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ABSTRACT

BACKGROUND: Interoceptive attention to internal sensory signals, such as the breath, is fundamental to mindful-
ness. However, interoceptive attention can be difficult to study, with many studies relying on subjective and retro-
spective measures. Response consistency is an established method for evaluating variability of attention on
exteroceptive attention tasks, but it has rarely been applied to interoceptive attention tasks.

METHODS: In this study, we measured consistency of response times on a breath-monitoring task with simultaneous
electroencephalography in individuals across the life span (15-91 years of age, N = 324).

RESULTS: We found that consistency on the breath-monitoring task was positively correlated with attentive per-
formance on an exteroceptive inhibitory control task. Electroencephalography source reconstruction showed that on-
task alpha band (8-12 Hz) activity was greater than that measured at rest. Low-consistency/longer breath responses
were associated with elevated brain activity compared with high-consistency responses, particularly in posterior
default mode network (pDMN) brain regions. pDMN activity was inversely linked with functional connectivity to the
frontoparietal network and the cingulo-opercular network on task but not at rest, suggesting a role for these
frontal networks in on-task regulation of pDMN activity. pDMN activity within the precuneus region was greater in
participants who reported low subjective mindfulness and was adaptively modulated by task difficulty in an
independent experiment.

CONCLUSIONS: Elevated pDMN alpha activity serves as an objective neural marker for low-consistency responding
during interoceptive breath attention, scales with task difficulty, and is associated with low subjective mindfulness.

https://doi.org/10.1016/j.bpsgos.2024.100384

Attention is the fundamental basis of cognitive control,
enabling selective processing and action on goal-relevant
stimuli while suppressing irrelevant distractions (1-3). Atten-
tion can be directed to external stimuli or internally generated
sensations. Exteroceptive attention has been well studied and
is known to be associated with the activity of several top-down
cognitive control networks. These include the cingulo-
opercular network (CON), which involves the anterior cingu-
late cortex and insula and is associated with attentional
monitoring, and the central executive or frontoparietal network
(FPN), which involves the dorsolateral prefrontal cortex, frontal
eye fields, and superior parietal lobules, which are dynamically
deployed for moment-to-moment attentional control and dis-
tractor suppression (4-7). An important role of these brain net-
works is to regulate activity within the default mode network
(DMN) during exteroceptive tasks because elevated DMN activity
has been associated with worse exteroceptive task performance,
possibly due to its role in subjective mind wandering (8-10).
Interoceptive attention involves attention to internal sensa-
tions generated from the body while learning to monitor and
disengage from irrelevant distractions (11,12). Interoceptive

attention is a core skill that can be developed through mind-
fulness training. Many mindfulness traditions use attention to
breath as a base practice to develop interoceptive attention
(12-16). Previous attempts to capture neural correlates of
attention during meditation have either contrasted meditation
with other tasks or used random probes or self-report to
retrospectively ask participants to identify distracted versus
attentive states during meditation (17-22). These studies have
suggested that attentive breath meditation involves regulation
of default mode brain areas and engagement of the CON/FPN
cognitive control circuits similar to those observed for
exteroceptive tasks (18,23-25).

Recently, breath-monitoring tasks (such as breath counting
or respiratory cycle tracking) have been developed to specif-
ically assess interoception to breath while minimizing other
aspects of meditation that may complicate interpretation
(26-29). Due to the requirement for regular responses to track
aspects of breath, such tasks offer an opportunity to under-
stand aspects of respiratory interoception in a more experi-
mentally tractable manner. In one recent study that used an
active breath interoception task, accuracy of breath counting

© 2024 THE AUTHORS. Published by Elsevier Inc on behalf of the Society of Biological Psychiatry. This is an open access article under the 1
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ISSN: 2667-1743

Biological Psychiatry: Global Open Science November 2024; 4:100384 www.sobp.org/GOS


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1016/j.bpsgos.2024.100384
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sobp.org/GOS

Biological
Psychiatry:
GOS

was positively linked to trait mindfulness and negatively linked
to mind wandering and negative affect (26,27).

