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Abstract A stochastic SIRS epidemic model with nonlinear incidence rate and vary-
ing population size is formulated to investigate the effect of stochastic environmental
variability on inter-pandemic transmission dynamics of influenza A. Sufficient con-
ditions for extinction and persistence of the disease are established. In the case of
persistence, the existence of endemic stationary distribution is proved and the dis-
tance between stochastic solutions and the endemic equilibrium of the corresponding
deterministic system in the timemean sense is estimated. Based on realistic parameters
of influenzaA in humans, numerical simulations have been performed to verify/extend
our analytical results. It is found that: (i) the deterministic threshold of the influenza A
extinction RS

0 may exist and the threshold parameter will be overestimated in case of
neglecting the impaction of environmental noises; (ii) the presence of environmental
noises is capable of supporting the irregular recurrence of influenza epidemic, and the
average level of the number of infected individuals I (t) always decreases with the
increase in noise intensity; and (iii) if RS

0 > 1, the volatility of I (t) increases with the
increase of noise intensity, while the volatility of I (t) decreases with the increase in
noise intensity if RS

0 < 1.
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1 Introduction

Influenza A virus infection has been one of the most serious public health chal-
lenges globally and attained an unprecedented degree of attention in recent years.
The influenza epidemics during the last few decades caused substantial morbidity and
mortality in humans (see Simonsen et al. 1998; Simonsen 1999). The mathematical
models have been revealed as a powerful tool to understand the mechanism that under-
lies the spread of influenza (e.g., Arino et al. 2008; Germann et al. 2006; Nuño et al.
2005; Wang et al. 2015).

In mathematical modeling for influenza epidemics, SIRS compartmental model is
usually a reasonable qualitative description of the evolutionary dynamics of influenza
A. Annually recurring of type A influenza epidemics is mainly due to continual
antigenic drift of surface glycoproteins of the virus, hemagglutinin (HA) and neu-
raminidase (NA) (Palese and Young 1982; Webster et al. 1982). Gradual changes of
influenza antigens in the drift process result in decay of host immunity and ultimately
enable the new influenza virus to reinfect previously infected hosts. To incorporate
antigenic drift of influenzaAphenomenologically, Pease originally suggests the frame-
work of susceptible-infected-recovered-(re)susceptible (SIRS) dynamics with viral
evolution causing transition from the recovered class to the susceptible class (Pease
1987). In recent literatures, many of these SIRS or SIRS-type models have provided
valuable insights into evolutionary dynamics of influenza A in humans by antigenic
drift (Casagrandi et al. 2006; Dushoff et al. 2004; Hooten et al. 2010; Shaman et al.
2010; Yuan and Koelle 2012). An alternative path to incorporating antigenic drift
into epidemiological influenza models is that of formulating multi-strain models (e.g.,
Andreasen and Sasaki 2006; Gog and Grenfell 2002; Koelle et al. 2006; Nuño et al.
2005). In this paper, we model this process of antigenic drift in the SIRS compartmen-
tal framework, by allowing recovered individuals to continuously lose their immunity
to the circulating virus and hence to return to the susceptible class at a constant rate.

The incidence function of epidemic model has been considered to play a key role
in ensuring that the model does give a reasonable description of the disease dynamics
(Capasso 1993; Levin et al. 1989). It is traditionally supposed that the incidence rate
of disease (including influenza A) transmission is bilinear with respect to the number
of susceptible individuals S(t) and the number of infective individuals I (t), e.g., βSI,
where β is the transmission rate (e.g., Anderson andMay 1991; Casagrandi et al. 2006;
Hethcote 1976, 2000). As a matter of fact, it is generally difficult to get the details
of transmission of infectious diseases, which may vary under different conditions. In
addition, choosing generalized incidence rate function may allow the data themselves
to flexibly decide the function form of incidence rates in practice (Xia et al. 2005). For
these reasons, there is a wide and increasing interest in studying epidemic models with
nonlinear incidence rates (see, e.g., Feng and Thieme 2000; Liu et al. 1986; Ruan and
Wang 2003 and the references cited therein). For instance, Capasso and Serio (1978)
used a saturated incidence rate βSI/(1+ α I ) to describe that incidence rates increase
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more gradually than linear in the infected I and susceptible S, and then to prevent
the unboundedness of contact rate; Hethcote and van den Driessche (1991) used a
nonlinear incidence rate given byβSG(I ). To incorporate the impact ofmedia coverage
to the spread of infectious diseases, Cui et al. (2008a) considered the incidence rate
βe−mI SI with m > 0. This article chooses the general nonlinear incidence rate of
the form βSG(I ) to enable our model to be more flexible in dealing with realistic
data, where G(I ) allows the possibility of introducing some “psychological” effects
(Capasso and Serio 1978).

In the real world, biological populations exist inevitably in a noisy world of random
variation in the environmental parameters that affect their dynamics. Ripa and Lund-
berg (1996) showed that the autocorrelation, or color, of the external noise strongly
influences extinction probabilities of population dynamics. Environmental stochas-
ticity may induce local extinction of the population (e.g., Mode and Jacobson 1987;
Wissel and Stöcker 1991). Mao et al. (2002) surprisingly found the presence of even a
tiny amount of white noises can suppress a potential population explosion. Therefore,
it is important to investigate the effect of random fluctuations in the environment on
population dynamics.

However, despite the potential importance of parameter noise, it has received rel-
atively little attention in the epidemiology literature (Keeling and Rohani 2008). In
particular, few of the existing literatures formulate mathematical models to study the
effect of unpredictable fluctuations in the environment on the inter-pandemic transmis-
sion of influenza. The transmission of influenza is sensitive to random meteorological
factors, such as absolute humidity, temperature and precipitation. Shaman and Kohn
(2009) explored the effects of absolute humidity on influenza virus transmission and
influenza virus survival (IVS), and found that absolute humidity significantly con-
strains both transmission efficiency and IVS. Based on experimental studies in guinea
pigs, Lowen and Steel (2014) revealed influenza virus transmission is strongly mod-
ulated by temperature and humidity: Transmission is highly efficient at 5 ◦C but is
blocked or inefficient at 30 ◦C, and dry conditions (20 and 35% relative humidity)
are also found to be more favorable for spread than other humid conditions. We also
refer the reader to Lowen et al. (2007), Pica and Bouvier (2012) for learning more
about the effect of weather factors to transmission efficiency of influenza. Random
fluctuations in temperature or humidity will therefore be translated to fluctuations in
the transmission rate β (Keeling and Rohani 2008).

In addition, some studies showed that the white noise is an appropriate representa-
tion of environmental random variability in terrestrial ecosystems, through analyzing a
variety of meteorological data under the condition of removing the influence of regular
diurnal, lunar and seasonal cycles (Steele 1985; Vasseur and Yodzis 2004). To con-
sider the impact of unpredictable weather conditions to the transmission of respiratory
syncytial virus (RSV), Arenas et al. (2009) formulated stochastic SIRSmodel with the
Gaussian white noise disturbance of the transmission rate and revealed that perturba-
tions on the transmission rate have significant effect on the transmission dynamics of
RSV by numerical simulations techniques. Hence, it is reasonable to investigate the
effect of environmental randomfluctuations on the transmission dynamics of influenza
A in human populations based on amathematicalmodelwhich introduces theGaussian
white noise disturbance in the transmission parameter of disease β.
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There are mainly two types of approaches for applying modeling techniques of sto-
chastic differential equation (SDE) to introduce environmental noises into biological
systems. In the first modeling procedure, an SDE model is obtained as approximation
to the continuous time Markov chain model (e.g., Lahodny and Allen 2013; Yuan
and Allen 2011). The second procedure is the technique of parameter perturbation,
which is the most commonly used procedure in constructing SDEmodels (e.g., Haque
2011; Ji et al. 2011; Li et al. 2015; Liu et al. 2011; Liu and Bai 2015; Mukhopad-
hyay and Bhattacharyya 2012; Øksendal 2005; Zhao et al. 2015a). In recent years,
several scholars have studied the effect of environmental noise on the transmission
dynamics of diseases by proposing epidemic SDE model with stochastic disturbances
of β via the second procedure above. Through analytical analysis and numerical sim-
ulations, Gray et al. (2011) obtained a threshold of disease extinction of a stochastic
SIS epidemic model with bilinear incidence rate and fixed population size. Lahrouz
and Settati (2014) studied a stochastic SIRS model with bilinear incidence rate and
fixed population size, and when the intensity of white noise is small, they obtained the
necessary and sufficient condition for extinction of disease. We also refer the readers
to Cai et al. (2015a, b), Lahrouz and Omari (2013), Yang and Mao (2014), Zhao et al.
(2015b) and the references therein for more similar models with stochastic disease
transmission.

This article formulates a stochastic SIRS epidemic model with nonlinear incidence
rate and variable population size, and our main aim is to extend results in Gray et al.
(2011), Lahrouz and Settati (2014) and investigate the effect of random variability in
the environments on the inter-pandemic transmission dynamics of influenza A based
on realistic parameters obtained from previous literatures. Compared with previous
researches, the main contributions of the present study are as follows.

• In the nonlinear incidence setting,we obtain the sufficient criteria of disease extinc-
tion and the existence of unique stationary distribution by applying comparison
theorem and constructing a suitable Lyapunov function, respectively. In this sense,
we extend the previous studies (Cai et al. 2015a; Gray et al. 2011; Lahrouz and
Settati 2014).

• Because the total population size of our model is varying, mathematical deduction
in the three-dimensional setting faces greater challenges than Cai et al. (2015a),
Gray et al. (2011), Lahrouz and Settati (2014) where their system can be simplified
to one or two dimensions.

