REM. Similar to other experimental paradigms (Bojarskaite et al., 

2020; Niethard et al., 2018, 2021; Turner et al., 2020; Yüzgeç et al., 2018), mice were 

acclimated to head fixation while secured in a black felt hammock for one to three sessions 

ranging from 30 to 180 min until the EEG/EMG signals showed the presence of sleep. Once 

sleep was established in the head-fixed position, the mouse then underwent a three-hour 

undisturbed WFCI session. All recordings occurred between 9:00 AM and 1:00 PM during 

the mice’s normal sleeping hours in order to maximize the chance of recording sleep. After 

the recording, human experts scored WFCI recordings as wakefulness, NREM, or REM by 

use of adjunct EEG/EMG.

2.1.2. Experiment 2: Wakefulness, sleep and anesthesia imaging—The second 

experiment used simultaneous WFCI and EEG/EMG from a previously published study 

(Brier et al., 2019). Briefly, mice were placed in the black felt hammock with their heads 

fixed in place. The mice were left undisturbed for 30 min of simultaneous WFCI and 

EEG/EMG recordings followed by intraperitoneal injection of ketamine/xylazine anesthetic 

(86.9 mg/kg ketamine and 13.4 mg/kg xylazine) and recording for another 60 min. After 

the recordings, the mice were placed in their home cages and monitored until they resumed 

normal behavior (grooming, exploration, resting, eating). Offline, experts manually scored 

sleep states of WFCI data based off the EEG/EMG signal as either wakefulness, sleep, 

or anesthesia. With the same mice, but in a separate session a week apart, mice were 

sleep-deprived for three hours using a novel environment (Tobler and Borbély, 1990) and 

then placed in a black felt hammock with their heads fixed under the imaging system. Then 

the mice were left undisturbed and simultaneous WFCI and EEG/EMG data were recorded 

for 60 min. Offline, experts scored sleep-wake states of WFCI data based off the EEG/EMG 

signal as either wakefulness or sleep.
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2.2. Surgical techniques

Following anesthesia induction with isoflurane (3% induction, 1.5% maintenance), mice 

were head-fixed in a stereotactic frame. The head of each mouse was shaven, and a 

midline incision was made to expose the skull. EEG and EMG electrodes were implanted 

(described below) and a Plexiglass head cap was fixed with a translucent adhesive cement 

(C&B-Metabond, Parkell Inc., Edgewood, New York) to allow for repeated imaging (Wright 

et al., 2017). Mouse were allowed to recover for seven days in light-controlled conditions 

(12-hour light-dark schedule).

EEG and EMG electrode implantation was performed with different surgical techniques for 

the two experiments. For Experiment 1, copper EEG pins (Newark Electronics, catalog # 

89H8939) were placed at the surface (0.7 mm cranial burr holes) of the brain overlying the 

lateral somatosensory cortex (−0.7 mm posterior to bregma, and +4.5 mm lateral to bregma) 

and fixed with Fusio dental cement. An EEG pin placed on the surface of the cerebellum 

served as a bipolar reference. To record muscle activity, two 23-gauge stainless steel needles 

were attached to the posterior aspect of the Plexiglass headcap and inserted bilaterally into 

the neck muscles. For Experiment 2, stainless steel EEG self-tapping screws (BASI Inc., 

West Lafayette, IN, USA) were fixed at the surface (1.0 mm cranial burr holes) of the brain 

at approximately – 1 mm posterior to bregma, and + /− 4.5 mm lateral to bregma (near 

barrel/auditory cortex) and referenced to a cerebellum screw. To record muscle activity, 

a 203 micrometer Teflon coated EMG wire (A-M Systems, Sequim, Washington, catalog 

#792100) was threaded into the neck muscle and referenced to the cerebellum.

2.3. Wide field optical imaging acquisition and processing

GCaMP6f-expressing mice were placed in a black felt hammock with their heads secured 

in place with a small bracket (using the plexiglass’ pre-tapped holes). During the imaging 

session, the mouse was able to move freely while its head was secured, preventing the 

awake or sleeping mouse from applying torque on their restrained head and optical window. 

The secured mouse was then placed approximately 8 cm (working distance 14 cm) under 

an overhead EMCCD camera (iXon 897, Andor Technologies, Belfast, Northern Ireland, 

United Kingdom) and four collimated LEDs, as previously described (Wright et al., 2017; 

Brier et al., 2019). Sequential illumination was provided by four LEDs: 454 nm (blue, 

GCaMP6 excitation), 523 nm (green), 595 nm (yellow), and 640 nm (red) for hyperspectral 

oximetric imaging. The LEDs were sequentially triggered at 16.8 Hz per LED. The CCD 

framerate (67.2 Hz) and exposure times were synchronized through MATLAB via a DAQ 

device (PCI-6733, National Instruments, Austin, TX, USA). To discard GCaMP6 excitation 

light and capture emission, a 515 nm longpass filter was used. The field of view was ~1 cm2 

and covered the dorsal surface of the brain (78 μm x 78 μm pixel size).