Several studies have been performed to investigate the
neural processes involved in breath monitoring. In one early
study (29), passive interoceptive attention was compared to an
active exteroceptive attention task. Passive interoceptive
attention was associated with greater activity/connectivity with
the insula, as well as greater activity within posterior/midline
DMN regions. Less activity was observed during interoception
in lateral prefrontal brain regions associated with cognitive
control compared with activity during exteroceptive attention
tasks. Follow-up studies by the same group (28,30) in which
active reporting was included (i.e., active interoception) demon-
strated that greater activity in prefrontal regions was helpful in
classifying exteroceptive attentional states, whereas greater
activity in posterior cingulate/posterior DMN (pDMN) brain re-
gions was helpful for classification of interoceptive attentional
states (30). On balance, these data suggest that interoception is
associated with activity of frontal brain networks, although to a
lesser extent than during matched exteroception tasks, and may
also be linked to greater activity in pDMN regions than standard
exteroceptive tasks.

In this study, individuals ages 15 to 91 years engaged in an
interoceptive breath-monitoring task. The task involved
consistent eyes-closed monitoring of breathing, with a motor
response (finger tap) after every 2 complete cycles of inhalation
and exhalation. We used variability in breath-monitoring re-
sponses as a direct, objective marker of variability in task
performance. Thus, we were able to contrast neural activity on
this task in relation to rest and further characterize neural ac-
tivity on this task during the more variable versus the more
consistent breath cycles. The underlying premise of this analysis
is that when participants are in a higher interoceptive attention
state, they will show greater consistency in either respiratory
cycle time and/or response patterns (i.e., responding more
consistently after each 2 breath cycle). Thus, by comparing brain
activity on consistent trials versus less consistent trials within
each participant, we can examine brain regions and networks
that underlie variability during performance of this interoceptive
attention task while controlling for interindividual differences in
baseline characteristics of respiration.

Overall, we had 3 goals in this study. First, we aimed to
measure whether consistency of responding on this intero-
ceptive attention task was related to performance on extero-
ceptive cognitive tasks. This question is important because it
informs whether consistency on responses is related to any
other general cognitive abilities (27,31). Second, we aimed to
investigate the neural basis of consistent performance within
individuals by comparing high-consistency versus low-
consistency trials. We also compared activity on-task with ac-
tivity measured at rest. Third, we wanted to understand whether
brain activity on this task was related to validated subjective
measures of mindfulness. Given previous data suggesting that
pDMN activity occurs during interoception to breathing (29,30)
and is linked to mind wandering (32), we hypothesized 1) that the
pDMN would play a key role in task consistency; 2) that activity
in the pDMN measured on-task would be linked to subjective
mindfulness; and 3) that activity in the FPN/CON cognitive
control networks may be involved in regulating the DMN during
interoceptive attention to breathing.

Network Activity During Interoceptive Breath Attention

METHODS AND MATERIALS

Participants

A total of 324 human subjects, 15 to 91 years of age (175 female,
136 male) participated in the main experiment. Participants were
recruited by convenience sampling from the local university and
the broader San Diego community using flyers and the online
Research Match registry, as well as 2 local high schools in the
case of adolescents. The participant sample size met criteria for
investigating greater than small effect size outcomes across
participants (- > 0.15) at a beta power of 0.8 and an alpha of
0.05, as calculated using G*Power software (33).

A total of 52 human subjects, 20 to 44 years of age (25
female, 27 male), who were also recruited by convenience
sampling, participated in a second adaptive version of the
main experiment. This sample size was powered for analyzing
within-subjects effects of moderate effect size (Cohen’s d >
0.4) at a beta power of 0.8 and an alpha of 0.05 (33).

A total of 16 human subjects, 18 to 44 years of age (12
female, 4 male), participated in a third experiment in which
respiration was monitored simultaneously with the main
experiment using the Vernier respiration monitoring chest belt.

All participants provided written informed consent for the
study protocol (#180140) approved by the University of Cali-
fornia San Diego Institutional Review Board; written informed
parent permission was also obtained for youth under age 18.
Specific informed consent was also obtained from partici-
pant(s) to use their identifying image in publications.