• Compared with results in Liu and Chen (2015), Zhao et al. (2015b) for a stochastic
SIRS epidemic model with varying population size and the fluctuation of the white
noise in the transmission rate of disease, the advantages in this paper lie in: (1) the
existence of endemic stationary distribution is proved in the case of persistence;
(2) combining analytical results and numerical simulations, the effect of the white
noise on disease spread is analyzed completely for all range of noise intensity.

• According to detailed simulation studies, we verify that Conjecture 8.1 of Gray
et al. (2011) may also hold for our stochastic SIRS system with nonlinear inci-
dence rate and variable population size, i.e., we may obtain a threshold of disease
extinction.
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• Through developing an SDE model, we likely first study the effect of random
variability in the environments on the epidemiological consequences of the drift
mechanism for influenza A viruses based on realistic parameter values.

This paper is organized as follows. In the next section, we derive our model and
introduce some preliminaries used in the later parts. In Sects. 3 and 4, we investigate
the disease extinction and endemic dynamics of our model in detail. In Sect. 5, we
perform numerical simulations to verify/extend our analytical results based on realistic
parameter values with respect to influenza A virus in human host. In the last section,
we provide a brief discussion and summary of main results.

2 Model Derivation and Preliminaries

Throughout this paper, we let (Ω,F ,P) be a complete probability space with a filtra-
tion {Ft }t≥0 satisfying the usual conditions (i.e., it is right continuous and increasing
whileF0 contains all P-null sets), and we denoteR3+ = {

x ∈ R
3: xi > 0, i = 1, 2, 3

}
.

If the transmission of the infection is governed by a general nonlinear incidence
rate βSG(I ), then the basic SIRS model with variable population size is

⎧
⎨

⎩

dS(t)/dt = A − μ1S(t) + λR(t) − βS(t)G(I (t)),
d I (t)/dt = βS(t)G(I (t)) − (μ2 + δ) I (t),
dR(t)/dt = δ I (t) − (μ3 + λ) R(t),

(1)

where S, I and R denote the number of the population that are susceptible, infectious
and recovered with temporary immunity, respectively. The parameter λ is the rate
constant for loss of immunity; δ is the recovery rate; β is the transmission rate (per
capita),which is the product of the rate of contact among individuals and the probability
that a susceptible individual who is contacted by an infectious individual will become
infected; A is a constant recruitment of susceptible individuals, and μ1, μ2 and μ3
represent, respectively, mortality of susceptible, infectious and recovered, and we
let μ1 ≤ min{μ2, μ3} because the disease may lead to the death of infectious or
recovered individuals. In addition, all parameters of model (1) are assumed to be
positive constants.

Following the second modeling procedure of SDE mentioned above, the SDE ver-
sion of system (1) with stochastic disturbances of β is derived as follows (e.g., see
Keeling and Rohani 2008): If the parameter β in system (1) is not completely known,
but subject to some random environmental effects, then we have

β = β̃ + σξ(t), (2)

where ξ(t) is the Gaussian white noise with mean zero and variance one, β̃ represents
the average transmission rate in the stochastic setting and σ > 0 denotes the white
noise intensity. Here, we assume the average transmission rate β̃ is constant. Indeed,
influenza incidence exhibits strong seasonal fluctuations in temperate regions through-
out the world. To include the seasonal effect in the model, many existing literatures
assume the average transmission rate β̃ varies sinusoidally according to the formula
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β̃(t) = β0 (1 + ε cos(
 t − φ)), where β0, ε,
 and φ are all constants. However, our
main aim is to study the influence of the white noise in the external environments on
the evolutionary dynamics of influenza epidemics. Hence, it is reasonable to ignore
the seasonality of transmission rates of influenza for convenience in this article.

Substituting (2) into system (1) and rearranging it yield

⎧
⎨

⎩

dS(t) = (A − μ1S(t) + λR(t) − βS(t)G(I (t))) dt − σ S(t)G(I (t))ξ(t)dt,
d I (t) = (βS(t)G(I (t)) − (μ2 + δ) I (t)) dt + σ S(t)G(I (t))ξ(t)dt,
dR(t) = (δ I (t) − (μ3 + λ) R(t)) dt,

where β̃ is rewritten as β for convenience. Note that ξ(t)dt = dB(t), where B(t) rep-
resents the standard Brownian motion (Øksendal 2005). We then obtain the following
stochastic epidemic SIRS model to be studied in this paper:

⎧
⎨

⎩

dS(t) = (A − μ1S(t) + λR(t) − βS(t)G(I (t))) dt − σ S(t)G(I (t))dB(t),
d I (t) = (βS(t)G(I (t)) − (μ2 + δ) I (t)) dt + σ S(t)G(I (t))dB(t),
dR(t) = (δ I (t) − (μ3 + λ) R(t)) dt.

(3)

The interpretation associated with the stochastic integration represented by dB(t)
in (3) should also be specified, as either Stratonovich or Itô (Øksendal 2005). Here,
we use the Itô interpretation rather than the Stratonovich interpretation on the ground
that the specific feature of the Itô model of “not looking into the future” is a reason
for choosing the Itô interpretation in biology (see, e.g., Øksendal 2005; Turelli 1977).

Throughout this paper, we further assume that

(H1) G(·):R+ → R+, and G(0) = 0, 0 < G(I ) ≤ I holds for all I > 0;
(H2) h(x) is Lipschitz on [0, A/μ1]; namely, there exists a constant θ > 0, such that

|h(x1) − h(x2)| ≤ θ |x1 − x2| f or any x1, x2 ∈ [0, A/μ1],

where h(x) = G(x)/x ;
(H3) G ′(0) = 1, where G ′(0) denotes the derivative of the function G(x) at x = 0.

Notice that the function G(I ) in this paper is not necessarily increasing function
with respect to I , e.g., it may firstly increase and then decrease describing some psy-
chological effects: For a very large number of infectives, the infection forceβG(I )may
decrease as I increases, because in the presence of a very large number of infectives,
the population may tend to reduce the number of contacts per unit time (Capasso and
Serio 1978). Our general results can be used in some specific forms for the incidence
rate that have been commonly used, for example:

(i) linear type: G(I ) = I ;
(ii) saturated incidence rate: G(I ) = I/(1 + α I );
(iii) incidence rates with “media coverage” effect as shown below:

Type 1 (see Cui et al. 2008a): G(I ) = I exp(−mI ), wherem is a positive constant.
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Type 2 (see Cui et al. 2008b): βG(I ) = (β − β2 f (I ))I , where β > β2 and the
function f (I ) satisfies

f (0) = 0, f
′
(I ) ≥ 0, lim

I→+∞ f (I ) = 1.

The basic reproduction number R0 is a measure of the potential for disease spread
in deterministic epidemicmodels. Epidemiologically, R0 is interpreted as the expected
number of secondary infections produced by an index case in a completely susceptible
host. This threshold parameter R0 of deterministic system (1) can be computed by
application of the next-generation matrix approach (van den Driessche andWatmough
2002, 2008) as

R0 = AβG ′(0)
μ1(μ2 + δ)

= Aβ

μ1(μ2 + δ)
.

For convenience, let us introduce some notations as follows:

σ ∗ :=
√

βμ1

A
· R0

2
, σ∗ :=

√

2(μ2 + δ)(R0 − 1)
(μ1

A

)2
, σ :=

√
βμ1

A
. (4)

Through simple derivations, we have the following proposition:

Proposition 1 (1) if R0 ≤ 2, then σ ≥ σ ∗, otherwise σ < σ ∗;
(2) if R0 = 2, then σ ∗ = σ∗, otherwise σ ∗ > σ∗.

Let us give some definitions which will be used in later sections. In general, let
X (t) be a regular time-homogenous Markov process inRn described by the stochastic
differential equation

dX (t) = b(X)dt +
k∑

r=1

σr (X)dBr (t), (5)

and the diffusion matrix is defined as follows

A(x) = (
ai j (x)

)
, ai j (x) =

k∑

r=1

σ i
r (x)σ

j
r (x).

Moreover, for any twice continuously differential real-value function V(x), define an
operator LV by

LV (x) =
n∑

i=1

bi (x)
∂V (x)

∂xi
+ 1

2

n∑

i, j=1

ai j (x)
∂2V (x)

∂xi∂x j
.

For the definition of stability, we will use those introduced in Refs. Has’minskii
(1980).
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Definition 1 The stochastic process X (t) = X̄ is a stationary solution of the stochastic
system (5) with initial condition X (t0) = X̄ if

b(X̄) = 0, σr (X̄) = 0, r = 1, 2, . . . , k.

If X̄ = 0, the stationary solution is called a trivial solution.

Definition 2 The trivial solution X (t) = 0 of system (5) is said to be:

(i) stable in probability if for any ε > 0

lim
x0→0

P

(

sup
t≥0

|X (t, x0)| ≥ ε

)

= 0,

where X (t, x0) denotes the solution of (5) with the initial condition X (0) = x0.

(ii) globally asymptotically stable in probability if it is stable in probability and for
any x0 ∈ R

n

P

(
lim

t→+∞ X (t, x0) = 0

)
= 1.

To study the dynamics of model (3), we then present two lemmas.
Using the Khasminskii–Mao theorem (Khasminskii 2012; Mao 2002) and appro-

priate Lyapunov functions, we show that the stochastic differential equation associated
with our model has a unique global positive solution.

Lemma 1 For any given initial value (S(0), I (0), R(0)) ∈ R
3+, there is a unique

solution (S(t), I (t), R(t)) of system (3) on t ≥ 0 and the solution will remain in R
3+

with probability 1, namely (S(t), I (t), R(t)) ∈ R
3+ for all t ≥ 0 almost surely.

Proof Since the argument is similar to that of Lahrouz andOmari (2013), Theorem2.1,
we here only sketch the proof to point out the difference with it. Define the stopping
time τ+ by

τ+ = inf
{
t ∈ [0,+∞) : S(t) ≤ 0 or I (t) ≤ 0 or R(t) ≤ 0

}
.