Image processing occurred offline using a custom MATLAB package (Brier and Culver, 

2021) as follows. First, a binary mask was manually drawn around all brain tissue and 

affine transformed to Paxinos space using the positions of bregma and lambda (Paxinos and 

Franklin, 2019). Then, the signal was temporally and spatially detrended, smoothed, and 

global signal regressed. The modified Beer-Lambert law used reflectance changes in the 

523 nm, 595 nm, and 640 nm LED channels to solve for relative fluctuations of oxygenated-

Zhang et al. Page 5

J Neurosci Methods. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hemoglobin (HbO2) and deoxygenated-hemoglobin (HbR). The recorded GCaMP6 emission 

was corrected for absorptions by HbO2 and HbR using a ratiometric approach and the 523 

nm reflectance channel (approximate GCaMP6 wavelength) as a reference:

y(t) = Iem(t)
Iref(t)

•
I0
ref

I0
em .

y(t) is the final corrected GCaMP6 time series for a given pixel, Iem refers to the detected 

fluorescent emission intensity. Iref describes the measured reflectance changes at the 

emission wavelength. The power spectrum of each pixel in the GCaMP6 signal (%dF/F) 

was computed using the MATLAB toolbox Chronux function ‘mtspecgramc’ (Mitra and 

Bokil, 2007; Chronux Home, 2021) using a window size of 16.81, step-size of 10 s, and 

time-width product of 3 and 5 tapers.

2.4. Expert behavioral state scoring

Time-locked EEG and EMG signals were recorded at 1000 Hz using the AD Instruments 

(Dunedin, New Zealand) Dual Bio Amplifier (Catalog# FE232) and PowerLab data 

acquisition system (Catalog# PL2604). Offline, the EEG and EMG signals were band-

pass filtered (0.5–35 Hz for EEG and 25–50 Hz for EMG) and the spectrogram (Hann 

window with cosine-bell and 50% overlap) was computed. Using the combination of the 

filtered EEG/EMG signal and spectrogram, behavioral states (wakefulness, NREM, REM, 

anesthesia and movement) were manually scored in 10-second (10-s) epochs by the author 

E.L., a certified sleep specialist with over 15 years of experience scoring sleep. Wakefulness 

was characterized by mixed frequencies in the EEG with increased EMG tone. NREM sleep 

was defined as having large amplitude 1–3 Hz (delta) activity in the EEG with relative 

attenuation of the EMG. REM sleep was defined as having 6–8 Hz predominance with 

EMG atonia. Supplemental Figure 1 shows examples of 10-s EEG/EMG signals scored as 

the different sleep states by a human annotator. Anesthesia was defined as the presence 

of uniform 1 Hz activity with absence of EMG activity. Movement artifact was defined 

by movement causing the inability to discern the EEG waveforms. If a single 10-s epoch 

contained a mixture of both states, then the predominant state was scored. The details of the 

data split and data source for various classification tasks conducted in this study are shown 

in Table 1.

2.5. Construction of multiplex visibility graphs

2.5.1. Multiplex visibility graphs—Visibility graphs were first proposed by Lacasa et 

al. as a method to map time series into networks, in which the underlying dynamics are 

inherited in the topology (Lacasa et al., 2008). Given a time series p = f(t), two time points 

(ti, pi), (tj, pj) are connected if any other time points (tk, pk) between them satisfies the 

natural visibility criterion:

pk < pi + (pj − pi)
k − i
j − i .
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The time series can be mapped into an undirect and unweighted natural visibility graph 

(NVG). The single-layer NVG was implemented by the open-source MATLAB software 

package Fast NVG (Iacobello et al., 2018; Iacobello et al., 2019). The NVG is represented 

by a two-dimensional (2D) binary adjacency matrix D ∈ Rn×n, where Dij = 1 if a connection 

exists between time points (ti, pi) and (tj, pj) according to the visibility criteria. Furthermore, 

a multivariate time series containing m components yields a multiplex visibility graph 

(MVG) that comprises m-layers (Lacasa et al., 2015), which can be represented by a 

concatenation of 2D adjacency matrices.