Experimental Design

Demographics and Mental Health. All participants pro-
vided demographic information via self-report. This included
age, gender, race and ethnicity, and socioeconomic status
shown in Table 1 for the main experiment. Race was reported
as 1 of 7 categories (American Indian/Alaska Native, Asian,
Black/African American, Caucasian, Native Hawaiian/Other
Pacific Islander, more than 1 race, and unknown or not re-
ported). Socioeconomic status composite scores were
assessed using the Family Affluence Scale (34), which mea-
sures individual wealth based on ownership of objects of value
(i.e., car/computer) and produces a composite score ranging
from 0 (low affluence) to 9 (high affluence). All participants were
healthy, and no participant reported any current or past history
of clinical diagnoses or medications. Additionally, all partici-
pants provided subjective self-reports of trait mindfulness on
the 14-item Mindful Attention Awareness Scale (35,36) and
depression on the 9-item Patient Health Questionnaire (37).

Neurocognitive Assessments. All assessments were
delivered on the BrainE Unity-coded platform developed and
deployed by NEATLabs (38,39). In the main experiment, these
included the interoceptive attention assessment that is the
focus of this study, along with exteroceptive task assessments
performed during the same session to evaluate inhibitory
control, interference processing, working memory, and
emotion bias [see Supplemental Methods for descriptions of
exteroceptive tasks, which have also been described in recent
publications (39-48)], and resting-state data. The Lab
Streaming Layer (49) protocol was used to time stamp each
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Table 1. Demographic and Mental Health Factors Self-
Reported by Study Participants (N = 324)

Median = Median
Absolute Deviation or n (%)

Demographics

Age, Years 25.00 = 15.16
Gender
Female 175 (54.01%)
Male 136 (41.98%)
Other 3 (0.93%)
Ethnicity
Asian 65 (20.06%)
Black/African American 4 (1.23%)
Caucasian 167 (561.54%)
More than one race 49 (15.12%)
Native American 3 (0.93%)
Native Hawaiian/Other Pacific Islander 1(0.31%)

SES 5.00 * 1.49
Mental Health

Mindfulness (MAAS) 4.07 = 0.82
Depression (PHQ-9) 4.00 + 4.02

MAAS, Mindful Attention Awareness Scale; PHQ-9, Patient Health
Questionnaire; SES, socioeconomic status.

stimulus/response event in each cognitive task. All study
participants engaged with the neurocognitive assessments on
a Windows 10 (Microsoft Corporation) laptop while sitting at a
comfortable viewing distance. All assessments were
completed within a 40-minute session.

Interoceptive Attention to Breathing. Participants
accessed a task named Two Tap. They were instructed to
close their eyes, breathe naturally, and respond every 2
breaths using the laptop spacebar. The computer screen
appeared dark gray for the duration of the 5-minute task, which
was implemented in two 2.5-minute blocks.

Adaptive Interoceptive Attention Assessment. In the
second experiment, we implemented an adaptive version of
the interoceptive attention task to better understand modula-
tion of brain activity with changes in task difficulty. In this task,
individuals were instructed in the first level to breathe normally
and tap after every breath cycle. If they completed this level
consistently, participants advanced to the second level, where
they tapped every 2 breaths, and if they completed this level,
they would advance to a final level, monitoring every 3 breaths.
The total task time was 10 minutes.

Electroencephalography. In the main experiment and the
second adaptive assessment experiment, electroencephalog-
raphy (EEG) data were collected simultaneously with the
interoceptive attention assessment using a 24-channel
Smarting wireless EEG amplifier with saline-soaked elec-
trodes in 10-20 standard layout. In the third experiment with
simultaneous respiration monitoring, EEG data were collected
using the 64-channel ANT Neuro EEGO system with gel
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electrodes in 10-20 standard layout. Additional details are
provided in Supplemental Methods.

Behavioral Analyses. For the interoceptive attention task,
behavioral data were analyzed for consistency of responses
because participants made a response every 2 breaths. We
calculated performance consistency = 1 — MAD RT / median
RT, where MAD is the median absolute deviation of RT, and RT
is response time. Consistency is usually defined as 1 — the
coefficient of variation, where the coefficient of variation is the
ratio of the standard deviation to the mean; in this case,
because RTs within participants were not normally distributed,
median and MAD metrics replaced standard deviation and
mean metrics.

