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Study of polymorphisms in genes related to the generation and removal of oxidative stress
and repair of oxidative DNA damage will lead to new insights into the genetic basis of
prostate cancer. In the Prostate Cancer Prevention Trial (PCPT), a double-blind,
randomized controlled trial testing finasteride versus placebo for prostate cancer
prevention, we intend to investigate the role of oxidative stress/DNA repair mechanisms
in prostate cancer etiology and whether these polymorphisms modify prostate cancer risk
by interacting with antioxidant status in both placebo and finasteride arms. We evaluated
associations of selected candidate polymorphisms in genes in these pathways, and
interactions with pre-diagnostic serum antioxidants, and the risk of prostate cancer
among 1,598 cases and 1,706 frequency-matched controls enrolled in the PCPT.
Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using
multivariable-adjusted logistic regression models. While there were no statistically
significant associations observed in the placebo arm, several SNPs were associated
with prostate cancer in the finasteride arm. Specifically, APEX1-rs1760944 was
associated with increased risk of total prostate cancer (per minor allele: p-trend=0.04).
OGG1-rs1052133 was positively (CG/GG vs. CC: OR=1.32, 95% CI: 1.01-1.73) and
NOS3-rs1799983 was inversely (per minor allele: p-trend=0.04) associated with risk of
low-grade prostate cancer. LIG3-rs1052536 and XRCC1-rs25489 were suggestively
associated with reduced risk of high-grade prostate cancer (per minor allele: both p-
trend=0.04). In the placebo arm, significant associations were observed among men with
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higher serum lycopene for APEX1-rs1760944 and NQO1-rs1800566, or higher serum b-
cryptoxanthin for ERCC4-rs1800067. In the finasteride arm, stronger associations were
observed among men with lower serum lycopene for NOS3-rs1799983, higher serum a-
carotene, b-carotene, and b-cryptoxanthin for LIG3-rs1052536, or lower serum retinol for
SOD2-rs1799725. These results suggest that germline variations in oxidative stress and
DNA repair pathways may contribute to prostate carcinogenesis and that these
associations may differ by intraprostatic sex steroid hormone status and be further
modified by antioxidant status. Findings provide insights into the complex role of gene,
gene-antioxidant and -finasteride interactions in prostate cancer etiology, and thus may
lead to the development of preventative strategies.
Keywords: prostate cancer, genetic polymorphisms, DNA repair, oxidative stress, serum antioxidant
INTRODUCTION

Prostate cancer remains the most commonly diagnosed cancer
and the second leading cause of cancer death in men among the
majority of countries, including the United States (U.S.) (1, 2). It
is estimated that during 2021, 248,530 new cases will be
diagnosed in the U.S. and 34,130 men will die from the disease
(3). Incidence is expected to rise along with the aging male
population. To date, the etiology of prostate cancer remains
largely unclear, however, oxidative stress has been implicated in
prostate carcinogenesis (4).

Evidence from epidemiological, clinical and experimental
studies suggest prostate cancer cells are exposed to increased
levels of oxidative stress (5, 6). Many of the known and suspected
risk factors for prostate cancer such as age are associated with
higher levels of reactive oxygen species (ROS) and/or decreased
antioxidant capabilities (7, 8). Oxidative stress, an imbalance
between ROS and antioxidant capacity, leads to damaged DNA
and mutations. The damage caused by oxidative stress can be
further exacerbated by diminished antioxidant defense
mechanisms (9). Various DNA repair systems can remedy this
situation before cell replication and mutation fixation, but
inherent variation can lead to diminished DNA repair capacity
(10, 11). Additionally, oxidative stress and DNA repair capacity
might interact with serum levels of antioxidants, resulting in an
increased or reduced antioxidant/DNA repair capacity, which, in
turn, influence prostate cancer risk.

Using data and biospecimens from the Prostate Cancer
Prevention Trial (PCPT) (12, 13), a double-blind randomized
controlled trial testing finasteride versus placebo for prostate
cancer prevention, this study investigated candidate
polymorphisms in multiple key genes involved in oxidative
stress and DNA repair pathways with risk of prostate cancer.
With measurement of serum antioxidant concentrations
available among PCPT participants (14, 15), we further
examined whether these associations differed by circulating
antioxidant levels including carotenoids and retinol. PCPT
included biopsy-determined presence or absence of prostate
cancer, uniform pathologic assessment of tumor stage and
grade, and measurement of serum antioxidants, allowed
investigation of these associations with total, low-, and high-
2

grade prostate cancer in both placebo and finasteride arms, and
additional analysis to examine whether associations were
modified by levels of serum antioxidants. Findings from this
study could provide further insight into the genetics of oxidative
stress and DNA repair mechanisms in prostate carcinogenesis
among men both in the placebo arm and those who received
finasteride for prostate cancer prevention.
MATERIALS AND METHODS