2.5.2. Mapping wide-field calcium imaging data to multiplex visibility graphs
—To map WFCI data to an MVG, the WFCI data were first split into 10-second epochs 

according to the manual EEG/EMG-based scoring. Let the tensor X ∈ Rn×m×k denote a 

10-s epoch of WFCI data, where n = m = 128 denotes the number of pixels in each spatial 

dimension and k = 168 is the number of frames per 10-s epoch. Next, using a total of 

36 brain regions defined by the Paxinos atlas (Paxinos and Franklin, 2019) (Fig. 1a), the 

average time series for all pixels within each region was calculated (Fig. 1c). The average 

time series for the 36 brain regions will be represented as T ∈ R168×36. Select regions 

(olfactory, prelimbic, colliculi, and cerebellum) were excluded because they were outside the 

field of view. The average time series corresponding to a single brain region was mapped to 

an adjacency matrix D by the use of natural visibility criteria and then the concatenation of 

the 36 adjacency matrixes led to the formation of the MVG M ∈ R168×168×36 for a single 

10-s epoch of WFCI data (Fig. 1d).

2.6. Classification with 2D convolutional neural network

After the WFCI data were mapped to MVG representations in 10-s increments, a 2D 

multi-channel CNN was employed to classify sleep states via supervised deep learning (Fig. 

1e, Fig. 2). A compact 2D CNN consisting of three convolutional layers was employed, 

where each layer had a number of 32, 64 and 128 kernels, respectively, with a kernel 

size 3. Kernels were shifted with a stride of 1 in all three layers. Leaky Rectified Linear 

Units (Leaky ReLU) were used after each convolutional layer as nonlinearities. A max 

pooling operation with a pool size of 2 and a stride size of 2 was applied after the first two 

convolutional layers. The last convolutional layer was followed by a global average pooling 

(GAP) layer to minimize the risk of overfitting by reducing the number of parameters 

in the model. One densely connected layer with either softmax function for multi-class 

classification or sigmoid function for binary classification was applied to yield the classified 

states. The network was implemented in Python 3 with TensorFlow 2.2.0 using NVIDIA 

GPUs.

Each layer of the MVG was considered as a channel of input to the 2D CNN. The kernels 

of the network share weight across all 36 channels corresponding to various brain regions. 

MVGs of different states were randomly shuffled during network training. The network was 

trained to minimize the focal loss (Appendix A.) by use of Adam optimizer (Kingma and 

Ba, 2017) with a learning rate of 0.0001 for 100 epochs and the CNN model with the best 

validation accuracy was selected.
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2.7. Statistical analysis

The models were evaluated on test data consisting of unseen epochs from the same 

group of training subjects as well as on an independent subject. Metrics including 

precision = TP
TP + FP , recall = TP

TP + FN , accuracy = TP + TN
TP + TN + FP + FN , where TP, TN, FP, FN 

are the numbers representing true positive, true negative, false positive and false negative, 

respectively, were utilized to evaluate the model performance. The Cohen’s kappa statistic, 

κ (Cohen, 1960), was computed to assess the inter-rater reliability between manual EEG/

EMG-based scoring and the proposed automated WFCI-based MVG-CNN classification 

results. The kappa statistic is thought to be a more robust measure than percent agreement 

and a kappa magnitude between 0.61 and 0.80 indicates a substantial agreement between the 

two raters (McHugh, 2012). A confusion matrix for each classification task was formed to 

provide a direct interpretation of the classification results.

2.8. Data and source code availability

The WFCI data are available on PhysioNet (Goldberger et al., 2000; Landsness and Zhang, 

2021) and the pre-processing code is available via https://github.com/brierl/Mouse_WOI 

(Brier and Culver, 2021). All model training and testing code are available at https://

github.com/comp-imaging-sci/MVG-CNN.

3. Results

3.1. MVG-CNN classifies sleep states as wakefulness, NREM and REM

To automatically classify sleep states as wakefulness, NREM, and REM, WFCI data from 

mice (n = 11) were mapped to MVGs and a 2D CNN was trained on MVG representations 

(Fig. 1). The sleep state classification results of the MVG-CNN on WFCI alone were 

compared to human-scored EEG/EMG that were simultaneously collected with the WFCI 

data to assess the performance. For the individual sleep states in the test set consisting 

of 10% of the data in Experiment 1 (Table 1), the precision (recall) was 0.87 (0.91) 

for wakefulness, 0.80 (0.72) for NREM and 0.76 (0.77) for REM (Table 2, Fig. 3). The 

MVG-CNN achieved an overall accuracy of 84% and Cohen’s κ value of 0.67, where a κ 
value > 0.6 is indicative of substantial agreement (Table 2).

To further demonstrate the ability of the MVG-CNN to classify sleep states from WFCI 

data, sleep states of an unseen 3-hour WFCI recording were classified. The MVG-CNN 

achieved a κ of 0.65, indicating a substantial agreement between EEG/EMG-based scoring 

and the MVG-CNN classification. To further compare EEG/EMG-based scoring and MVG-

CNN classification, we analyzed measures of sleep fragmentation, sleep-state organization 

and spectral power. The MVG-CNN method caused shorter sleep state durations and an 

increased number of state transitions (Table 3), suggesting increased sleep fragmentation. 