Behavioral performance on the exteroceptive cognitive
tasks of inhibitory control, interference processing, working
memory, and emotion bias were calculated as the efficiency on
each task, calculated as the product of task accuracy X speed
[additional details are provided in Supplemental Methods
(50,51)]. For all behavioral performance data, >3 MAD outlier
data were removed prior to statistical analyses, with outlier
data exclusion being specified in advance based on our pre-
vious research (39,44,45,47).

Neural Analyses. We applied a uniform processing pipeline
to EEG data acquired on the interoceptive attention task as
well as resting-state data, as reported for several of our studies
(39,43-48,52-54). This included 1) data preprocessing, 2)
computing the EEG power spectrum, and 3) cortical source
localization of the EEG data to estimate source-level neural
activity and internetwork connectivity (INC). All details are
provided in Supplemental Methods.

Statistical Analyses. Analyses for this study were not
preregistered. We used robust linear regression to model
breath attention performance consistency based on de-
mographic (age, gender, race, socioeconomic status) and
mental health (depression, mindfulness) predictors, as well as
to correlate consistency with efficiency on exteroceptive
cognitive tasks. Robust regression was used because it is less
sensitive to outliers than the nonrobust version (55).

On-task neural activity as well as resting-state activity were
analyzed in the alpha frequency band, with repeated-measures
analyses of variance (rm-ANOVAs) used to compare task
conditions and false discovery rate (FDR) corrections applied
to significant testing across all regions of interest (ROls).
Correlations between task-related activity and INC were
examined to find associations between these metrics. Asso-
ciations of neural activity with mindfulness were compared in
median splits of high- and low-mindfulness participants.

RESULTS

Performance Consistency of Interoceptive
Attention

Participants (N = 324) engaged in the interoceptive, eyes-
closed attention to breathing task, monitoring 2 breaths at a
time, i.e., 2 complete inhalations and exhalations, and reported
completions using finger-tap responses (task instructions are
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Figure 1. Interoceptive attention task characteristics. (A) The TwoTap interoceptive attention to breathing task was designed to assess consistent attention
to breathing. Each participant was required to respond every 2 breaths, while electroencephalography was simultaneously recorded. (B) Histogram of breath
response times (RTs) from an example participant, showing high-consistency trials (within 1 median absolute deviation [MAD] of the median RT) and low-
consistency trials (within > median + 1 MAD RT). Thick vertical black lines denote the median = MAD response boundary, and the dotted vertical line
represents the median RT. (C) Overall interoceptive consistency, i.e., consistency of breath monitoring, is shown across all 324 study participants, calculated
as 1 — MAD/median RT. (D) Interoceptive attention consistency was negatively related to age overall (red fitted line, f = —0.23 + 0.09; p = .008); however,
there was no age effect in participants <60 years of age (lower dashed black line, p = .17) and only a trend for a negative age effect in participants =60 years of
age (upper dashed black line, p = .07). (E) Interoceptive consistency was significantly lower in participants =60 years of age than in individuals <60 years of
age (p = .02). Box plots show median with interquartile range and scatter and range of individual data. (F) Interoceptive attention consistency positively

predicted cognitive performance efficiency (log sec ™'
consistency.

shown in Figure 1A, and the distribution of RTs for an example
participant is shown in Figure 1B). RTs were 8.39 * 2.20
seconds (median = MAD) across all participants, and the task
performance consistency distribution is shown in Figure 1C.
A robust regression model for consistency of interoceptive
attention based on all demographic and mental health factors
only showed a significant inverse relationship with age (stan-
dardized p = —0.23 *+ 0.09, t1go = —2.7, p = .008) (Figure 1D);
no other factors were significant predictors of consistency (o >
.2). Given that older adults are known to have different
cognitive abilities, we repeated the regression model with in-
dividuals <60 years of age (3 = —0.31 + 0.23, t14g = —1.37,p =
.17) versus = 60 years of age (B = —1.2 * 0.65, t,5 = —1.88,
p = .07); these results showed a near-significant trend for
decline of interoceptive consistency only in older adults. Mean
consistency in adults <60 years of age versus adults = 60
years of age was significantly different (<60 years, mean =
SD = 0.73 = 0.19; =60 years, mean * SD = 0.65 *= 0.20;
trgs = 2.27, p = .02) (Figure 1E). Given these effects, age was
included as a covariate in subsequent analyses. Next, we
investigated whether consistency of interoceptive attention