To show this solution is positive globally in the first octant, we only need to show that
τ+ = +∞ a.s. Assume that there exists a T > 0 such that P(τ+ < T ) > 0. Let
Ω̃ = {ω ∈ Ω: τ+ < T }, where ω represents a sample point (i.e., a possible outcome
of the sample space Ω). Introduce C2 function V :R3+ → R by V (t) = V (S, I, R) =
log(SI R). Applying the Itô’s formula to V , we obtain that for all t ∈ [0, τ+) and
ω ∈ Ω̃
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dV =
[ A
S

+ λR

S
− βG(I ) − σ 2

2
(G(I ))2 + βS

(G(I )

I

)
− (

μ1 + μ2 + μ3 + λ + δ
)

− σ 2

2

( SG(I )

I

)2 + δ I

R

]
dt − σ

[
G(I ) − S

(G(I )

I

)]
dB(t),

≥
[

− β I − σ 2

2
(I 2 + S2) − (

μ1 + μ2 + μ3 + λ + δ
)]
dt

− σ
[
G(I ) − S

(G(I )

I

)]
dB(t), (6)

where the last inequality is obtained by using the fact that 0 < G(I ) ≤ I and S, I, R >

0 for all t ∈ [0, τ+). we can integrate both sides of (6) from 0 to τ+ ∧ t to get

V (τ+ ∧ t) ≥ V (0) +
∫ τ+∧t

0

[
− β I − σ 2

2

(
I 2 + S2

)

− (μ1 + μ2 + μ3 + λ + δ)
]
ds

−
∫ τ+∧t

0
σ
[
G(I ) − S

(
G(I )

I

)]
dB(s).

Recall that 0 < G(I )/I ≤ 1 for all t ∈ [0, τ+). Let t → +∞ in both sides of the
above inequality, we obtain from the definition of τ+ that

−∞ > −∞,

which is a contradiction. This completes the proof of Lemma 1. ��

Lemma 2 For any given initial value (S(0), I (0), R(0)) ∈ R
3+, the solution

(S(t), I (t), R(t)) of system (3) has the property that

lim
t→+∞(S(t) + I (t) + R(t)) ≤ A

μ1

for all ω ∈ Ω .

Proof Summing up the three equations in (3) and denoting N (t) = S(t)+ I (t)+R(t),
we obtain from Lemma 1 that

dN

dt
= A − μ1S − μ2 I − μ3R

≤ A − μ1N ,

where the last inequality is obtained by using the fact that μ1 ≤ min{μ2, μ3}. By
comparison theorem, we obtain the required assertion. ��
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3 Stochastic Disease-Free Dynamics

In this section, we will discuss the disease-free dynamics under each one of the fol-
lowing conditions.

(C1) RS
0 < 1 and σ < σ =

√
βμ1
A ,

(C2) σ > σ ∗ =
√

βμ1
A · R0

2 ,

where

RS
0 := R0 − A2σ 2

2μ2
1(μ2 + δ)

. (7)

FromLemmas1 and2,weget thatΓ = {x ∈ (0, A/μ1)
3|x1+x2+x3 ≤ A/μ1} is an

almost surely positively invariant set of system (3),which is attracting in thefirst octant.
For convenience and simplicity, we therefore assume that (S(0), I (0), R(0)) ∈ Γ in
the proof of Theorem 1 without loss of generality.

Theorem 1 Suppose that (C1) or (C2) holds, then the solution (S(t), I (t), R(t)) of
system (3) with any initial value (S(0), I (0), R(0)) ∈ R

3+ has the property that

lim
t→+∞ S(t) = A

μ1
a.s., (8)

lim
t→+∞ I (t) = 0 a.s., (9)

lim
t→+∞ R(t) = 0 a.s. (10)

Proof Using the Itô’s formula to log I (t) yields

d log I (t) =
[1
I

(βSG(I ) − (μ2 + δ) I ) − σ 2

2

(
SG(I )

I

)2 ]
dt

+ σ

(
SG(I )

I

)
dB(t)

=
[
β

(
SG(I )

I

)
− (μ2 + δ) − σ 2

2

(
SG(I )

I

)2 ]
dt + σ

(
SG(I )

I

)
dB(t)

= Ψ

(
SG(I )

I

)
dt + σ

(
SG(I )

I

)
dB(t), (11)

where Ψ (x) = − 1
2σ

2x2 + βx − (μ2 + δ).
Let us consider separately the two cases:
Case 1. Suppose that (C1) holds. Firstly, we will prove that the assertion (9) holds.

Noting that Ψ (x) is monotone increasing for x ∈ [0, β/σ 2] and σ 2 < βμ1/A in the
condition (C1) yields

Ψ

(
SG(I )

I

)
≤ Ψ (S) ≤ Ψ

(
A

μ1

)
,
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where we make use of the fact that G(I ) ≤ I and S ≤ A/μ1. Substituting this
inequality into (11), we have

d log I (t) ≤ Ψ

(
A

μ1

)
dt + σ

(
SG(I )

I

)
dB(t).

Integrating the above inequality via t along [0, t] and using the strong law of large
numbers for local martingales, we have

lim sup
t→+∞

log I (t)

t
≤ Ψ

(
A

μ1

)
a.s.

Noting that RS
0 < 1 implies Ψ (A/μ1) < 0, we therefore have

lim
t→+∞ I (t) = 0 a.s. (12)

This is the required assertion (9).
Secondly, we shall prove that the assertion (10) holds. Let Ω = {ω ∈

Ω: limt→+∞ I (t) = 0}, then (12) implies P(Ω) = 1. Note that the stochastic process
I (t) in the SDE (3) in fact is the abbreviation of the symbol I (ω, t), which can be
regarded as a function of two variables: sample point ω ∈ Ω and time t ∈ [0,∞); For
eachω ∈ Ω fixed I (ω, t) can be viewed as a function with respect to t ∈ [0,∞)which
is usually called a sample path of I (t) (Øksendal 2005). For different selections of
sample point ω ∈ Ω , the sample path I (ω, t) may have different convergence speeds
with respect to time t . Hence, for any ω ∈ Ω and any constant ε > 0, there exists a
constant T (ω, ε) > 0 such that

I (ω, t) ≤ ε

for all t > T . Substituting this into the third equation of the SDE (3), we get

dR(ω, t) ≤ [
δε − (μ3 + λ) R(ω, t)

]
dt f or all ω ∈ Ω, t > T,

which implies by comparison theorem that

lim sup
t→+∞

R(ω, t) ≤ δε

μ3 + λ

for all ω ∈ Ω . Noting that R(ω, t) > 0 for all ω ∈ Ω and t > 0, by arbitrariness of
ε, we have

lim
t→+∞ R(ω, t) = 0, ω ∈ Ω.

Recalling that P(Ω) = 1, we therefore have

lim
t→+∞ R(t) = 0, a.s., (13)
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this is the required assertion (10).
Finally, we shall prove the assertion (8) holds. Let N (t) = S(t) + I (t) + R(t).

From the system (3), we have

dN(t)

dt
= A − μ1S(t) − μ2 I (t) − μ3R(t)

= A − μ1N (t) − (μ2 − μ1)I (t) − (μ3 − μ1)R(t).

From the well-known variation of constants formula, we have

N (t) = y(t)
(
N (0) +

∫ t

0
y−1(s)

(
A − (μ2 − μ1)I (s)

− (μ3 − μ1)R(s)
)
ds
)
, (14)

where y(t) = exp
{

− ∫ t
0 μ1ds

}
= exp{−μ1t}.

Let F = {ω ∈ Ω: limt→+∞ I (t) = limt→+∞ R(t) = 0}, then (12) and (13) imply
that P(F) = 1. Hence, for any ω ∈ F and any constant ε1 > 0, there exists a constant
T1(ω, ε1) > 0 such that

I (ω, t) ≤ ε1, R(ω, t) ≤ ε1, ∀t > T1. (15)

Since μ1 ≤ min{μ2, μ3} implies μ2 − μ1 ≥ 0 and μ3 − μ1 ≥ 0. This, combining
with (14) and (15), yields

N (ω, t) ≥ y(t)
(
N (0) +

∫ t

0
y−1(s)

[
A − (μ2 + μ3 − 2μ1)ε1

]
ds
)

= N (0) exp{−μ1t} + [
A − (μ2 + μ3 − 2μ1)ε1

] ∫ t

0
exp

{
− μ1(t − s)

}
ds

= N (0) exp{−μ1t} + A − (μ2 + μ3 − 2μ1)ε1

μ1

(
1 − exp{−μ1t}

)
,

which implies

lim inf
t→+∞ N (ω, t) ≥ A − (μ2 + μ3 − 2μ1)ε1

μ1
, ∀ ω ∈ F.

From the arbitrariness of ε1, this implies

lim inf
t→+∞ N (ω, t) ≥ A

μ1
, f or all ω ∈ F,

which, together with P(F) = 1, proves

lim inf
t→+∞ N (t) ≥ A

μ1
a.s.
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On the other hand, by Lemma 2, we get lim supt→+∞ N (t) ≤ A/μ1. Hence, we
have limt→+∞ N (t) = A/μ1 a.s. Recalling that N (t) = S(t) + I (t) + R(t), from
(12) and (13), we therefore have

lim
t→+∞ S(t) = A

μ1
a.s.,

this is the required assertion (8).
Case 2. Suppose that (C2) holds. Since

Ψ (x) = −1

2
σ 2
(
x − β

σ 2

)2

+ β2

2σ 2 − (μ2 + δ)

≤ −
(

(μ2 + δ) − β2

2σ 2

)
,

we get that if σ 2 >
βμ1
A · R0

2 ,

Ψ

(
SG(I )

I

)
≤ −

(
(μ2 + δ) − β2

2σ 2

)
< 0.