As depicted by the hypnogram (Fig. 4a, b), there was substantial agreement in the temporal 

pattern (sleep cycles) of transitions between wakefulness, NREM and REM. In addition, 

both EEG/EMG scored by a human and WFCI classified by the MVG-CNN showed an 

increase in delta (0.4–4.0 Hz) spectral power of the calcium signal exclusive to NREM 

and an increase in theta (6.0–8.0 Hz) exclusive to REM (Fig. 4c, d), confirming the 
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effective classification of sleep states by both methods. Further, this agreement between 

EEG/EMG-based human scoring and WFCI-based MVG-CNN classification is comparable 

to the inter-rater reliability of two human experts with a κ of 0.60 (Supplemental Figure 2). 

These results show that sleep states classified by the MVG-CNN using WFCI data alone are 

highly similar to EEG/EMG-based human scoring.

3.2. MVG-CNNs can also be effectively applied to different behavioral and experimental 
conditions

While the MVG-CNN was able to accurately classify sleep state when a single WFCI 

dataset was employed, applicability to other WFCI datasets with different animals, 

behavioral states or experimental conditions is desired for automated classification of WFCI 

data. Therefore, the MVG-CNN method was trained for two additional classification tasks 

that aimed to classify wakefulness versus sleep or wakefulness/sleep/anesthesia/movement 

by use of an additional dataset collected during Experiment 2 (Table 1). In the binary 

classification, a pooled dataset consisting of epochs of wakefulness and sleep from 

Experiment 1 and 2 (Table 1) was used. The MVG-CNN achieved a precision (recall) of 

0.86 (0.85) for wakefulness and 0.76 (0.78) for sleep (Table 4, Fig. 5a). The accuracy 

was 0.82 with a Cohen’s κ value of 0.62 (Table 4). In the four-class classification among 

wakefulness/sleep/anesthesia/movement, the MVG-CNN achieved an accuracy of 0.74 and 

a Cohen’s κ value of 0.66 (Table 5), with precision (recall) of 0.63 (0.45) for wakefulness, 

0.70 (0.86) for sleep, 0.95 (0.94) for anesthesia and 0.68 (0.75) for movement (Table 5, Fig. 

5b). These results demonstrate that the MVG-CNN can be effectively applied to datasets 

with different experimental conditions and classification problems.

3.3. MVG-CNN reveals temporal characteristics for sleep state classification

3.3.1. MVG-CNN uses short- and long-range visibility connections to classify 
sleep—Understanding how the MVG-CNN makes a decision to classify WFCI data into 

various sleep-wake states could lead to a better understanding of the neural correlates of 

sleep. Therefore, a way to visualize how the CNN identifies the class-discriminative features 

of the MVG is needed. One method, Grad-CAM (Appendix B.) (Selvaraju et al., 2020), uses 

class-specific gradient information flowing into the final convolutional layer of a CNN to 

produce a coarse localization map of regions of emphasis. When applied to the adjacency 

matrices of MVG, Grad-CAM identified regions of interest contributing to a classification 

decision and showed different patterns of emphasis for various sleep states (Fig. 6). For 

instance, in the wakefulness state, the adjacency matrices have a nearly continuous focusing 

band along the main diagonal which indicates that the network focuses on the visible 

connections on a short time scale over the entire epoch. Similarly, NREM focuses on short 

visible connections, but in a more clustered pattern, which characterizes a local convexity 

property over a small range of time in a given epoch (Donner and Donges, 2012). In 

contrast, REM sleep shows a different characterization with the network emphasizing the 

off-diagonal elements that correspond to visible connections at a longer time scale. Taken 

together, these results show the MVG-CNN model classifies wakefulness and NREM sleep 

based on short-range visible connections, whereas REM is classified on longer time scale 

visibilities.
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3.3.2. Varying epoch duration impacts sleep state classification performance
—Human experts conventionally score sleep EEG/EMG signals from mice with an arbitrary 

10-second epoch duration. Often, human-defined sleep epochs contain a mixture of sleep 

states with the predominant state being classified. This mixture of states raises the 

question of whether shorter epoch durations would lead to better sleep state classification 

performance of WFCI data (Yan et al., 2011). Here, the epoch duration was varied from 1 

to 20 s to investigate the effect of temporal information incorporated from WFCI epoch data 

on sleep state classification performance (Fig. 7). As the epoch duration was increased from 

1 s to 7 s, the classification accuracy and Cohen’s κ improved. At an epoch duration of 8 

s and higher, accuracy plateaued at −0.85 with Cohen’s κ of −0.70. These results suggest 

that shortening epochs below 8 s or increasing beyond 10 s may not benefit sleep state 

classification performance by the MVG-CNN for the WFCI dataset being classified.