units) on the attended stimuli in the inhibitory control task; regression controlled for age. Con,

could predict performance on exteroceptive cognitive tasks
that participants performed during the same session. Robust
regression models accounting for age showed that consis-
tency of interoceptive attention significantly predicted effi-
ciency on the inhibitory control task (3 = 0.18 = 0.06, ty54 =
2.9, p = .02) (Figure 1F), where efficiency represents accurate
and rapid responding to the attended stimuli on the extero-
ceptive task. Interoceptive consistency did not relate to per-
formance on the working memory, emotion bias, or
interference-processing tasks (o > .2).

Interoceptive Task-Related Neural Activity Shows
Posterior Alpha Dominance and Is Distinct From
Resting-State Activity

Here, we studied the neural differences between high-
consistency (trials within 1 MAD of median RT) and low-
consistency (trials >1 MAD of median RT) task performance
in comparison with data recorded during eyes-closed rest.
First, we identified the dominant frequency band of neural
activity associated with this task, observing a clear peak in the
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Figure 2. Interoceptive task-related electroencephalography brain activity and comparisons with resting state. (A) The power spectrogram of scalp elec-
troencephalography in the eyes-closed task showed alpha band (8-12 Hz) dominance plotted across all participants and electrodes, with alpha scalp
topography shown alongside. (B) Grand-average source-localized alpha band activity on high- and low-consistency trials, together with source maps of
resting-state data recorded the same day from each participant. Differences in low- vs. high-consistency task activity and in high-consistency task vs. rest
activity are also shown. Each map shows p < .05 activity false discovery rate corrected for comparisons across all brain regions. (C) Interparticipant correlation
coefficients (Fisher’s z-transformed Spearman’s correlations) between alpha activity on task conditions and resting state are shown with scatters representing
distribution across all 68 source-localized brain regions; task conditions were highly correlated with each other but not with rest. (D) Cortical source alpha
activity averaged across all brain regions showed the highest activity for low-consistency trials followed by high-consistency trials and then rest, with sig-
nificant differences in activity across all conditions. **p < .001. Cons, consistency.
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alpha-frequency band (8-12 Hz) (Figure 2A). Because this was
an eyes-closed task, and posterior alpha predominates in
eyes-closed EEG, next we wanted to verify to what degree
alpha source-localized activity, i.e., alpha spectral amplitude,
was related to breath monitoring or was just a consequence of
closing the eyes such as at rest. Figure 2B shows task and rest
alpha source-localized activity in all 68 ROIs with p < .05
threshold applied for significant positive alpha activity relative to
0 (single-sample t test) and FDR corrections applied for com-
parisons across all cortical regions. While the overall distribution
of alpha activity appeared similar between these 3 conditions,
quantitative differences emerged as described below.

Figure 2C shows interparticipant (Fisher’s z-transformed)
Spearman’s correlations between task conditions and rest.
rm-ANOVA showed an effect of condition (F5 134 = 1239.28, p
< .001) with a mean correlation of 0.1 between activity during
task trials versus rest and 0.84 between high- and low-
consistency trials within the task. Post hoc tests showed a
significant difference between within-task trial correlations and
task versus rest correlations (p < .001). Relatedly, overall
cortical source-localized alpha activity also differed between
high- and low-consistency trials and rest (F5,134 = 44.96, p <
.001), with the largest activity amplitude being observed on
low-consistency trials followed by high-consistency trials and
then rest (p < .001 for the difference between conditions)
(Figure 2D). These differences between the high- and low-
consistency and the high-consistency and rest conditions
are also visualized in Figure 2B (right 2 panels, FDR-corrected
condition differences across 68 ROls). Condition correlations
and source activity differences were not affected when age
was controlled for in the analyses.