Study Design and Study Population
We conducted a case-control study nested in the PCPT, a
randomized, placebo-controlled trial testing whether the 5a-
reductase inhibitor finasteride could reduce the 7-year period
prevalence of prostate cancer (13). Characterizing and clinical
data and stored blood specimens were collected during the trial.
Details of the PCPT study design and characteristics of the study
population have been described previously (12, 13, 16). In brief,
men aged ≥ 55 years (n=18,882) with normal digital rectal
examination (DRE), normal prostate-specific antigen (PSA) level
(≤ 3 ng/mL) and without history of prostate cancer or severe
benign prostatic hyperplasia related symptoms or other clinically
significant and related conditions were randomized to receive
either finasteride (5 mg/day) or placebo. All participants
underwent DRE and PSA testing annually and those with
abnormal findings were recommended for biopsy. At the end of
the 7-year study period, all participants who were not previously
diagnosed with prostate cancer were recommended to undergo an
end-of-study biopsy. All biopsies were collected under transrectal
ultrasonographic guidance and involved a minimum of six
specimens (cores). All biopsies were reviewed to confirm the
diagnosis of adenocarcinoma by both the pathologist at the local
study site and at a central pathology laboratory. Discordant
pathology interpretations were arbitrated by a referee
pathologist, and concordance was achieved in all cases. Clinical
stage was assigned locally. Tumors were graded centrally using the
Gleason scoring system. Tumors with Gleason sum <7 were
classified as low-grade and those with scores ≥7 were classified
as high-grade. In this nested case-control study within PCPT, all
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eligible cases were included, and controls were selected from men
with a negative biopsy at the end of study, and frequency matched
to cases on age, treatment arm, and first-degree family history of
prostate cancer, and were oversampled on race to include all
eligible non-whites. A total of 1,598 cases and 1,706 controls had
adequate DNA for genotyping and were included in the final
analysis. Participants excluded due to inadequate DNA were
comparable in age, body mass index (BMI), race, family history
and treatment to those included in the analysis.

The Institutional Review Boards of all participating SWOG
institutions approved this study and all participants signed
written informed consent.

Data and Specimen Collection
Self-administered questionnaires were used following
recruitment and consent to collect information concerning age,
race, education, physical activity, smoking, alcohol consumption
and family history of prostate cancer. At the baseline clinic visit,
approximately 3 months prior to randomization, height and
weight were measured and non-fasting blood was collected. At
each annual clinic visit, weight was measured, and non-fasting
blood was collected either until prostate cancer diagnosis or the
end of the study. Detailed procedures for blood collection,
processing, and storage have been previously described (17).

Laboratory Assessments
For the nested case-control study, the Qiagen M48 robot
(Valencia, CA) was used to extract DNA from white blood
cells at NCI Frederick and subsequently shipped to Roswell
Park Comprehensive Cancer Center Genomics Core for
genotyping by polymerase chain reaction (PCR) amplification
followed by Capillary Electrophoresis fragment analysis. All
primers were acquired from Applied Biosystems (Foster City,
CA). All PCR amplifications were performed in 96-well plates
using a Bio-Rad DNA Engine thermal cycler (Hercules, CA). We
focused on two pathways and concentrated efforts on single
nucleotide polymorphisms (SNPs) for which prior phenotypic or
epidemiological data suggest an association with risk for prostate
or other cancers. Specifically, based on information obtained in
the literature at the time, we selected a panel of 21 potentially
functional SNPs in genes related to oxidative stress and DNA
repair pathways. After removing SNPs with call rate <95% (4
SNPs) or violation of Hardy Weinberg Equilibrium (1 SNP), a
total of 16 SNPs in five genes of the oxidative stress pathway
(NOS3, NQO1, GSTP1, GSTA1, SOD2) and in seven genes related
to DNA repair pathway (APEX1, OGG1, XRCC1, XRCC3, LIG3,
XPD, ERCC4) were included in the analysis. DNA was extracted
from serum (for participants without stored buffy coat) and
white blood cells (WBC); 8 SNPs were genotyped in WBC DNA,
and the other 8 SNPs were genotyped in both WBC and serum
DNA; comparison of results from analyses for combined samples
and for samples separated by source showed no difference.
Therefore, results reported are from analysis of combined
genotyping data from WBC and serum DNA.