3.4. MVG-CNN identifies spatial characteristics for sleep state classification

The spatial-temporal nature of WFCI offers the possibility to alter the amount the spatial 

information in order to understand how individual brain regions affect the sleep state 

classification performance of the MVG-CNN. Therefore, visibility graphs built from each 

single brain region were given as input to CNNs, and the spatial distribution of sleep state 

classification accuracies and Cohen’s kappa values were mapped to the Paxinos atlas of the 

left hemisphere of a mouse brain (Fig. 8). When classifying sleep by use of WFCI data from 

a single brain region alone, posterior regions including visual and retrosplenial cortex show 

the highest accuracy as compared to other regions such as somatosensory and motor cortex. 

Furthermore, MVGs consisting of a different number of layers from various brain regions 

were taken as input to the network to classify sleep states. As more brain regions from 

across the cortex were incorporated into MVGs, sleep classification performance improved 

(Table 6). Taken together, these results suggest that using larger amounts of spatial WFCI 

data improves sleep state classification accuracy.

4. Discussion

In this study, we proposed a hybrid method that combines a multiplex visibility graph 

and a 2D convolutional neural network (MVG-CNN) to accurately classify sleep states 

from WFCI data alone. Unique class activation patterns focusing on short- and long-

range visibility were identified by the CNN when classifying WFCI data as wakefulness, 

NREM and REM. Additionally, regional information and epoch duration influenced sleep 

classification performance and accuracy. These results support that the spatial-temporal 

nature of the neuronal activity captured by WFCI plays an important role for characterizing 

sleep.

Accurate, automated sleep state classification methods are needed for sleep research. EEG/

EMG-based methods have been successfully developed to automatically classify sleep in 

rodents (Barger et al., 2019; Yamabe et al., 2019). While classification of sleep based 

on other biosignals such as photoplethysmogram (PPG) (Korkalainen et al., 2020; Wu et 

al., 2020), heart rate and movement (Gaiduk et al., 2018; Sridhar et al., 2020) have been 

proposed, their performance is generally not as good as that based on EEG/EMG. Here, 
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we successfully applied an MVG-CNN model to a new imaging tool, WFCI, to classify 

sleep states in mice. Although the MVG-CNN did not perform as well as automated EEG/

EMG-based methods (Barger et al., 2019; Yamabe et al., 2019), MVG-CNN classification 

of WFCI data compares favorably with the published gold standard of inter-rater reliability 

among human expert scorers of EEG/EMG (Rosenberg et al., 2013), and that of two human 

experts scoring the simultaneously acquired EEG/EMG of this dataset. Additionally, the 

MVG-CNN method is superior to other automated sleep state classification methods with 

non-EEG/EMG biosignals (Korkalainen et al., 2020; Wu et al., 2020; Gaiduk et al., 2018; 

Sridhar et al., 2020). Thus, the hybrid MVG-CNN method is an effective, accurate tool for 

automatically classifying sleep states in WFCI.

One unique aspect of sleep is the sequential and temporal dependency of sleep stage 

transitions (wakefulness followed by NREM and then REM sleep). To account for 

this temporal dependency, human scorers sequentially interrogate EEG/EMG recordings 

integrating the evidence with each epoch into the broader context. In contrast, the MVG-

CNN model classifies sleep states in a temporally independent manner, which likely leads 

to an overestimation of the number of state transitions and shorter sleep state lengths. In the 

future, either recurrent neural networks that use future and past states, such as a bidirectional 

LTSM (Yamabe et al., 2019), or a post-processing algorithm, such as a hidden Markov 

model, that uses contextual information to estimate the probability to change to a different 

sleep-wake state from one epoch to the next (Brodersen et al., 2021) could be employed 

to reduce sleep fragmentation and increase accuracy. In addition, different variations of 

visibility graphs, such as the weighted visibility graph to increase sensitivity to state changes 

(Cai et al., 2018) and limited penetrable visibility graph to reduce the influence of noise 

(Wang et al., 2018), could be employed to further improve accuracy.

Sleep has traditionally been defined based on the presence or absence of discrete features 

such as slow waves, spindles, K-complexes, rapid eye movements and muscle tone. One 

recent automated sleep state classification study using EEG found that the convolutional 

filters in a CNN use hierarchical feature formation to extract features that closely resemble 

the same discrete neuronal events used by human experts (Li and Guan, 2021). To better 

understand how the CNN assigned specific sleep states to an MVG, Grad-CAMs were 

computed to visualize the corresponding class activation patterns. Unique activation patterns 

on MVGs for classifying different sleep states were identified. For example, the CNN 

characterized NREM by focusing on short time-frame visibility corresponding to clustered 

patterns with high intensity on Grad-CAMs, indicating a local convexity on the spatial-

temporal multivariate time series of WFCI data that could be consistent with slow waves 

observed in NREM and the relatively higher spectral power of the calcium delta oscillations 

seen in Fig. 4. In contrast, during REM, off-diagonal (long-scale) visibility was identified 

as a key discriminative feature which may be consistent with the characteristic higher 

frequency (theta), low amplitude activity observed in the spectral analysis of the calcium 

signal. These MVG findings affirm the presence of slow waves as the key defining feature 

of NREM, whereas REM was characterized by relatively higher frequency, uniform activity. 