Interoceptive Attention Task-Related Network
Activity

To better understand how alpha activity on the task conditions
and rest are organized relative to canonical cognitive control
and default mode networks, we averaged their source-
localized activity into 5 networks: the FPN, CON, anterior
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DMN, pDMN, and medial temporal DMN (Figure 3A). An rm-
ANOVA model with within-subjects factors of 5 networks and
3 conditions showed a main effect of network (F4 1204 = 20.53,
p < .001), condition (Foe12 = 53.76, p < .001), and a
condition X network interaction (Fgo44s = 10.72, p < .001).
Post hoc tests showed that in all networks, there was signifi-
cantly greater activity on low-consistency than high-
consistency trials and significantly greater activity for high-
consistency trials than rest (Figure 3B). The differential low-
versus high-consistency trial activity was greatest in pDMN
compared with all other networks (p < .0001) (Figure 3C). The
rm-ANOVA model results did not differ when age was added
as a covariate, and there were no significant age interactions
with either network or trial type.

Association of pDMN Activity With Frontal Network
During Task

Previous functional magnetic resonance imaging research has
suggested that DMN activity may be regulated by interactions
with the FPN and CON (56). Here, we investigated whether
EEG source-localized pDMN activity, which showed the
largest differential high- versus low-consistency activity, is
related to connectivity to the FPN/CON. For this, we calculated
INC as temporal correlations between the pDMN and FPN/
CON networks. Then, we correlated pDMN-FPN and pDMN-
CON INC to pDMN activity both during the task and at rest.
Spearman’s correlations were used to protect against outliers.

On both high- and low-consistency trials, pDMN activity
showed a significant negative correlation with both pDMN-
FPN (high: psgs = —0.24, p = 1.2 X 107%; low: pgos = —0.19,
p = .0006) and pDMN-CON (high: pzgs = —0.18; p = .001, low:
paos = —0.14, p = .01) connectivity, while these correlations
were not significant at rest (p > .4) (Figure 4). Thus, for both
high- and low-consistency trials, greater pDMN connectivity
with FPN/CON was associated with lesser pDMN activity,
suggesting top-down regulation of pDMN activity by frontal
networks during the task. There was no difference in these
activity-connectivity associations between task trial types.

Kk
ok

pDMN  mtDMN FPN  CON aDMN

Differential low vs. high consistency alpha activity ()

pDMN  miDMN

Figure 3. Network activity during the interoceptive task and at rest. (A) To better understand patterns of neural activity on the interoceptive task and at rest,
source-localized activity was averaged within canonical brain networks, specifically the 2 frontal cognitive control networks, the frontoparietal network (FPN)
and cingulo-opercular network (CON), and the 3 components of the default mode network (DMN), the anterior (aDMN), posterior (p-DMN), and mediotemporal
DMN (mtDMN). Brain regions included within each network are colored in red and shown in top view as well as lateral/medial left/right views. (B) Box plots
show alpha activity in each network on low-consistency and high-consistency trials compared with rest. In all cases, low-consistency trial activity was greater
than high-consistency trial activity, which was greater than rest. (C) Differential low- minus high-consistency alpha activity in source units showed the largest
activity differential in the pDMN compared with all other networks. *p < .05, **p < .001. Cons, consistency.
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Figure 4. Relationship between posterior default mode network (pDMN) activity and internetwork connectivity. Spearman’s rho correlations between pDMN
activity and its connectivity with the frontoparietal network (FPN) (top left) and cingulo-opercular network (CON) (bottom left) are shown for low- and high-
consistency trials and at rest. pDMN activity showed significant inverse Spearman’s correlations with internetwork connectivity for low- and high-
consistency trials but not at rest. These activity-connectivity correlations differed significantly from rest for high-consistency trials for both FPN and CON
associations and also for low-consistency trials for FPN associations. Scatter plots at right show pDMN activity vs. internetwork connectivity relationships on
low-consistency trials with the FPN (top right, p = —0.19, p = .0006) and CON (bottom right, p = —0.14, p = .01). *p < .05, **p < .001. Cons, consistency.