Substituting this inequality into (11) yields

d log I (t) ≤ −
(

(μ2 + δ) − β2

2σ 2

)
dt + σ

(
SG(I )

I

)
dB(t).

Integrating both sides, from the strong law of large numbers for local martingales, we
derive that

lim sup
t→+∞

log I (t)

t
≤ −

(
(μ2 + δ) − β2

2σ 2

)
< 0 a.s.

Then using the similar arguments to those given in Case 1, we can also get the required
assertion (8), (9) and (10). This completes the proof of Theorem 1. ��
Remark 1 In Theorem 1, we extend the results of Cai et al. (2015a), Gray et al.
(2011), Lahrouz and Settati (2014) by considering a stochastic SIRS model with a
general incidence rate and variable population size. Because total population size is
dynamic, the mathematical deduction here faces bigger challenges than that of Gray
et al. (2011), although the proof also use comparison theorem of SDE as authors in
Gray et al. (2011) do. If we let A = μ1 = μ2 = μ3 = μ and G(I ) = I , the system
(3) is reduced to the system (7) in Lahrouz and Settati (2014); Theorem 3.1 in Lahrouz
and Settati (2014) shows that if σ ≤ √

βμ1/A = √
β and

RS = β

μ + δ + σ 2/2
< 1, (16)
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then the solution (A/μ1, 0, 0) = (1, 0, 0) of system (7) in Lahrouz and Settati (2014)
will be globally asymptotically stable in probability. From the proof procedure of
Theorem 1, it is obvious to see that any positive solution of system (3) will tend
to (A/μ1, 0, 0) exponentially with probability one, which implies the asymptotically
stable in probability in Definition 2. Note that (16) is equivalent to RS

0 < 1 in this
article. Hence, our results for the disease extinction are stronger than that given in
Lahrouz and Settati (2014), Theorem 3.1.

Remark 2 Comparing with Theorem 3.1 of Lahrouz and Settati (2014), here we also
show that the infection will be eradicated a.s. when σ > σ ∗. This indicates that the
large environmental noises may help to bring about extinction of diseases.

4 Stochastic Endemic Dynamics

In studying epidemic modelings, we are usually interested in two issues: One is the
occurring of extinction, which has been shown in Sect. 3; another is the disease per-
sistence in a host population. In this section, we will first prove that the disease is
persistent when RS

0 > 1, and next we show that under the same condition, a unique
stationary distribution exists for the solution of system (3), which implies the disease
is recurrent. Finally, we explore the relations of the stochastic solution to the interior
deterministic stationary point when the stochastic effects are not too strong.

4.1 Persistence of the Disease

Let us first consider the disease persistence, which corresponds to the stochastic strong
persistence in themean defined byWang (2010) and Zhao et al. (2015a). The following
theorem shows that the disease will be almost surely persistent in the time mean sense
when RS

0 > 1.

Theorem 2 If RS
0 > 1, then for any initial value (S(0), I (0), R(0)) ∈ R

3+, the solution
(S(t), I (t), R(t)) of system (3) has the property that

(i) lim inf
t→+∞

1

t

∫ t

0
S(s)ds ≥ Aμ1

μ2
1 + Aβ

a.s.,

(ii) lim inf
t→+∞

1

t

∫ t

0
I (s)ds ≥

μ2
1Ψ
(

A
μ1

)

A(μ1θ + β)
(
β − Aσ 2

2μ1

) a.s.,

(iii) lim inf
t→+∞

1

t

∫ t

0
R(s)ds ≥

δμ2
1Ψ
(

A
μ1

)

A(μ3 + λ)(μ1θ + β)
(
β − Aσ 2

2μ1

) a.s.,

where Ψ (x) = − 1
2σ

2x2 + βx − (μ2 + δ).
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Proof Let (S(t), I (t), R(t)) be a solution of system (3) with any initial value (S(0),
I (0), R(0)) ∈ R

3+. By Lemma 2, it holds that lim supt→+∞ I (t) ≤ A/μ1 for all
ω ∈ Ω . This yields that, for any ω ∈ Ω and any ε > 0 sufficiently small, there exists
a T ω = T ω(ε) > 0 such that I (ω, t) ≤ A/μ1 + ε for all t > T ω. Then, noting that
0 < G(I ) ≤ I , from the first equation of system (3), we derive that for all t > T ω,

dS(t) ≥
(
A − μ1S − βS

(
A

μ1
+ ε

))
dt − σSG(I )dB(t)

=
[
A −

(
μ1 + β

(
A

μ1
+ ε

))
S
]
dt − σSG(I )dB(t),

where ω is omitted. For the sake of convenience, we assume that the above inequality
holds for all t > 0 without loss of generality. Integrating the above inequality and
dividing both sides by t , we get

(
μ1 + β

( A

μ1
+ ε

))1
t

∫ t

0
S(s)ds

≥ A − S(t) − S(0)

t
− σ

t

∫ t

0
SG(I )dB(s). (17)

From lim supt→+∞ N (t) = lim supt→+∞ (S(t) + I (t) + R(t)) ≤ A/μ1 for all ω ∈
Ω and the strong law of large numbers for local martingales, we have

lim
t→+∞

(
S(t) − S(0)

t
+ σ

t

∫ t

0
SG(I )dB(s)

)
= 0 a.s.,

which, together with (17), implies

lim inf
t→+∞

1

t

∫ t

0
S(s)ds ≥ A

μ1 + β
(

A
μ1

+ ε
) a.s.

As this holds for arbitrary ε > 0, it follows that

lim inf
t→+∞

1

t

∫ t

0
S(s)ds ≥ Aμ1

μ2
1 + Aβ

a.s.,

this is the required assertion (i).
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Next, we will prove that (ii) holds. By the Itô’s formula, it can be seen from the
second equation of system (3) that

d log I (t) =
[1
I

(βSG(I ) − (μ2 + δ) I ) − σ 2

2

(
SG(I )

I

)]
dt

+ σ

(
SG(I )

I

)
dB(t)

= Ψ

(
SG(I )

I

)
dt + σ

(
SG(I )

I

)
dB(t).

Integrating both sides yields

log I (t) = log I (0) +
∫ t

0
Ψ

(
SG(I )

I

)
ds + σ

∫ t

0

SG(I )

I
dB(s). (18)

We compute

Ψ

(
SG(I )

I

)
− Ψ

(
A

μ1

)

= σ 2

2

(
A

μ1

)2 [
1 −

(
μ1

A
· SG(I )

I

)2 ]
− Aβ

μ1

[
1 −

(
μ1

A
· SG(I )

I

)]
. (19)

ByLemma 2,we get lim supt→+∞ S(t) ≤ A/μ1. For the sake of convenience, wemay
assume that S(t) ≤ A/μ1 for all t > 0. Hence,G(I ) ≤ I impliesμ1SG(I )/(AI ) ≤ 1,
which yields from (19) that

Ψ

(
SG(I )

I

)
≥ Ψ

(
A

μ1

)
−
(
Aβ

μ1
− σ 2

2

(
A

μ1

)2
)
[
1 −

(
μ1

A
· SG(I )

I

)]

= Ψ

(
A

μ1

)
−
(

β − Aσ 2

2μ1

)(
A

μ1
− SG(I )

I

)
.

Substituting this inequality into (18) yields

log I (t) ≥ log I (0) + Ψ

(
A

μ1

)
t −

(
β − Aσ 2

2μ1

)∫ t

0

(
A

μ1
− SG(I )

I

)
ds

+ σ

∫ t

0

SG(I )

I
dB(s). (20)

On the other hand, from the first equation of system (3), we have

dS ≥ (A − μ1S − βSG(I )) dt − σSG(I )dB(t)

=
[
μ1

(
A

μ1
− SG(I )

I

)
− μ1S

(
1 − G(I )

I

)
− βSG(I )

]
dt

− σSG(I )dB(t). (21)
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Let f (I ) = 1−G(I )/I . By the hypotheses (H2) and (H3), we derive that there exists
a constant θ > 0, such that

f (I ) − f (0) ≤ θ(I − 0),

namely,

1 − G(I )

I
≤ θ I. (22)

Substituting this inequality into (21) and recalling that G(I ) ≤ I and S ≤ A/μ1, we
have

dS ≥
[
μ1

(
A

μ1
− SG(I )

I

)
− (μ1θ + β)

A

μ1
I
]
dt − σSG(I )dB(t),

which implies

μ1

∫ t

0

(
A

μ1
− SG(I )

I

)
ds ≤ S(t) − S(0) + (μ1θ + β)

A

μ1

∫ t

0
I (s)ds

+ σ

∫ t

0
SG(I )dB(s). (23)

Combining (20) with (23) and rearranging, we get

log I (t) ≥ Ψ

(
A

μ1

)
t − A(μ1θ + β)

μ2
1

(
β − Aσ 2

2μ1

)∫ t

0
I (s)ds + Y (t), (24)

where

Y (t) = log I (0) − 1

μ1

(
β − Aσ 2

2μ1

)(
S(t) − S(0) + σ

∫ t

0
SG(I )dB(s)

)

+ σ

∫ t

0

SG(I )

I
dB(s).

By Lemma 2 and the strong law of large numbers for local martingales, we have

lim
t→+∞

Y (t)

t
= 0 a.s., and limsupt→+∞

log I (t)

t
≤ 0.