Future studies will allow for the identification of learned MVG patterns that could lead to 

improvement in defining the neural correlates of sleep and their relation to disease.
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A major question in the sleep field is whether sleep is a cortically global phenomenon 

or whether it can occur locally in confined regions of the cortex (Krueger et al., 2019). 

Traditionally, NREM is classified by the presence of slow waves and spindles throughout 

the cerebral cortex and REM as a homogenous “activated” low-voltage activity. However, 

recent research suggests that sleep slow waves can occur in a subset of brain regions rather 

than occurring synchronously across all cortical areas (Vyazovskiy et al., 2011; Nir et al., 

2011; Siclari and Tononi, 2017), and can be found outside of NREM during wakefulness 

(Vyazovskiy et al., 2011; Hung et al., 2013; Bernardi et al., 2015; Quercia et al., 2018; 

Andrillon et al., 2021) or REM (Funk et al., 2016; Bernardi et al., 2019). In support of the 

idea of sleep as a global phenomenon (Sejnowski and Destexhe, 2000), we found that sleep 

state classification performance improved as wider areas of the cortex were incorporated into 

the sleep state classification model. However, taking advantage of the high spatial resolution 

afforded by WFCI, we found that individual areas of the cortex varied in the degree of 

accuracy to classify sleep states. For instance, posterior regions demonstrated relatively high 

accuracy versus anterior and lateral brain areas (motor and somatosensory) having lower 

accuracy. This spatial heterogeneity in sleep state classification accuracy may be the result 

of these subregions having isolated episodes of local slow waves while the rest of the cortex 

is in a state of wakefulness or REM sleep and is consistent with existing studies showing 

that local slow waves occur predominantly in both frontal and parietal regions (Vyazovskiy 

et al., 2011; Hung et al., 2013; Quercia et al., 2018). Taken together, the spatial information 

provided by WFCI confirms that sleep is not a unitary, homogeneous state but is spatially 

diverse across the cortex. Future studies utilizing WFCI to better characterize the presence 

of local slow wave sleep are needed not only for sleep state classification, but also in normal 

physiology and disease (Terzaghi et al., 2009; Dodet et al., 2015; Castelnovo et al., 2016; 

Riedner et al., 2016).

In sleep state classification of rodent EEG/EMG signals by humans, a conventional 10-

second epoch duration is commonly used to inspect the signal and assign sleep states. 

Studies have suggested that the optimal choice of epoch duration should accurately illustrate 

animals’ sleep-wake profiles with epochs as short as 4 s being ideal for capturing state 

transitions (Yan et al., 2011) but 8–10 s being best for sleep classification algorthms 

(Brankačk et al., 2010). Consistent with previous studies, by altering epoch duration of 

the WFCI data prior to input into the MVG-CNN, we found that accuracy significantly 

declined at 4 s, and performance was optimal with epoch durations of 8–10 s. The 

decrease in accuracy with shorter epoch durations might be explained by the fact that 

EEG/EMG-based scoring to train the network is fixed at 10 s while the MVG-CNN epoch 

duration can be varied from one second to 20 s. The difference in epoch duration between 

EEG/EMG scoring and WFCI classification could be resolved by manually re-scoring the 

entire EEG/EMG dataset at a shorter temporal resolution (e.g., four seconds) and re-training 

the MVG-CNN, but comes at the cost of tedious, labor-intensive work and may result in 

the inability to integrate longer timescale trends into the MVG-CNN model. Indeed, for 

the WFCI dataset considered in our study, the MVG-CNN emphasized long-range temporal 

connections when classifying REM sleep (Fig. 6), which may explain why at least 8 s of 

data is necessary for sleep state classification while shorter epoch duration could lead to 

worse performance. Moreover, recent findings using multiunit activity (MUA) recordings 
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suggest that the brain is able to “flicker” into different sleep states at the microsecond 

timescale (Schneider et al., 2021; Parks et al., 2021), and future studies combining the 

high spatial resolution of WFCI with high temporal resolution of MUA may elucidate how 

quickly sleep states change across the cortex and the optimal epoch duration for sleep state 

classification.