Pre-diagnostic total serum concentrations, including all tans
and cis forms, of carotenoids (lycopene, a- and b-carotene, and
Frontiers in Oncology | www.frontiersin.org 3
b-cryptoxanthin) and retinol were measured by the high-
performance liquid chromatography, among men in this
nested case-control study, and their associations with prostate
cancer risk were reported previously (14, 15). The weighted
average coefficients of variation for pooled quality control
samples were 13.5% for lycopene, 13% for a-carotene, 13% for
b-carotene, 15% for b-cryptoxanthin, and 8% for retinol.

Statistical Analysis
All analyses were performed separately in the placebo and
finasteride arm given the a priori hypotheses that finasteride
use may affect oxidative stress and further modify SNP-prostate
cancer associations. Differences in demographic and participant
characteristics between prostate cancer cases and controls were
tested using standard chi square tests for categorical variables in
the placebo and finasteride arms, respectively. Median
concentrations and the interquartile ranges for the blood
analytes were compared between cases and controls using the
Wilcoxon rank-sum test. Multivariable logistic regression was
used to estimate odds ratios (ORs) and 95% confidence intervals
(CIs) for the risk of prostate cancer overall. When dependent
variable has three categories, polytomous logistic regression was
used to estimate risk for low-grade and high-grade prostate
cancer, compared with controls. All models were adjusted for
baseline age, race, education, BMI, family history of prostate
cancer, diabetes, smoking, physical activity, and alcohol
consumption. Participants with the most common homozygous
genotype among controls were treated as the referent group.
Genotypic (co-dominant) models were assumed for SNP effects.
Based on the risk estimates, heterozygotes were combined with
either homozygous rare or homozygous common genotypes to
explore dominant and recessive models, respectively. Additive
genotype coding on the number of rare alleles was analyzed as an
ordinal variable in tests for linear trend. To test for potential effect
modification, genotype was used as an ordinal variable and
antioxidants levels were dichotomized into low and high
categories based on the median concentration in the control
population. Interaction was tested by including an interaction
term genotype*antioxidant in multivariable logistic models. The
significance of the interaction term (p-interaction) was tested
using a likelihood ratio test, which compares the log likelihoods
of the two models (i.e., with and without the interaction term)
and tests whether this difference is statistically significant. All
analyses were two sided and statistical significance was defined as
p<0.05; analyses were performed using SAS 9.4 (SAS institute,
Cary, NC).
RESULTS

Participant Characteristics
Descriptive characteristics were compared between the prostate
cancer cases and controls in the placebo and finasteride arms
(Table 1). Study participants were primarily White (86% of the
total cohort). Compared with controls, cases were less likely to be
January 2022 | Volume 11 | Article 808715
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diagnosed with diabetes in the placebo arm, and more likely to be
well-educated in the finasteride arm. Other factors were
comparable between cases and controls in both arms. In the
placebo arm, serum antioxidant concentrations showed
significant differences for a-carotene, b-carotene and retinol
between cases and controls, although actual differences were
minimal. As shown, cases had a statistically significant higher
median level of serum a-carotene (0.05 vs. 0.04 mg/mL), b-
carotene (0.24 vs. 0.22 mg/mL), and retinol (0.69 vs. 0.67 mg/mL)
than controls. Because results were similar for the entire cohort
and for White only, we report results for the entire cohort.

Associations of SNPs With Prostate
Cancer Risk in the Placebo and
Finasteride Arms
Associations between each SNP and risk of prostate cancer in the
placebo and finasteride arms are shown separately in
Supplemental Tables S1, S2. While there were no statistically
Frontiers in Oncology | www.frontiersin.org 4
significant associations observed in the placebo arm, several
SNPs were associated with prostate cancer in the finasteride
arm; ORs (95% CIs) with significant associations are shown in
Table 2. APEX1-rs1760944 was associated with increased risk of
total prostate cancer (per minor allele: p-trend=0.04). OGG1-
rs1052133 and NOS3-rs1799983 were associated with risk of
low-grade prostate cancer. Specifically, an increased risk was
observed for rs1052133 (CG/GG vs. CC: OR=1.32, 95% CI: 1.01-
1.73) in the dominant model, and a reduced risk was observed for
rs1799983 (per minor allele: p-trend=0.04). Additionally, there
were suggestions that LIG3-rs1052536 and XRCC1-rs25489 were
associated with reduced risk of high-grade prostate cancer (both
per minor allele: p-trend=0.04).