This, together with (24), yields by Lemma 2 that

lim inf
t→+∞

1

t

∫ t

0
I (s)ds ≥

μ2
1Ψ
(

A
μ1

)

A(μ1θ + β)
(
β − Aσ 2

2μ1

) a.s. (25)
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This is the required assertion (ii).
Finally, we shall prove the assertion (iii). Integrating the third equation of the system

(3) and dividing both sides by t , we get

(μ3 + λ)
1

t

∫ t

0
R(s)ds ≥ δ

t

∫ t

0
I (s)ds − R(t) − R(0)

t
,

which, together with (25), yields by Lemma 2 that

lim inf
t→+∞

1

t

∫ t

0
R(s)ds ≥

δμ2
1Ψ
(

A
μ1

)

A(μ3 + λ)(μ1θ + β)
(
β − Aσ 2

2μ1

) a.s.

This completes the proof of Theorem 2. ��
From Theorem 2, it can be seen that persistence in mean implies the following

stochastic weak persistence in the mean that was defined by Wang (2010) and (Zhao
et al. 2015a, Definition 2.1).

Corollary 1 If RS
0 > 1, then for any initial value (S(0), I (0), R(0)) ∈ R

3+, the
solution (S(t), I (t), R(t)) of system (3) has the property that

lim sup
t→+∞

I (t) ≥
μ2
1Ψ
(

A
μ1

)

A(μ1θ + β)
(
β − Aσ 2

2μ1

) > 0 a.s.

4.2 Stationary Distribution and Positive Recurrence

Before giving the main results, we first present a lemma, which is a useful criterion
for positive recurrence in terms of Lyapunov function (see Zhu and Yin 2007).

Lemma 3 (Zhu andYin 2007)The system (5) is positive recurrent if there is a bounded
open subset D of Rn with a regular (i.e., smooth) boundary, and

(i) there exist some ι = 1, 2, . . . , n and a positive constant κ such that

aιι(x) ≥ κ f or any x ∈ D,

(ii) there exists a nonnegative function V : Dc → R such that V is twice continuously
differentiable and that for some θ > 0,

LV (x) ≤ −θ, f or any x ∈ Dc.

Moreover, the positive recurrent process X (t) has a unique stationary distribution
μ(·) with density in Rn such that for any Borel set B ∈ R

n

lim
t→+∞P(t, x, B) = μ(B),
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and

Px

{
lim

T→+∞
1

T

∫ T

0
f (X (t))dt =

∫

Rn
f (x)μ(dx)

}
= 1,

for all x ∈ R
n and f :Rn → R be a function integrable with respect to the measure

μ.

In the following theorem, we show that RS
0 > 1 is also a sufficient condition for

the positive recurrence and the existence of stationary distribution for system (3).

Theorem 3 If RS
0 > 1, then the solution (S(t), I (t), R(t)) of system (3) with any

positive initial value (S(0), I (0), R(0)) ∈ Γ is positive recurrent and admits a unique
ergodic stationary distribution in Γ , where Γ = {x ∈ (0, A/μ1)

3|x1 + x2 + x3 ≤
A/μ1}.

Proof Define the following bounded open subset of Γ

D =
{
x ∈ Γ

∣
∣
∣
1

α1
< x1, x2 < 1 − 1

α1
,

1

α2
< x3 < 1 − 1

α2
and α1 < α2

}
,

where α1 and α2 are sufficiently large positive constants to be chosen in the following.
The diffusion matrix associated with the system (3) is given by

A(S, I, R) = (σSG(I ))2

⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦ .

Since D ∈ R
3+, then

a11(S, I, R) = (σSG(I ))2 ≥ min
(S,I,R)∈D

(σSG(I ))2 ≥ η,

where η is a positive constant. This implies the condition (i) in Lemma 3 is satisfied. It
therefore remains for us to verify the condition (ii) in Lemma 3. Define the following
nonnegative function

g(S, I, R) = V1(S, I ) + V2(I ) + V3(R),

where

V1(S, I ) = 1

S
+ 1

ν
I−ν

(
A

μ1
− S

)
,

V2(I ) = 1

ν
I−ν, V3(R) = R − log R + ρ,
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and ν is a positive constant to be chosen later and ρ > 0 is so large that V3(R) ≥ 0
for all R > 0. Using similar arguments to that given in Lahrouz and Settati (2014),
Theorem 5.1, we have

LV1(S, I ) ≤
[

−μ1

ν
+ μ2 + δ + 1

2
(1 + ν)

(
Aσ

μ1

)2
]

I−ν

(
A

μ1
− S

)
+ Aβ

νμ1
I 1−ν

− A

2S2
+ 1

2A

[

μ1 + Aβ

μ1
+
(
Aσ

μ1

)2
]

. (26)

Compute that

LV2(I ) = −I−ν−1[− (μ2 + δ)I + βSG(I )
]+ σ 2

2
(1 + ν)I−ν

(
SG(I )

I

)2

= I−ν
[
(μ2 + δ) − β

(
SG(I )

I

)
+ σ 2

2
(1 + ν)

(
SG(I )

I

)2 ]

≤ I−ν
[
(μ2 + δ) − Aβ

μ1
+ σ 2

2
(1 + ν)

(
A

μ1

)2

+ β

(
A

μ1
− SG(I )

I

)]

= I−ν
[

− Ψ

(
A

μ1

)
+ ν

2

(
Aσ

μ1

)2 ]
+ β I−ν

(
A

μ1
− S

)

+β I−νS

(
1 − G(I )

I

)
.

From (22), there exists a positive constant θ , such that

LV2(I ) ≤ I−ν
[

− Ψ

(
A

μ1

)
+ ν

2

(
Aσ

μ1

)2 ]
+ β I−ν

(
A

μ1
− S

)
+ βθ SI 1−ν

≤ I−ν
[

− Ψ

(
A

μ1

)
+ ν

2

(
Aσ

μ1

)2 ]
+ β I−ν

(
A

μ1
− S

)
+ Aβθ

μ1
I 1−ν .

(27)

We also compute that

LV3(R) =
(
1 − 1

R

)
[δ I − (μ3 + λ)R]

≤ −δ I

R
+
(

μ3 + λ + Aδ

μ1

)
. (28)

Let us chose ν sufficiently small such that

−μ1

ν
+ μ2 + δ + β + 1

2
(1 + ν)

(
Aσ

μ1

)2

< 0,
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and

−Ψ

(
A

μ1

)
+ 1

2
ν

(
Aσ

μ1

)2

< 0,

where the second choice is allowed by the condition RS
0 > 1. Therefore, combining

(26), (27), and (28), we have

Lg(S, I, R) ≤
[

− Ψ

(
A

μ1

)
+ 1

2
ν

(
Aσ

μ1

)2 ]
I−ν − A

2S2
− δ I

R
+ ξ, (29)

where ξ is some positive constant.
It is obvious to see from (29) that there exists a sufficiently large α1 > 0, such that

Lg(S, I, R) ≤ −1, f or all S ≤ 1

α1
or I ≤ 1

α1
.

It remains to consider the case where S > 1/α1, I > 1/α1 and R ≤ 1/α2. Since
I > 1/α1, we get

Lg(S, I, R) ≤ −
(

δ

α1

)
· 1

R
+ ξ.

This shows that there exists a sufficiently large α2 > α1 > 0, such that

Lg(S, I, R) ≤ −1, f or all S >
1

α1
, I >

1

α1
and R ≤ 1

α2
.

Altogether, we have shown that Lg(x) ≤ −1 for all x ∈ Dc. So the condition (ii)
of Lemma 3 is met. This completes the proof of Theorem 3. ��
Remark 3 Due to variable population size, the dimensionality of system (3) can not
be reduced as authors in Gray et al. (2011), Lahrouz and Settati (2014) do. How-
ever, in case of higher dimension, we establish the ergodic property of system (3) by
constructing a suitable Lyapunov function.

4.3 Stochastic Asymptotic Stability

The preceding theorem illustrates the cycling phenomena of recurrent diseases and
provides a biological insight of recurrent diseases (see Ref. Yang and Mao 2013 for
more biological meanings). We next investigate the behavior of the solution to system
(3) near a nontrivial stationary point E∗ of the corresponding deterministic equation.
In contrast to the deterministic solutions, from Theorem 3, we have the stochastic
solutions do not converge to E∗. However, we shall prove a stability result which
shows that the time mean of the solutions to system (30) will be close to stationary
point E∗, provided the noise intensity σ are sufficiently small.
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Next, we consider the following simplified version of the system (3):

⎧
⎨

⎩

dS(t) = (A − μ1S(t) + λR(t) − βS(t)G(I (t))) dt − σ S(t)G(I (t))dB(t),
d I (t) = (βS(t)G(I (t)) − (μ1 + δ) I (t)) dt + σ S(t)G(I (t))dB(t),
dR(t) = (δ I (t) − (μ1 + λ) R(t)) dt.

(30)

where μ1 = μ2 = μ3, which implies the size of the total population is fixed.
Denoting by N (t) the size of the total population, i.e., setting N (t) = S(t)+ I (t)+

R(t), from (26), we get: dN (t)/dt = A − μ1N , so that for any initial N (0) > 0 it
follows: limt→+∞ N (t) = A/μ1. Hence, the plane S(t) + I (t) + R(t) = A/μ1 is
an invariant manifold of system (30), which is attracting in the first octant. We here
assume that the population is in equilibrium and investigate the dynamics of system
(30) on such plane. Therefore, the existence of the invariant manifold allows us to
refer to the following reduced system:

⎧
⎪⎨

⎪⎩

dS(t) =
(
A(μ1+λ)

μ1
− (μ1 + λ)S(t) − βS(t)G(I (t)) − λI (t)

)
dt

−σ S(t)G(I (t))dB(t),
d I (t) = (βS(t)G(I (t)) − (μ1 + δ) I (t)) dt + σ S(t)G(I (t))dB(t).