To the best of our knowledge, this study is the first to develop a deep learning-based 

automated sleep state classification method for WFCI. Beyond the inherent advantages of 

automated sleep state classification (decreased need for laborious human scoring, improved 

test, re-test reliability on repeated recordings), the proposed MVG-CNN method could 

be applied to a wide range of other uses to understand not just the neural correlates of 

sleep but other brain states as well. Some interesting topics remain to be investigated in 

future research. For instance, deep learning methods could use WFCI data to characterize 

functional brain networks in sleep (Li et al., 2021; Dong et al., 2020). Or, if larger (>1000) 

WFCI recordings become available, 3D CNNs (Tran et al., 2015) could be employed to 

characterize sleep states and gain a deeper insight of the spatiotemporal features in raw data 

space. Last but not least, it is also desirable to enhance the generalization of sleep state 

classification methods so that the method is more robust against experimental variability. For 

example, advanced standardization approaches such as mixture z-scoring that disentangles 

nuisances and class prevalence variability (Barger et al., 2019) can be applied on the data, 

and more generalized models trained on large numbers of cohorts could be options (Yamabe 

et al., 2019).

5. Conclusions

In this study, we describe an automated sleep state classification method using WFCI data 

alone by mapping spatial-temporal data to MVG representations and classifying sleep states 

with a CNN. The MVG-CNN achieved substantial agreement with manual EEG/EMG-based 

scoring and was effectively applied to different WFCI datasets and experimental conditions. 

The MVG-CNN model accurately distinguished wakefulness, NREM and REM by using 

short- and long-scale temporal features. Furthermore, temporal data was combined with 

spatial information provided by WFCI to identify a regionally diverse series of temporal 

events throughout the mouse cortex. This study supports the use of MVG-CNN to better 

understand the neural correlates of sleep with WFCI and holds promise for the application to 

other research fields.
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Appendix A

Focal loss

An important issue to be considered when applying deep learning in classification problems 

is the class prevalence in the data (Johnson and Khoshgoftaar, 2019). In rodent sleep 

recordings, NREM and wakefulness states often account for over 90% of total recording 

time with relatively less REM sleep. In such circumstances, the major class overwhelms the 

cross-entropy loss in multi-class classification and dominates the gradient. Thus, a modified 

cross-entropy loss called focal loss (Lin et al., 2020) was used in training the neural network 

to classify sleep states. Focal loss introduces a tunable focusing parameter γ ≥ 0 to allow 

hard-to-classify examples to be penalized more heavily relative to easy-to-classify examples 

(Lin et al., 2020):

Lfocal(y, p) = − (1 − py)γlog(py)

where y ∈ {0, …, K − 1} is an integral class label in K classes, and 

p = (p0, p1, …, pK − 1) ∈ [0, 1]K denotes a vector of the model estimated probability over K 

the classes. In our study, γ = 2 was considered.

Appendix B

Visualizing CNN with gradient-weighted class activation maps (Grad-CAM)

To identify the features of the MVGs that were important for accurate classification of 

different brain states, gradient-weighted class activation maps (Grad-CAMs) (Selvaraju et 

al., 2020) were computed. The Grad-CAMs were created by using the gradient information 

flowing into the last convolutional layer of the CNN to identify the parts of an input 

image that most impact the classification score. First, for a class c, the gradient of the 

corresponding score yc with respect to the feature map activations Ak of a convolutional 

layer was computed as ∂yc

∂Ak . A global average pooling operation over the spatial dimension 

indexed by i and j is applied on these gradients flowing back to obtain the importance 

weights of a feature map k of class c:

αk
c = 1

Z ∑
i

∑
j

∂yc

∂Aijk
,

Finally, Grad-CAM performed a weighted combinations of forward activation maps with 

ReLU:

LGrad − CAM
c = ReLU∑

k
αk

cAk,
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and upsampled to the input resolution to produce a heatmap of class-discriminative 

localization of the regions.
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Fig. 1. 
The proposed hybrid framework using MVG and 2D CNN to automatically classify sleep 

states with WFCI data in mice. (a) The 36 brain regions defined by the Paxinos atlas 

(Paxinos and Franklin, 2019) within the field of view used in constructing the MVG. (b) 

Examples of single-layer visibility graphs from visual cortex during wakefulness, NREM 

and REM, represented in a binary adjacency matrix (white=visible, black=non-visible). 

(c)-(e) Schematic using 3 sample brain regions showing the construction of the MVG for a 

10-s epoch of WFCI data. (c) First, an average time series is created for each brain region. 

(d) Then, a visibility graph associated with each average time series is constructed and 

represented in its adjacency matrices. The MVG is constructed by stacking the adjacency 

matrices of each brain region. (e) The adjacency matrices for MVGs are taken as input to a 

2D CNN to classify sleep states.
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Fig. 2. 
Illustration of the architecture of the 2D CNN. Three convolutional layers (blue) with 

parameters (number of filters, kernel size and stride size) are employed with Leaky ReLU. 