Effect Modification by Pre-Diagnostic
Serum Antioxidant Concentrations
We next examined whether any SNP-prostate cancer risk
associations were modified by serum concentrations of
TABLE 1 | Baseline characteristics of participants1 in the Prostate Cancer Prevention Trial (PCPT).

Characteristic Placebo Finasteride

Frequency, n (%) Controls (n = 986) Cases (n = 933) p- value3 Controls (n = 720) Cases (n = 665) p- value3

Age (years) 0.98 0.96
< 60 265 (26.9) 258 (27.6) 190 (26.4) 178 (26.7)
60-<65 325 (33.0 304 (32.6) 233 (32.4) 207 (31.1)
65-<70 236 (23.9) 218 (23.4) 173 (24.0) 165 (24.8)
70+ 160 (16.2) 153 (16.4) 124 (17.2) 115 (17.3)

Family history of prostate cancer 203 (20.6) 188 (20.2) 0.81 159 (22.1) 144 (21.6) 0.85
White 834 (84.6) 869 (93.1) 526 (73.1) 618 (92.9)
Diabetes 72 (7.3) 36 (3.9) 0.001 54 (7.5) 35 (5.3) 0.09
Education 0.24 0.01
High school 176 (17.8) 152 (16.3) 151 (21.0) 115 (17.3)
College 293 (29.7) 256 (27.4) 219 (30.4) 174 (26.2)
Advanced degree 517 (52.4) 525 (56.3) 350 (48.6) 376 (56.5)

Body mass index (BMI) 0.02 0.96
<25 236 (23.9) 273 (29.3) 193 (26.8) 174 (26.2)
25-29 538 (54.6) 487 (52.2) 366 (50.8) 340 (51.1)
30+ 212 (21.5) 173 (18.5) 161 (22.4) 151 (22.7)

Physical activity 0.14 0.59
Sedentary 158 (16.0) 147 (15.8) 135 (18.8) 116 (17.4)
Light 416 (42.2) 375 (40.2) 290 (40.3) 289 (43.5)
Moderate 301 (30.5) 326 (34.9) 228 (31.7) 207 (31.1)
Activate 111 (11.3) 85 (9.1) 67 (9.3) 53 (8.0)

Alcohol drinking (g/day), quartiles 0.86 0.84
<0.20 252 (25.6) 233 (25.0) 180 (25.0) 160 (24.1)
0.20-<3.13 248 (25.2) 225 (24.1) 171 (23.4) 148 (22.3)
3.13-<12.5 241 (24.4) 228 (24.4) 190 (26.4) 185 (27.8)
≥12.5 245 (24.8) 247 (26.5) 179 (24.9) 172 (25.9)

Smoking Status 0.58 0.63
Never smoker 339 (34.4) 339 (36.3) 245 (34.0) 221 (33.2)
Former smoker 572 (58.0) 531 (56.9) 419 (58.2) 400 (60.2)
Current smoker 75 (7.6) 63 (6.8) 56 (7.8) 44 (6.6)

Serum antioxidants, median (IQR)2

Lycopene, ug/mL 0.36 (0.26-0.46) 0.37 (0.28-0.48) 0.22 0.35 (0.26-0.47) 0.35 (0.26-0.47) 0.93
a-carotene, ug/mL 0.04 (0.02-0.07) 0.05 (0.03-0.07) 0.002 0.04 (0.03-0.07) 0.05 (0.03-0.07) 0.31
b-carotene, ug/mL 0.23 (0.14-0.36) 0.24 (0.10-0.38) 0.003 0.23 (0.14-0.38) 0.24 (0.16-0.37) 0.21
b-cryptoxanthin, ug/mL 0.08 (0.06-0.12) 0.09 (0.06-0.12) 0.64 0.09 (0.06-0.12) 0.09 (0.06-0.12) 0.84
Retinol, ug/mL 0.67 (0.58-0.77) 0.69 (0.60-0.79) 0.01 0.68 (0.58-0.78) 0.68 (0.59-0.80) 0.32
January 20
22 | Volume 11 | Artic
1Nested case-control selection: frequency matched on age, first-degree family history of prostate cancer and treatment arm, and oversampled on race to include all non-white controls.
2IQR, interquartile range; µg, micrograms.
3Based on Wilcoxon rank-sum test for continuous variables and Chi-square test for categorical variables.
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carotenoids and retinol within each treatment arm. As shown in
Tables 3 and 4, in both the placebo and finasteride arms, there
were indications that associations for several SNPs were modified
by serum levels of lycopene and other antioxidants (p-
interaction<0.05). In the placebo arm, although there was no
significant main effect, APEX1-rs1760944 was associated with
increased risk among men in the higher-level lycopene group,
whereas NQO1-rs1800566 and ERCC4-rs1800067 were
associated with decreased risk among men in the higher-level
of lycopene and b-cryptoxanthin group, respectively (Table 3).
In the finasteride arm, significant associations were observed for
SNPs in APEX1, NOS3, LIG3, and SOD2 among men in the
lower- or higher-level group of serum antioxidants (Table 4). For
Frontiers in Oncology | www.frontiersin.org 5
example, a reduced risk was observed for NOS3-rs1799983
among men with lower levels of lycopene, and a somewhat
increased risk among those with higher levels (p-
interaction=0.03). We observed LIG3-rs1052536 associated
with decreased risk among men with higher levels of all three
provitamin A carotenoids (a-carotene, b-carotene, and b-
cryptoxanthin). In addition, SOD2-rs1799725 was associated
with increased risk among men with lower levels of retinol, but
not among men with higher levels. Interestingly, consistent with
results in the placebo arm, there was a suggestion that
associations of APEX1-rs1760944 was modified by levels of
antioxidants in the finasteride arm, although interactions were
not statistically significant; significant increased risk was
TABLE 3 | Associations of SNPs with prostate cancer risk stratified by serum antioxidants in PCPT placebo arm.