(31)

Theorem 4 Suppose that the function x/G(x) is monotone increasing on (0,+∞).
Let (S(t), I (t)) be the solution of the system (31) with any initial value (S(0), I (0)) ∈
(0, A/μ1) × (0, A/μ1). If RS

0 > 1 and σ < μ1
√

μ1 + λ/A, then

lim sup
t→+∞

1

t
E

∫ t

0

(
m1

(
S(s) − μ1 + λ

μ1 + λ − (Aσ/μ1)2
S∗
)2

+ m2(I (s) − I ∗)2
)
ds ≤ η,

where (S∗, I ∗) is the unique endemic equilibrium E∗ of the corresponding determin-
istic equation of the system (31), and

m1 = μ1 + λ − (Aσ/μ1)
2, m2 = μ1 + λ + δ,

η =
[

(μ1 + λ)(AS∗/μ1)
2

μ1 + λ − (Aσ/μ1)2
+ (2(μ1 + λ) + δ) (I ∗)2

2βG(I ∗)

]
σ 2.

Proof It is obvious that RS
0 > 1 implies R0 > 1. Since x/G(x) is monotone increas-

ing on (0,+∞), by [Enatsu et al. (2012), Lemma 4.1], we have that the corresponding
deterministic version of the system (31) has a unique endemic equilibrium E∗ satis-
fying

{
A(μ1+λ)

μ1
− (μ1 + λ)S∗ − βS∗G(I ∗) − λI ∗ = 0,

βS∗G(I ∗) − (μ1 + δ) I ∗ = 0.
(32)

Define C2 functions as follows

V1(S, I ) = (S − S∗ + I − I ∗)2

2
, V2(I ) = I − I ∗ − I ∗ log

(
I

I ∗

)
.
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Applying the Itô’s formula, (32) implies

LV1 = (S − S∗ + I − I ∗)
( A(μ1 + λ)

μ1
− (μ1 + λ)S

− (μ1 + δ + λ
)
I
)

+ σ 2S2(G(I ))2

= (S − S∗ + I − I ∗)
(

− (μ1 + λ)(S − S∗)

− (μ1 + δ + λ
)
(I − I ∗)

)
+ σ 2S2(G(I ))2

= −(μ1 + λ)(S − S∗)2 − (
μ1 + δ + λ

)
(I − I ∗)2

− (2(μ1 + λ) + δ
)
(S − S∗)(I − I ∗) + σ 2S2(G(I ))2, (33)

and

LV2 = I − I ∗

I

[
βSG(I ) − (μ1 + δ) I

]+ I ∗σ 2

2

(
SG(I )

I

)2

= (I − I ∗)
[
β
SG(I )

I
− β

S∗G(I ∗)
I ∗

]
+ I ∗σ 2

2

(
SG(I )

I

)2

= (I − I ∗)
[
βS

(
G(I )

I
− G(I ∗)

I ∗

)
+ βG(I ∗)

I ∗ (S − S∗)
]

+ I ∗σ 2

2

(
SG(I )

I

)2

.

Noting that G(I ) ≤ I , S ≤ A/μ1 and x/G(x) is monotone increasing function, by
the hypothesis (H2), we derive that

LV2 ≤ βG(I ∗)
I ∗ (I − I ∗)(S − S∗) + I ∗(Aσ)2

2μ2
1

. (34)

Now, we define C2 function V :R2+ → R+ as follows

V (S, I ) = V1(S, I ) + (2(μ1 + λ) + δ) I ∗

βG(I ∗)
V2(I ).

Combining (33) with (34), this implies

LV ≤ −(μ1 + λ)(S − S∗)2 − (μ1 + δ + λ) (I − I ∗)2 + σ 2S2(G(I ))2

+ (2(μ1 + λ) + δ) (AI ∗σ)2

2βG(I ∗)μ2
1

≤ −(μ1 + λ)(S − S∗)2 − (μ1 + δ + λ) (I − I ∗)2 + (
Aσ

μ1
)2S2
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+ (2(μ1 + λ) + δ) (AI ∗σ)2

2βG(I ∗)μ2
1

≤ −(μ1 + λ − (Aσ/μ1)
2)

(
S − μ1 + λ

μ1 + λ − (Aσ/μ1)2
S∗
)2

− (μ1 + δ + λ) (I − I ∗)2 + (μ1 + λ)(Aσ/μ1)
2

μ1 + λ − (Aσ/μ1)2
(S∗)2

+ (2(μ1 + λ) + δ) (AI ∗σ)2

2βG(I ∗)μ2
1

It then follows from Kushner (1967), Theorem 6, p. 50 that

lim sup
t→+∞

1

t
E

∫ t

0

(
m1

(
S(s) − μ1 + λ

μ1 + λ − (Aσ/μ1)2
S∗
)2

+ m2(I (s) − I ∗)2
)
ds ≤ η,

this is the required assertion. ��
Remark 4 Assume that system (1) has a unique positive equilibrium E∗. From The-
orem 3, global asymptotic stability of the endemic equilibrium E∗ can be obtained.
In fact, it can be seen from (7) that RS

0 infinitely close to R0 as the intensity of
white noise σ is small sufficiently. For any R0 > 1, a positive noise intensity σ0
exists such that RS

0 > 1 for all σ < σ0. From Theorem 3, this implies that the solu-
tion (S(t), I (t), R(t)) of system (3) has a unique ergodic stationary distribution. Let
σ → 0, then the stationary distribution will infinitely concentrate on the small neigh-
borhood of positive equilibrium E∗, i.e., the unique positive equilibrium E∗ of system
(1) is globally asymptotically stable for R0 > 1.

Finally, from the preceding results, we shall summary a useful criterion for endemic
and disease extinction of system (3). Noting the denote of σ ∗, σ∗, σ in (4), let us start
with discussing the relationship between RS

0 and R0 for different values of white noise
intensity σ .

• Case of R0 ≤ 1: By the definition RS
0 in (7), it is easy to see that the inequality

RS
0 < 1 always holds for any σ > 0 when R0 ≤ 1. Note that σ ≥ σ ∗ when R0 ≤ 2

by Proposition 1. Hence, when R0 ≤ 1, at least one of conditions (C1) and (C2)
in Theorem 1 holds.

• Case of 1 < R0 ≤ 2: By Proposition 1, we have σ∗ < σ ∗ ≤ σ for 1 < R0 ≤ 2.
Note that RS

0 < 1 is equivalent to σ > σ∗. Hence, the condition (C1) of Theorem 1
holds when σ∗ < σ < σ . This, together with condition (C2) of Theorem 1, implies
the disease will be extinct for the range of σ > σ∗.

• Case of R0 > 2: By Proposition 1, we have σ∗ < σ ∗ and σ < σ ∗.

Therefore, noting that RS
0 > 1 is equivalent to σ < σ∗, we obtain the following

corollary from Theorems 1,2,3.

Corollary 2 For any initial value (S(0), I (0), R(0)) ∈ R
3+, the solution (S(t), I (t),

R(t)) of system (3) has the property
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(i) if R0 ≤ 1, then for any σ > 0, the disease dies out with probability one;
(ii) if 1 < R0 ≤ 2, then RS

0 is the threshold parameter, i.e., the infection may become
almost surely persistent in the time mean and positive recurrent if RS

0 > 1,
whereas if RS

0 < 1, the disease dies out with probability one;
(iii) if R0 > 2, then the disease is almost surely persistent in the time mean and

positive recurrent if σ < σ∗ (i.e., RS
0 > 1), while if σ > σ ∗, the disease dies out

with probability one.

Remark 5 From (ii) and (iii) in Corollary 2, it is found when R0 > 1, if the noise
intensity in the environments σ is small (σ < σ∗), the disease may always persistent
a.s. and positively recurrent; if σ is large enough, then the infected and recovered hosts
will die out a.s. From the perspective of biology significance, this implies the small
environmental noises can generate the cycling phenomena of recurrent diseases, while
the large noises may contribute to disease eradication.

Remark 6 From Corollary 2, it is can be seen that we do not obtain analytical results
only for the range of noise intensity σ∗ ≤ σ ≤ σ ∗ when RS

0 < 1. However, by using
numerical simulations, we also investigate the dynamic behavior of system (3) in this
case, i.e., when RS

0 < 1 and σ∗ ≤ σ ≤ σ ∗, the disease may be persistent with some
positive probability during several decades (see, Figs. 7, 9). In this sense, we illustrate
the effect of the white noise in the environments on the transmission dynamics of the
disease in system (3) in detail. Hence, the results obtained in this article extend that in
Gray et al. (2011), Lahrouz and Settati (2014). In addition, by numerical simulations
studies in detail, we find the quantity RS

0 may be threshold of disease extinction, which
supports Conjecture 8.1 in Gray et al. (2011).

5 Numerical Simulations

In this section, we make simulations to verify/extend our analytical results based on
realistic parameter values of influenza A in human host. In order to avoid differentia-
tion difficulty, we will apply the following improved Milstein’s method, proposed by
Kloeden et al. (1992), to simulate the positive solution to system (3) with the given
initial positive value and parameters.

Define vector-valued functions gi :R3+ → R
3, i = 0, 1 as follows

g0(x) =
⎡

⎣
A − μ1x1 + λx3 − βx1G(x2)

βx1G(x2) − (μ2 + δ) x2
δx2 − (μ3 + λ) x3

⎤

⎦ , g1(x) =
⎡

⎣
−σ x1G(x2)
σ x1G(x2)

0

⎤

⎦

for all x = (x1, x2, x3)T ∈ R
3+. Let Xk = (Sk, Ik, Rk)

T . The corresponding dis-
cretization equations are

Xk+1 = Xk + g0(Xk)Δt + g1(Xk)ξk
√

Δt + Vk(g1(Yk) − g1(Xk)), (35)
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where

Vk = 1

2

√
Δt(ξ2k − 1), Yk = Xk + √

Δtg1(Xk),

and ξk , k = 1, 2, . . . , n, are independent Gaussian random variables with distribution
N (0, 1).