These associations differed significantly from rest for high-
consistency trials for both the FPN and CON and for low-
consistency trials for CON, tested using the Dunn Clark test
(p < .05, FDR corrected) (Figure 4). Adding partial correlations
with age as a covariate did not change these overall results.
Notably, neither pDMN-CON nor pDMN-FPN INC values
differed between task conditions or at rest (p > .2, data not
shown), suggesting that INC itself was not affected by the task.

Neurobehavioral Relationships

Previous work has linked increased activity within the DMN to
increased levels of mind wandering and rumination (32,57,58).
Because we observed the largest low- versus high-
consistency differences in the pDMN, we hypothesized that
this regional activity might be negatively related to real-world
subjective mindfulness (Mindful Attention Awareness Scale
measure). Within the pDMN, we found greater activity in the left
precuneus region in participants with low mindfulness than in
those with high mindfulness on the low- minus high-
consistency trial differential (Fq 77 = 8.08, p = .005), as well
as separately on low-consistency (F o77 = 10.86, p = .001) and
high-consistency (F1 200 = 8.06, p = .005) trials (Figure 5). Low-

and high-mindfulness participants were separated by median
split. ANOVA effects were FDR corrected for multiple compari-
sons within the pDMN network. These relationships were not
affected by including age in the model. ROls in other networks
did not show any such significant effects. Mindfulness was not
significantly related to the interoceptive task performance con-
sistency measure or to efficiency on the inhibitory control task (o
> .6). Depression symptoms did not show any significant FDR-
corrected relationships with neural activity.

Additional independent experiments showing that task-
related pDMN activity was adaptively modulated by task dif-
ficulty, as well as results of simultaneous assessment of res-
piratory dynamics and validation of cortical source-localization
with high-density channels, are shown in Supplemental
Results.

DISCUSSION

Interoceptive attention is an important ability that allows us to
focus on internal sensations as goal-relevant information and
suppress irrelevant internally generated distractions (11,12).
Previous work has shown that breath-monitoring tasks can be
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Figure 5. Neurobehavioral relationship with mindfulness. (A) Only alpha source activity in the left precuneus brain region (IPC) of the posterior default mode
network showed associations with subjective mindfulness measured by the Mindful Attention Awareness Scale. Results in (B-D) compare activity for par-
ticipants scoring low mindfulness in blue vs. high mindfulness in red per median split and are false discovery rate corrected for within-network region of interest
(ROI) comparisons. Comparisons of IPC activity are shown in (B) for the low- minus high-consistency trial differential, (C) for low-consistency trials, and (D) for

Hokk

o = .005. Cons, consistency.

high-consistency trials.

used to objectively identify processes relevant to interoceptive
attention (26,27), with a focus on comparing response accu-
racy with objective monitoring of respiratory rate or respiratory
cycle (28,30,59). In this study, we used consistency of
responding on a breath-monitoring task as a distinct and
relatively unstudied performance metric during interoceptive
attention. Response consistency has been used as a perfor-
mance metric on exteroceptive continuous performance tasks
and is different from accuracy (60-62). Here, we made several
important findings related to understanding the neurophysio-
logical processes that occur during interoceptive attention,
response consistency, and the relationship between these
measures and subjective mindfulness.

First, we found that consistency of responses on this
interoceptive attention task can be sensitive to age, with
significantly greater consistency being found in individuals
<60 years of age versus older adults. Related research has
also shown that interoceptive awareness for heartbeat
signals declines with age (63). This finding is consistent