Gene SNP Genotype Ca/Coa OR (95%CI)b,c pd,e Ca/Coa OR (95%CI)b,c pd,e P-interf

Lycopene Low-level (<0.38 µg/mL) High-level (≥0.38 µg/mL)
APEX1 rs1760944 GG 167/166 1.00 0.08 137/171 1.00 0.006 0.002

TG 220/252 0.83 (0.62-1.11) 200/198 1.29 (0.94-1.76)
TT 64/87 0.72 (0.48-1.07) 0.12 81/60 1.80 (1.18-2.75)

NQO1 rs1800566 CC 300/337 1.00 0.45 285/245 1.00 0.04 0.04
CT 123/157 0.95 (0.71-1.27) 113/153 0.69 (0.50-0.94)
TT 26/19 1.65 (0.88-3.10) 21/28 0.78 (0.41-1.46)

b-cryptoxanthin Low-level (<0.10 µg/mL) High-level (≥0.10 µg/mL)
ERCC4 rs1800067 GG 325/417 1.00 0.66 237/224 1.00 0.01 0.02

AG 47/52 1.10 (0.71-1.70) 27/52 0.48 (0.29-0.81)
AA 2/2 1.08 (0.14-8.22) 2/2 0.71 (0.10-5.23)
AG/AA 49/54 1.10 (0.72-1.69) 0.66 29/54 0.49 (0.30-0.82) 0.006 0.01
January 2022 | Volume
 11 | Article
aCa/Co, Cases and Controls.
bOR, odds ratio; 95%CI, 95% confidence interval.
cAdjusted for baseline age, race, education, body mass index, family history of prostate cancer, diabetes status, smoking status, physical activity, and alcohol consumption.
dP-trend for genetic dose response determined by coding genotypes as having 0, 1, or 2 variant allele, which was subsequently analyzed as an ordinal variable.
eP for heterogeneity from dominant or recessive models.
fP for interaction between genotype (ordinal variable)-serum level of antioxidants (low vs. high) using the likelihood ratio test.
TABLE 2 | Significant associations between polymorphisms in oxidative stress and DNA repair genes and prostate cancer risk in PCPT finasteride arm.

Gene SNP Genotype All prostate cancer Low-grade prostate cancer High-grade prostate cancer

Ca/Coa OR (95%CI)b,c pd,e Caa OR (95%CI)b,c pd,e Caa OR (95%CI)b,c pd,e

APEX1 rs1760944 GG 219/279 1.00 0.04 139 1.00 0.13 75 1.00 0.16
TG 281/308 1.16 (0.91-1.49) 171 1.11 (0.84-1.48) 102 1.23 (0.87-1.74)
TT 111/102 1.41 (1.01-1.98) 67 1.35 (0.84-2.16) 36 1.35 (0.84-2.16)

OGG1 rs1052133 CC 354/423 1.00 0.09 210 1.00 0.06 129 1.00 0.44
CG 227/229 1.23 (0.96-1.57) 145 1.33 (1.01-1.76) 77 1.12 (0.80-1.57)
GG 33/37 1.27 (0.75-2.15) 19 1.27 (0.69-2.34) 12 1.20 (0.59-2.44)
CG/GG 260/266 1.23 (0.98-1.56) 0.08 164 1.32 (1.01-1.73) 0.04 89 1.13 (0.82-1.56) 0.45