Then, we shall verify the feasibility of our analytical results for the following
stochastic epidemic model with the saturated incidence rate βSI/(1 + α I ) proposed
by Capasso and Serio (1978) and used by a number of authors for which we refer the
readers to Liu et al. (1986), Ruan and Wang (2003) and the references therein:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) =
(
A − μ1S(t) + λR(t) − βS(t)I (t)

1+α I (t)

)
dt − σ S(t)I (t)

1+α I (t) dB(t),

dI(t) =
(

βS(t)I (t)
1+α I (t) − (μ1 + δ) I (t)

)
dt + σ S(t)I (t)

1+α I (t) dB(t),

dR(t) = (δ I (t) − (μ1 + λ) R(t)) dt,

(36)

where α is a positive saturation constant and all parameters are defined in Table 1 (in
this section the unit of time is one week). The corresponding deterministic system of
(36) has a basic reproduction number

R0 = Aβ

μ1(μ1 + δ)
. (37)

InKorobeinikov (2007),Korobeinikov has proved that properties of this corresponding
deterministic system depend on the basic reproduction number R0:

• If R0 ≤ 1, then the unique infection-free equilibrium state E0 = (A/μ1, 0, 0) is
globally asymptotically stable.

• If R0 > 1, then there is an unique and globally asymptotically stable positive
equilibrium E∗ = (S∗, I ∗, R∗).

Table 1 Parameter values in numerical simulations for system (36)

Parameters Value range References

μ1: Natural mortality rate 1/(70 × 52) week−1 World Bank data

δ: Recovery rate of
infected individuals

7/2–7/7 week−1

Douglas (1975), Frank
et al. (1981)

λ: Rate of appearance of
new antigenic variants

1/(2 × 52)–1/(1 × 52) week−1

Hay et al. (2001), Plotkin
et al. (2002)

α: Saturation constant 0.005 Estimated

R0: Basic reproduction
number of related
deterministic system

1–4
Chowell et al. (2007),
Yang et al. (2013)
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In (36), according to the World Bank data, we choose μ1 = 1/(70 × 52) week−1

which suggests the average life expectancy is 70 years. For simplicity, we assume that
there is no death due to the disease, and henceμ2 = μ3 = μ1.We also assume the total
population size is N = 10,000, then the birth rate is A = μ1N = 10,000/(70 × 52)
week−1. The value of the infectious period can be estimated to range from 2 to 7 days
for flu on the basis of clinical observations only (Douglas 1975; Frank et al. 1981),
so we choose the mean recovery rate of infected individuals is δ = 7/7 week−1 = 1
week−1.

In our SIRS model of an evolutionary epidemic of influenza A, causing previously
immune hosts to become susceptible from epidemic to epidemic is mainly due to
the progressive antigenic drift of influenza virus, which results in evasion of host
immunity; for this reason, we assume the rate of host immunity loss equals the rate of
virus’s mutations. The studies of Plotkin et al. (2002), Hay et al. (2001) have shown
that the new antigenic variants can rise with a frequency of one per 1–2 years, so we
here choose the average rate of host immunity loss λ = 1/(1.5 × 52) week−1.

Next, by MATLAB software and the method of discretization (35), we simulate
the solution of system (36) with different values of σ to investigate the effect of the
white noise on the transmission dynamics of influenza virus. Since μ1 = μ2 = μ3 in
(36), by the arguments given in (31), we only need to plot S(t) and I (t) to verify our
results below. In addition, we always assume that the initial value of system (36) is
(S(0), I (0), R(0)) = (9980, 20, 0) except for the other specification. We then divide
our simulations into two cases according to the range of R0.

Case 1: 1 < R0 ≤ 2.
By using daily case notification data in Guangdong Province, China, Yang et al.

(2013) estimated the possible range of basic reproduction number for pandemic
influenza A H1N1 was preliminarily between 1.05 and 1.46. We here assume the
basic reproduction number R0 = 1.45, then the average transmission rate β =
1.450398 × 10−4 week−1 from (37), and

σ∗ = 9.488136 × 10−5. (38)

Hence for the corresponding deterministic SIRS model of (36), we have

I ∗ = lim
t→+∞ I (t) = 27.74

for the initial value (S(0), I (0), R(0)) = (9980, 20, 0). To see the effect of the white
noise intensity, we consider three different values of σ : 3.162712×10−5, 5.831753×
10−5 and 1.157743× 10−4. The corresponding values of RS

0 are 1.40, 1.28 and 0.78,
respectively. By (ii) in Corollary 2, we see that the disease is persistent in the first two
cases, while the disease is extinctive in the last case. The computer simulations shown
in Figs. 1 and 2 clearly support these results.

Figure 1 shows trends of the evolution of the mean and standard deviation of I (t).
It is observed that when σ < σ∗ (i.e., RS

0 > 1), both the mean and the standard
deviation ultimately tend to a constant; however, both the mean and the standard
deviation quickly decline and tend to 0 for σ > σ∗ (noting that σ > σ∗ is equivalent
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Fig. 1 a The mean evolution of infected individuals of the stochastic model (36) is graphed for various
values of σ , where σ1 < σ2 < σ∗ < σ3. b The corresponding standard deviation evolution of infected
individuals of the stochastic model (36) (Color figure online)
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Fig. 2 a The evolution of a single path of I (t) for system (36) and its corresponding deterministic model.
b Probability densities of the values of the path I(t) for system (36) based on 10,000 stochastic simulations
(Color figure online)
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to RS
0 < 1). We can also see that when the environmental noises exist, the mean of

I (t) is always less than the corresponding deterministic solution for all case of σ , and
the mean is reduced gradually with the increase in white noise intensity σ . This shows
that white noise perturbations of the transmission rate β can be beneficial to control
the spread of influenza virus on average. However, as shown in (b) of Fig. 1, when
the intensity of environmental noises is small (i.e., σ < σ∗), the standard deviation of
I (t) increases with the increase in noise intensity σ . This suggests that the higher the
volatility of the environmental noises, the more difficult the prediction of the peak size
and occurring time of influenza epidemics, though the average level of the evolution
of I (t) is reduced in case of the presence of environmental noises.

(b) of Fig. 2 shows histograms of the approximate stationary distribution of each
case of σ chose above. The evolution trends of the mean and standard deviation of I (t)
in Fig. 1 illustrate that for each case of σ , the stationary distribution of I (t) exits and
in the simulations the probability distributions of I (t) have more or less reached their
stationary distributions. As can be seen in (b) of Fig. 2, for first two cases (i.e., RS

0 > 1),
both appear skew to the right and the skewness becomes larger as the intensity σ of
the white noise increases; in the last case (RS

0 < 1), the mass of the distribution of I (t)
is concentrated on the small neighborhood of zero. In addition, (a) and (b) of Fig. 2
indicate that the small environmental perturbations can generate the irregular cycling
phenomena of recurrent diseases, while the large ones will eradicate diseases. This
means the small perturbations of the white noise can sustain the irregular recurrence
of influenza A in humans between two pandemics, and larger ones may be beneficial,
leading to the extinction of influenza.

Case 2: 2 < R0 < 4.
By using daily case notifications during the autumnwave of the influenza pandemic

(Spanish flu) in the city of San Francisco, California, from 1918 to 1919, Chowell et al.
(2007) found the reproduction number for pandemic influenza (Spanish flu) at the city
level can be robustly assessed to lie in the range of 2.0–3.0. In this case, we assume the
basic reproduction number R0 = 2.38, which is the estimate of the second method in
Chowell et al. (2007), thenwehave the average transmission rateβ = 2.380654×10−4

week−1 from (37), and

σ ∗ = 1.683145 × 10−4, σ∗ = 1.661553 × 10−4. (39)

Hence for the corresponding deterministic SIRS model of (36), we have

I ∗ = lim
t→+∞ I (t) = 58.94

for the initial value (S(0), I (0), R(0)) = (9980, 20, 0). We first verify (iii) in Corol-
lary 2 with three different values of σ : 1.20 × 10−4, 1.45 × 10−4 and 1.87 × 10−4.
For the first two cases, σ < σ∗ (i.e., RS

0 > 1), while σ > σ ∗ for the last case. By (iii)
in Corollary 2, we see that the disease is persistent in the first two cases, while the
disease is extinctive in the last case. The computer simulations shown in Figs. 3 and 4
clearly support these results.

123



1734 D. Li et al.

0 100 200 300
0

20

40

60

80

100

120

140

160

180

t

E
(I

(t
))

(a) (b)
0 100 200 300

0

20

40

60

80

100

120

140

t
 S

ta
nd

ar
d 

de
vi

at
io

n

σ
1

=1.20 × 10−4

σ
2

=1.45 × 10−4

σ
3

=1.87 × 10−4

σ
1

=1.20 × 10−4

σ
2

=1.45 × 10−4

σ
3

=1.87 × 10−4

Fig. 3 a The mean evolution of infected individuals of the stochastic model (36) is graphed for various
values of σ , where σ1 < σ2 < σ∗ and σ3 > σ∗. b The corresponding standard deviation evolution of
infected individuals of the stochastic model (36) (Color figure online)
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Fig. 4 a The evolution of a single path of I (t) for system (36) and its corresponding deterministic model.
b Probability densities of the values of the path I(t) for system (36) based on 10,000 stochastic simulations
(Color figure online)
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(a) and (b) in Fig. 3 show trends of the evolution of the mean and standard deviation
of I (t), respectively. It is observed that when σ < σ∗, both the mean and standard
deviation ultimately tend to a constant; however, both the mean and standard deviation
quickly decline and tend to 0 for σ > σ ∗. As shown in Fig. 3, when the noise
intensity is small (σ < σ∗), with the increase in environmental noises intensity, the
average level of the evolution of I (t) will decline and the standard deviation of I (t)
will increase; when the noise intensity is large (σ > σ ∗), the disease will be die
out.