8

with much research on exteroceptive attention, particularly
research that has shown superior performance efficiency
and processing speed in younger adults (45,64,65). We
also found that interoceptive attention consistency posi-
tively predicted performance efficiency on the inhibitory
control task—a type of exteroceptive Go/NoGo continuous
performance task (40,41). Previous work has shown that
interoceptive mindfulness training enhances neural pro-
cesses associated with behavioral inhibition on similar Go/
NoGo tasks (66). Our findings suggest that there may be
common attentional control functions invoked in both the
interoceptive and exteroceptive tasks, especially because
they were both continuous performance tasks (27,31).
Second, we found that source-localized alpha-frequency
activity on the task is larger and distinct from activity that
occurs during rest. This increase in overall brain activity is
consistent with a functional magnetic resonance imaging study
showing widespread activation during interoceptive attention
relative to a comparable simple exteroception task (67). In
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addition we found even greater activity on low- versus high-
consistency task ftrials. These trial-type differences were
greatest in the pDMN network but were also observed in other
DMN and cognitive/prefrontal brain regions. There are at least
3 interpretations related to these brain findings. First, response
variability on this task (lower consistency) may be associated
with increased mind wandering, reflected in increased activity
across DMN and frontal brain regions. Prior studies back this
interpretation in that mind-wandering is associated with
increased behavioral variability (68,69) and greater activity in
both DMN and lateral executive control regions (32,70). A
second interpretation of this data is that on more variable
trials, increased brain activity was observed as a compen-
satory mechanism to bring participants back on task.
Consistent with this theory, prior work has suggested that
increased DMN activity in certain contexts may be associated
with lower behavioral variability (69) and an increase in
interoceptive attention (29). This is also consistent with the
general idea that on more difficult attentive tasks, there is
more widespread brain activity, i.e., activity scales with diffi-
culty (67). A final interpretation that we cannot rule out is that
the trial-related differences in brain activity are driven by
physiological differences related to breathing. Respiration
has been linked to connectivity of the DMN (71-73,74) and
shown to modulate posterior alpha power (75)—an effect that
is related to modulation of aperiodic brain activity (75,76). To
address this, in supplementary experiments, we found that
variability on the task is associated with longer inhales/ex-
hales. This finding mirrors what has been described by
others—that increased respiratory variability is associated
with sighing, i.e., an increase in deep breathing (77,78).
Interestingly, sighing is also linked with diminished attentional
stability (77). Moreover, prior work comparing the neuro-
physiological correlates of deep breathing to regular breath-
ing did not find differences in alpha-scalp power/activity
(79,80). As attentional variability, respiratory variability, and
deeper breathing are all inter-related, our study was not
suitable to adequately disambiguate these 3 aspects that
may drive neural changes.

With regard to neurobehavioral associations, we found that
greater activity in the precuneus region of the pDMN was
significantly related to lower subjective mindfulness. This
finding is consistent with a large body of literature primarily
from functional magnetic resonance imaging studies, as nicely
summarized in a systematic review (81) that showed that both
short- and long-term meditation training was associated with
reduction in subjective markers of mind wandering that are in
turn linked with reduced activity in DMN brain regions. Thus,
here we showed an electrophysiological correlate of this
neurobehavioral relationship that can be captured using a brief
interoceptive attention assessment in a large sample across
the life span that provides confidence that results will be
generalizable beyond our study (82,83). However, it is impor-
tant to note that while mindfulness was physiologically related
to pDMN activity, it was not related to the interoceptive per-
formance consistency measure, i.e., individuals with greater
subjective mindfulness did not have more consistent task
performance. This evidence is consistent with studies that
have compared meditators (who regularly practice attention to
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internal body sensations) with nonmeditators and found no
difference in interoceptive monitoring of heartbeat signals
(84,85).

Limitations of our study include low-density EEG-derived
source reconstructions in the large sample experiment,
although it is important to note that we validated these results
in the supplementary independent experiment with dense
electrodes. We also do not have formal documentation of the
extent of meditation experience in our participants, although
no participant explicitly noted having long-term experience.
Relatedly, long-term meditation experience has been shown to
slow down overall respiration rates (86). Therefore, not
knowing the respiration rates in our large sample is a limitation,
although in the supplementary experiment, we found no rela-
tionship between overall respiration rates and response con-
sistency. Our findings are also associative, and future studies
may causally verify our results using specific circuit perturba-
tion/neuromodulation strategies like electrical/magnetic brain
stimulation or neurofeedback (87-89). Overall, our results
demonstrate the neural correlates of inconsistent versus
consistent interoceptive breath attention, revealed as pro-
nounced activity in the pDMN that is inversely related to
connectivity with the FPN and CON. This pDMN activity also
distinguishes individuals with low versus high mindfulness and
thus may serve as a functional marker in future studies that aim
to train interoceptive abilities and mindfulness (90).
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