NOS3 rs1799983 GG 289/344 1.00 0.25 189 1.00 0.04 93 1.00 0.67
GT 273/264 1.08 (0.84-1.38) 154 0.93 (0.70-1.24) 106 1.31 (0.94-1.83)
TT 57/81 0.68 (0.46-1.01) 31 0.57 (0.36-0.90) 24 0.90 (0.53-1.53)

LIG3 rs1052536 CC 205/251 1.00 0.24 121 1.00 0.60 80 1.00 0.04
CT 310/310 1.04 (0.80-1.34) 185 1.06 (0.78-1.43) 114 0.97 (0.68-1.37)
TT 109/133 0.79 (0.57-1.10) 72 0.88 (0.60-1.29) 30 0.56 (0.35-0.91)

XRCC1 rs25489 GG 403/495 1.00 0.62 248 1.00 0.50 142 1.00 0.04
AG 32/48 0.84 (0.52-1.37) 26 1.12 (0.66-1.90) 5 0.37 (0.14-0.97)
AA 2/2 1.40 (0.18-10.9) 2 2.18 (0.27-17.4) 0 n/a
AG/AA 34/50 0.86 (0.53-1.39) 0.54 28 1.16 (0.69-1.94) 0.58 5 0.36 (0.14-0.93) 0.04
80
aCa/Co, Cases and Controls.
bOR, odds ratio; 95%CI, 95% confidence interval.
cAdjusted for baseline age, race, education, body mass index, family history of prostate cancer, diabetes status, smoking status, physical activity, and alcohol consumption.
dP-trend for genetic dose response determined by coding genotypes as having 0, 1, or 2 variant allele, which was subsequently analyzed as an ordinal variable.
eP for heterogeneity from dominant or recessive models.
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observed among men with higher levels of lycopene (p-
trend=0.02), lower levels of a-carotene (p-trend=0.02) and
retinol (p-trend=0.006), with a p-interaction of 0.32, 0.25, and
0.07, respectively.
DISCUSSION

In this nested case-control study of 1,598 cases and 1,706
controls enrolled in the PCPT, we conducted an analysis of a
panel of candidate genetic polymorphisms involved in the
oxidative stress and DNA repair pathways with risk of prostate
cancer in both placebo and finasteride arms. There were no
significant associations observed in the placebo arm, however, in
the finasteride arm, several SNPs in APEX1, OGG1, NOS3, LIG3
and XRCC1 were associated with risk of total, low- or high-grade
prostate cancer. Our results also indicate that SNP-prostate
cancer associations may be modified by levels of serval serum
antioxidants and differ by treatment arm.

The APEX1 encodes an enzyme involved in the DNA base
excision repair pathway, which plays a central role in the cellular
response to oxidative stress (18). Several studies have reported
associations between APEX1 SNPs, such as rs1760944 and
rs1048945, and risk of several cancers including prostate (19–
22). In this study of primarily White men, compared with the
common G allele, the minor T allele of APEX1-rs1760944 was
associated with increased risk of prostate cancer among men in
Frontiers in Oncology | www.frontiersin.org 6
the finasteride arm. In contrast, as shown in a meta-analysis,
previous studies primarily conducted in Asian populations
reported that the T allele is the common allele, with G allele
associated with decreased risk of cancer including breast, lung
and prostate (21). This polymorphism is located in the promoter
region of APEX1, and there is evidence that the T allele is
associated with altered promoter activity compared with the G
allele (22). We previously reported there was no main effect of
serum lycopene (14), whereas higher levels of serum retinol and
a-carotene were associated with increased prostate cancer risk
among men in the placebo arm (15). In this analysis, we observed
that several SNP-prostate cancer associations were modified by
serum levels of these antioxidants. We found that there was an
increased prostate cancer risk among men who carry the
rs1760944 variant T allele and have a higher-level of serum
lycopene in both placebo and finasteride arm. An increased risk
was also observed for the APEX1-rs1760944 and -rs1048945
among those with lower-levels of serum a-carotene and retinol.
These results support a complex link between APEX1 gene
polymorphisms, serum level of different antioxidants,
hormonal changes caused by finasteride use, and risk of
prostate cancer, which warrants further investigations.
Nevertheless, these findings suggest that APEX1 variants may
interact with antioxidant status to contribute to the susceptibility
to prostate cancer.

Similar to APEX1 SNPs, several SNPs in other DNA repair
genes, specificallyOGG1, LIG3, and XRCC1, were associated with
TABLE 4 | Associations of SNPs with prostate cancer risk stratified by serum antioxidants in PCPT finasteride arm.