Max-pooling layers (gray) with parameters (pool size, stride size) were included after the 

first two convolutional layers. A global average pooling layer (orange) is placed after the 

final convolutional layers. Following the convolutional blocks, a softmax/sigmoid function 

(green) is applied to classify sleep states.
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Fig. 3. 
Confusion matrix for the MVG-CNN on three-state sleep classification of wakefulness, 

NREM, and REM in test set (n = 1075 epochs). Manual EEG/EMG-based scoring is on 

the x-axis and MVG-CNN predictions are on y-axis. The diagonal cells in blue correspond 

to the numbers of correctly classified epochs and precision rate (%) across wakefulness, 

NREM and REM states. Non-diagonal cells indicate misclassified epochs for each state.
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Fig. 4. 
Comparison of sleep state classification between human annotator and MVG-CNN on a 3 

h recording of a mouse. Hypnograms corresponding to (a) human EEG/EMG-based scoring 

and (b) MVG-CNN classification based on WFCI recording. Average power spectra of the 

calcium signal plotted for wakefulness, NREM and REM based on the (c) true scoring 

produced by a human annotator or (d) predictions from MVG-CNN. Shaded gray areas 

represent the delta (δ, 0.4–4.0 Hz) and theta (θ, 6.0–8.0 Hz) frequency ranges.
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Fig. 5. 
Confusion matrix that summarizes the MVG-CNN classification performance on (a) binary 

classification for distinguishing wakefulness and sleep, and (b) four-state classification 

for distinguishing among wakefulness, sleep, anesthesia (ketamine/xylazine, K/X) and 

movement. Manual EEG/EMG-based scoring on x-axis and MVG-CNN predictions on 

y-axis. The diagonal cells in blue correspond to the numbers of correctly classified epochs 

across different states, with the precision percentages in the parentheses. Non-diagonal cells 

indicate misclassified epochs for each state.
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Fig. 6. 
Representative Grad-CAM examples of wakefulness, NREM and REM from three mice. 

A higher intensity with the color gradients (i.e., red, value 1) reveals that the 2D CNN 

focuses more on such regions of interest of adjacency matrices when making corresponding 

decisions.
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Fig. 7. 
The sleep state classification performance with respect to the epoch durations used in the 

MVG-CNN. As epoch duration was varied, accuracy (left y-axis, solid blue line) and the 

Cohen’s Kappa statistic (right y-axis, dotted red line) were compared.
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Fig. 8. 
The sleep state classification performance with respect to using single-layer visibility graphs 

from individual brain regions in the left hemisphere. The Cohen’s κ value of each brain 

region is mapped to the atlas (Fig. 1a) to reveal the spatial importance in classifying WFCI 

data as wakefulness, NREM and REM.
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Table 1

Data source of different classification tasks and the corresponding number of epochs for training, validation 

and testing.

Classification task Data source Training Validation Testing

Wakefulness/NREM/REM Experiment 1 8592 1074 1075

Wakefulness/sleep/anesthesia/movement Experiment 2 4704 588 588

Wakefulness/sleep Experiment 1 + 2 10800 1350 1351
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Table 2

Metrics to evaluate the three-state classification performance on test data (n = 1075 epochs). MVG-CNN 

achieved substantial agreement of κ = 0.67 compared to manual EEG/EMG-based scoring. Prec., precision; 

Rec., recall; κ, Cohen’s Kappa statistic.

Wakefulness NREM REM Accuracy κ

Prec. Rec. Prec. Rec. Prec. Rec.

 0.87 0.91 0.80 0.72 0.76 0.77 0.84 0.67
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Table 3

Comparison of sleep fragmentation between WFCI-based MVG-CNN classification and EEG/EMG-based 

human scoring.

Scoring method Average sleep state length (s) Number of state
transitions

Wakefulness NREM REM

WFCI-based MVG-CNN classification 28 54 30 272

EEG/EMG-based human scoring 47 66 81 180
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Table 4

Metrics to evaluate the binary wakefulness/sleep classification performance with MVG-CNN on test data (n = 

1351 epochs). Prec., precision; Rec., recall; κ, Cohen’s Kappa statistic.

Wakefulness Sleep Accuracy κ

Prec. Rec. Prec. Rec.

 0.86 0.85 0.76 0.78 0.82 0.62
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Table 6

The sleep state classification performance using different amounts of spatial information in MVG-CNN. L: 

left hemisphere, V1: primary visual cortex, Barrel: somatosensory barrel cortex, M1: primary motor cortex.

Brain regions (n) Accuracy κ

 L-V1 (1) 0.72 0.33

 L-Barrel (1) 0.69 0.23

 L-M1 (1) 0.71 0.30

 L-M1 +L-Barrel+L-V1 (3) 0.78 0.49

 Left hemisphere (18) 0.83 0.64

 Whole brain (36) 0.84 0.67
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