By the similar arguments to that of Case 1, we can claim from Fig. 3 that histograms
of the approximate stationary distribution in (b) of Fig. 4 have almost reached their
stationary distributions. As shown in (b) of Fig. 4, for first two cases (i.e., σ < σ∗),
both appear skew to the right and the skewness becomes larger as the intensity σ of the
white noise increases; in the last case (σ > σ ∗), the mass of the distribution of I (t)
is concentrated almost on the small neighborhood of zero. In addition, (a) and (b) of
Fig. 4 also indicate that the small environmental perturbations (σ < σ∗) can generate
the irregular cycling phenomena of recurrent epidemics of influenza, while the large
ones (σ > σ ∗) will be helpful to the eradication of influenza epidemics.

Next, we discuss in detail the effect of environmental noises on the evolution of
I (t) in the case of σ∗ < σ < σ ∗ (RS

0 < 1), where we do not give analytical results.
For environmental noises intensityσ = 1.665×10−4 satisfyingσ∗ < σ < σ ∗, Figs.

5 and 6 give the evolution dynamic of I (t) in a relatively short term (300 weeks). From
Fig. 6, it is observed that for different initial values (S(0), I (0), R(0)) = (9980, 20, 0)
and (9800, 200, 0), themean and standard deviation of I (t) tend to be uniform quickly.
This, together with (c) of Fig. 5, implies when σ∗ < σ < σ ∗, the probability distri-
bution of the values of the path of I (t) for system (36) do not depend on the initial
value of I (t). As shown in (a) and (b) of Fig. 5, both the disease persistence and
extinction are observed when σ∗ < σ < σ ∗. At t = 300 weeks, it is seen from (c)
of Fig. 5 that the probability of the recurrence of influenza epidemic may be posi-
tive during several years. Based on 10,000 stochastic simulations, we can estimate
that

P{I (300) ≤ 10−4} ≈ 0.4321, P{I (300) ≥ 20} ≈ 0.159

at t = 300 weeks (about 5.77 years). This implies that in the short term, both the
persistence and extinction of influenza virus may occur in the case of σ∗ < σ <

σ ∗.
Figure 7 describes the long-run evolutionary behavior of I (t) for σ∗ < σ < σ ∗,

including the mean and standard deviation. For two different noise intensities σ1 =
1.665 × 10−4 and σ2 = 1.675 × 10−4, the evolutions of the mean and standard
deviation of I (t) during 3000 weeks (about 57.6 years) are graphed in Fig. 7. It is
observed that the mean level decreases with the increase in the noise intensity, and
that both the mean level and the standard deviation level decrease very slowly along
with time; however, it is found surprisingly that the standard deviation level decreases
with the increase in the noise intensity, which is very similar to the case of σ > σ ∗.
Figure 8 describes the evolutions of the mean and standard deviation of I (t) in the
case of σ > σ ∗, where from (iii) in Corollary 2, we obtain analytical results that the
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Fig. 5 a, bThe evolution of a single path of I (t) for system (36) and its corresponding deterministic model.
c Probability densities of the values of the path I(t) for system (36) based on 10,000 stochastic simulations.
The initial values are 20 and 200 for the first-line graph and the second-line graph, respectively. In all cases,
we choose σ = 1.665 × 10−4 satisfying σ∗ < σ < σ∗ (Color figure online)

disease will go extinct ultimately. Note that as shown in Figs. 1 and 3, the standard
deviation level increases with the increase in the noise intensity for σ < σ∗. Hence,
by comparing Fig. 7 with 8, we find there is a strong possibility that σ∗ is the threshold
of environmental noises, i.e., RS

0 is the threshold of disease persistence or extinction.
This also suggests that Conjecture 8.1 of Gray et al. (2011) may hold for our stochastic
SIRS systemwith nonlinear incidence rate and variable population size. However, it is
noteworthy that when σ > σ∗ (but not too large), the probability of disease outbreak
is always a positive value for a relatively longer period of time.

Indeed, as studied in Simonsen (1999), pandemics of influenza in humans recur
every 30 years or so since the mid-eighteenth century and of course it may also be only
a few years before the next pandemic occurs. Hence, from the point of epidemiology
view, it is very significant to investigate the probability of reappearance of influenza
epidemics during several decades for σ∗ < σ < σ ∗, though the influenza virus will
likely be eradicated ultimately when σ > σ∗. Figure 9 gives the long-run evolutionary
behavior of the probability of disease outbreak for σ∗ < σ < σ ∗. Here, the disease
outbreak means the number of infected individuals I (t) is more than the stationary
level I ∗ of the corresponding deterministic model. As shown in Fig. 9, the probability
of disease outbreak decreases very slowly along with time, although it decreases with
the increase in the noise intensity. For instance, based on 10,000 stochastic simulations,
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10−4, where σ∗ < σ < σ∗. b The corresponding standard deviation evolution of infected individuals of
the stochastic model (36) (Color figure online)
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σ1 < σ2 < σ∗. b The corresponding standard deviation evolution of infected individuals of the stochastic
model (36) (Color figure online)

we can estimate for the noise intensity σ∗ < σ = 1.675 × 10−4 < σ ∗ that

P{I (300) ≥ I ∗} ≈ 0.0874, P{I (600) ≥ I ∗} ≈ 0.0586,

P{I (1500) ≥ I ∗} ≈ 0.0363.
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Fig. 9 The evolution of probability of disease outbreak is graphed for the parameters σ1 = 1.665× 10−4

(red line) and σ2 = 1.675 × 10−4 (green line), where σ∗ < σ1 < σ2 < σ∗ and the disease outbreak
means I (t) ≥ I∗ = 58.94 (Color figure online)

at t = 300 weeks (about 5.77 years), t = 600 weeks (about 11.54 years) and t = 1500
weeks (about 28.85 years), respectively.

So far, by combining analytical results with numerical techniques, we have compre-
hensively analyzed the influence of thewhite noise on the spread dynamics of influenza
for all kinds of values of the noise intensity σ . In the end, we give an example of Case
1 with the relatively realistic noise intensity. In fact, the white noise intensity may be
less than the critical intensity σ∗ in the real word. In Gu et al. (2011), authors formu-
lated stochastic SIR epidemic model with the transmission rate β disturbed by white
Gaussian noise in the similar form to (2) (see, P. 3685 in Gu et al. 2011); the real data of
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Fig. 10 a The evolution of a single path of I (t) for system (36) and its corresponding deterministic model.
b Probability densities of the values of the path I(t) for system (36) based on 10,000 stochastic simulations
(Color figure online)

SARS in Beijing in 2003 are nicely fitted by their model with the white noise intensity
σ = 2.31× 10−5 < σ∗, which has been converted into the time unit (week−1) in this
paper. This realistic noise intensity does not exceed the critical intensity σ∗ for both
cases above in (38) and (39). It is found that the distance between this noise intensity
and the critical intensity σ∗ becomes larger with the increase in the basic reproduction
number R0 of the corresponding deterministic model.

For this realistic noise intensity,we compute that R0−RS
0 = 0.026673 from (7), and

the mean and the standard deviation of infected individuals are E(I (t)) = 26.977 <

I ∗ = 27.24 and Var(I (t)) = 8.47 at t = 300 weeks, respectively. Compared with the
corresponding deterministic model, both the threshold parameter of disease extinction
RS
0 and the average level of infecteds decrease slightly. However, it is seen fromFig. 10

that the white noise increases the volatility of infecteds (i.e., the standard deviation).
In particular, P{I (300) ≥ I ∗} ≈ 0.4512. Therefore, the presence of the white noise
may pose more challenges to the prediction and control of the endemic of influenza.

6 Summary and Discussion

As stochastic environmental factors in the real world, such as absolute humidity,
temperature and precipitation, have an appreciable impact on the infection force of
the disease such as influenzaA, incorporating stochastic effects into themodel gives us
a more realistic way of modeling epidemic models. In this paper, we have considered
a stochastic SIRS epidemic model with the external variability in the transmission
rate β and applied our theoretical results to the inter-pandemic evolution dynamic of
influenza A based on realistic parameter values.
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Combining analytical results with numerical simulations, we have discussed in
detail the effect of environmental noises on the transmission dynamics of influenza A
epidemics. A deterministic threshold quantity RS

0 is established: The disease dies out
almost surely when RS

0 < 1 (σ > σ∗) and persists when RS
0 > 1 (σ < σ∗), where

RS
0 < 1 is equivalent to σ > σ∗. We found that the presence of environmental noises

can sustain the irregular recurrence of influenza epidemics and the average level of
the number of infected individuals I (t) always decreases with the increase in noises
intensity σ ; however, the standard deviation of I (t) increases with increase in noises
intensity when σ < σ∗, and the contrary case occurs when σ > σ∗. We also found that
when σ∗ < σ < σ ∗, the disease will take very long time to be eradicate completely,
which implies that the probability of disease outbreak is always a positive value for a
relatively long term, such as several decades.

In this article, the white noise is used to describe small-scale time environmental
fluctuations such as daily or weekly variations of meteorological factors, which pro-
duce rapid fluctuations of the transmission rate compared to the evolution of influenza
epidemics.However, climate conditions usually experience randomswitchingbetween
different environments such as dry and wet. The average values of some critical para-
meters of epidemic model may switch between different levels with the switching of
environments, while only the transmission rate β fluctuates around its average level
between two switches of the environments, which is caused by the perturbation of the
white noise. Hence, it is very interesting to consider the impact of the large-scale time
disturbance of the switching of environments to the evolution of influenza epidemics.

Additionally, we neglect the seasonal effect for the transmission of influenza A. It
is worthwhile to study the combined effects of seasonal variation and environmental
noises, which we leave as our future work.
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