Gene SNP Genotype Ca/Coa OR (95%CI)b,c pd,e Ca/Coa OR (95%CI)b,c pd,e P-interf

Lycopene Low-level (<0.38 µg/mL) High-level (≥0.38 µg/mL)
NOS3 Rs1799983 GG 174/199 1.00 0.02 115/145 1.00 0.39 0.03

GT 150/144 0.99 (0.71-1.37) 123/120 1.15 (0.79-1.68)
TT 28/53 0.43 (0.25-0.73) 29/28 1.24 (0.67-2.30)

a-carotene Low-level (<0.06 µg/mL) High-level (≥0.06 µg/mL)
APEX1 Rs1048945 GG 381/454 1.00 0.02 184/199 1.00 0.52 0.04

CG 40/23 1.89 (1.09-3.27) 17/22 0.79 (0.39-1.62)
CC 1/0 n/a 0/0 n/a
CG/GG 41/23 1.94 (1.12-3.36) 0.02 17/22 0.79 (0.39-1.62) 0.52 0.05

LIG3 Rs1052536 CC 134/181 1.00 0.86 71/70 1.00 0.01 0.03
CT 210/210 1.15 (0.84-1.58) 100/100 0.87 (0.54-1.40)
TT 77/84 1.00 (0.66-1.49) 32/49 0.44 (0.24-0.81)

b-carotene Low-level (<0.30 µg/mL) Low-level (≥0.30 µg/mL)
LIG3 Rs1052536 CC 127/172 1.00 0.59 78/79 1.00 0.006 0.01

CT 205/210 1.16 (0.84-1.60) 105/100 0.84 (0.53-1.33)
TT 74/75 1.08 (0.71-1.64) 35/58 0.43 (0.24-0.77)

b-cryptoxanthin Low-level (<0.10 µg/mL) High-level (≥0.10 µg/mL)
LIG3 Rs1052536 CC 108/157 1.00 0.54 97/94 1.00 0.01 0.02

CT 197/188 1.34 (0.96-1.87) 113/122 0.72 (0.47-1.10)
TT 71/81 1.08 (0.70-1.65) 38/52 0.49 (0.28-0.86)

Retinol Low-level (<0.69 µg/mL) High-level (≥0.69 µg/mL)
SOD2 Rs1799725 TT 40/74 1.00 0.005 51/57 1.00 0.47 0.02

CT 121/141 1.56 (0.97-2.52) 119/159 0.64 (0.39-1.05)
CC 65/66 2.17 (1.26-3.75) 41/48 0.82 (0.44-1.53)
J
anuary 2022 | Volume
 11 | Article
aCa/Co, Cases and Controls.
bOR, odds ratio; 95%CI, 95% confidence interval.
cAdjusted for baseline age, race, education, body mass index, family history of prostate cancer, diabetes status, smoking status, physical activity, and alcohol consumption
dP-trend for genetic dose response determined by coding genotypes as having 0, 1, or 2 variant allele, which was subsequently analyzed as an ordinal variable.
eP for heterogeneity from dominant or recessive models.
fP for interaction between genotype (ordinal variable) and serum level of antioxidants (low vs. high) using likelihood ratio test.
808715

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gong et al. Genetic Polymorphisms in Prostate Cancer
prostate cancer among men taking finasteride. OGG1 encodes a
DNA glycosylase, which is critical for removal of the oxidatively
damaged bases from DNA (23). We observed an increased risk
for low-grade prostate cancer for rs1052133, which involves an
amino acid substitution from serine to cysteine at codon 326
(Ser326Cys). This variant has been associated with reduced DNA
repair capacity, and has previously linked with oxidation-related
pathologies and a higher risk of cancer, including prostate (23–
27). We also observed decreased risk for a SNP rs1052536 in
LIG3, with a stronger association for high-grade prostate cancer.
LIG3 encodes a key ligase polypeptide that plays an essential role
in the excision repair pathway. This SNP has been previously
associated with the risk of young-onset lung cancer and an
improved breast cancer survival (28, 29). Interestingly, we
further found that the decreased risk associated with this SNP
was limited to men with higher serum concentrations of each of
the three provitamin A carotenoids (a-carotene, b-carotene, and
b-cryptoxanthin). In addition, XRCC1-rs25489 was associated
with a significant decreased risk for high-grade prostate cancer.
Results from several studies that have examined this SNP with
overall prostate cancer have been inconclusive (30, 31). These
results provide additional evidence that these polymorphisms may
modify prostate cancer risk by interacting with hormonal changes by
finasteride use and serum antioxidants. It is intriguing that among
men with finasteride use, certain SNPs were associated with reduced
risk of prostate cancer, especially the aggressive high-grade cancer.
There is some evidence that finasteride use causes hormonal
alterations and hormones can modulate antioxidant defense
system under various pathophysiological conditions (32, 33). It is
possible that finasteride related hormonal changes can interact with
higher serum levels of carotenoids to provide a stronger defense
against oxidative stress, which may further lead to a stronger
decreased risk of high-grade prostate cancer among men who
carry specific genotypes of DNA repair genes. Future studies are
needed to confirm these findings and underlying mechanisms.

We observed significant associations for two SNPs in genes
involved in the oxidative stress pathways among men in the
finasteride arm. The variant TT genotype of a common SNP on
NOS3, rs1799983, was associated with a significant decreased risk
for low-grade cancer. Results from several studies that have
examined this variant in relation to prostate cancer have been
inconsistent, and a meta-analysis suggested no significant
association for prostate cancer overall (34). Interestingly, we
found a reduced risk associated with this variant for low-grade
cancer among men randomized to finasteride. Although the
function of this variant in prostate carcinogenesis remains to be
determined, rs1799983 located in exon 7 ofNOS3 gene, causing an
amino acid substitution within the N-terminal oxygenase domain
of NOS3 enzyme (34), may contribute to variability in oxidative
stress and risk of prostate cancer by interacting with other genetic
or hormonal factors in this subgroup population. We also
observed that a SNP in SOD2, rs1799725, was associated with
increased risk of prostate cancer, with a stronger association for
men with low serum levels of retinol. SOD2 encodes an
antioxidant enzyme that converts reactive oxygen species to
Frontiers in Oncology | www.frontiersin.org 7
hydrogen peroxide and ultimately into water (35). The
rs1799725 located in exon 2 of SOD2, also called rs4880,
encodes for a thymine to cytosine (T to C allele) change, which
causes an amino acid change from a valine to alanine at codon 16
(Val16Ala) (36). Consistent with our finding, a meta-analysis
reported that this polymorphism was associated with increased
risk for prostate cancer (37). Several previous studies also have
reported that the SNP-prostate relationship may be modified by
antioxidant status (38–40). These findings provide some evidence
that the SOD2-rs1799725 may contribute to prostate cancer
susceptibility, particularly in a low antioxidant environment.

Several limitations of the study warrant consideration. First,
although we investigated a number of candidate SNPs in multiple
key genes thought to be important in cancer risk in oxidative stress
and DNA repair pathways, other potentially functional genetic
variants were not included in the current study. Second, although
this is a relatively large study, which allowed us to examine
associations of these genetic variants with prostate cancer risk,
our sample size was limited when analyses were stratified by low-
and high- grade cancer, and by low- and high-levels of serum
antioxidants, andmay have been inadequate to detect a small effect
size or interactions. Third, overall associations for main effects for
each SNP are moderate, but results suggest that the interplay
between genes involved in oxidative stress and DNA repair and
prostate cancer risk may be modified by finasteride use and
different levels of serum antioxidants. Fourth, we were unable to
include other antioxidants other than carotenoids and retinol in
the analysis. Finally, because of the hypothesis-driven nature of
candidate SNP selection, we did not systematically correct for
multiple testing in our analysis. There are also several strengths.
First, PCPT was a large, placebo-controlled, randomized trial that
all men in the study were determined by biopsy to have or not
have cancer, which largely eliminates the possibility that controls
may have had undiagnosed or undetected disease, minimizing
misclassification bias. Second, all tumors were uniformly evaluated
for Gleason score, which minimizes the large intra-observer
variability in assigning clinical tumor grade. Lastly, we were able
to examine associations by tumor grade and whether SNP-cancer
associations were modified by antioxidant status in both placebo
and finasteride arms, which may offer insights regarding the
complex role of gene, gene-antioxidant and -finasteride
interactions in prostate cancer risk, and thus may lead to the
development of preventative strategies.

In conclusion, this study investigated the role of SNPs in
oxidative stress and DNA repair genes as risk factors for prostate
cancer overall and by tumor grade. Our study provides some
evidence that genetic variants in these genes may contribute to
risk of prostate cancer and may interact with antioxidant status
and hormone changes caused by taking finasteride. Oxidative
stress and DNA repair system are complex; thus, it might be a
combined effect of both multiple genetic variants and their
interactions with other factors such as host antioxidant and
hormonal status that lead to cancer susceptibility. Additional
functional evaluations are warranted to confirm these findings
and explore the underlying molecular mechanisms.
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