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Abstract: Given to its ability to irreversibly acetylate the platelet cyclooxygenase-1 enzyme, acetylsalicylic
acid (ASA) is successfully employed for the prevention of cardiovascular disease. Recently, an antitumoral
effect of ASA in colorectal cancer has been increasingly documented. However, the molecular and
metabolic mechanisms by which ASA exerts such effect is largely unknown. Using a new, untargeted
liquid chromatography-mass spectrometry approach, we have analyzed urine samples from seven
healthy participants that each ingested 100 mg of ASA once daily for 1 week. Of the 2007 features
detected, 25 metabolites differing after ASA ingestion (nominal p < 0.05 and variable importance in
projection (VIP) score > 1) were identified, and pathway analysis revealed low levels of glutamine
and of metabolites involved in histidine and purine metabolisms. Likewise, consistent with an altered
fatty acid p-oxidation process, a decrease in several short- and medium-chain acyl-carnitines was
observed. An abnormal f-oxidation and a lower than normal glutamine availability suggests reduced
synthesis of acetyl-Co-A, as they are events linked to one another and experimentally related to ASA
antiproliferative effects. While giving an example of how untargeted metabolomics allows us to
explore new clinical applications of drugs, the present data provide a direction to be pursued to test
the therapeutic effects of ASA—e.g., the antitumoral effect—beyond cardiovascular protection.
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1. Introduction

Aspirin, the brand name of acetylsalicylic acid (ASA), is the most commonly used nonsteroidal
anti-inflammatory drug in the world. It is administrated at low doses in the long-term prevention of
cardiovascular disease (CVD) [1], and its use in counteracting the long-term risk of death due to cancer
has been recently suggested [2,3]. The “canonical” effect of ASA is due to the irreversible acetylation of
the platelet cyclooxygenase (COX)-1 enzyme, and in turn to the long-term suppression of the synthesis
of thromboxane (TX) A;, a potent platelet agonist derived from the metabolism of arachidonic acid [4].

Non-COX-1 mediated effects of ASA that may contribute to explaining its antithrombotic
and anti-inflammatory action, as well as other anti-atherosclerotic properties, are increasingly
recognized [5,6]. In vitro cell models have shown that ASA and its metabolite salicylic acid induce
the expression of some mitochondrial respiratory genes, as well as of genes involved in cholesterol
homeostasis, showing new beneficial effects of ASA in atherosclerosis [6,7]. Modulation of the
adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in cellular models has
also been shown [6,8].

In order to explore the non-canonical ASA effects, we took advantage of pharmaco-metabolomics,
an emerging area of research that helps to define the mechanism of action of drugs and individual
responses to drug treatment through the analysis of metabolites [9,10]. The study of low-molecular-weight
metabolite levels allows to investigate drug effects in biological fluids (e.g., urine or blood) as the
result of changes arising in response to treatment. This also lets us highlight the biochemical pathways
involved in drug effects, and in turn amplifies the spectrum of drug application [11,12].

In this pilot study, an untargeted metabolomic approach by liquid chromatography—quadrupole
time-of-flight mass spectrometry (LC-QTOE-MS) on urine of healthy participants, before and after
7 days of low-dose ASA ingestion, was applied to a broad-spectrum appraise the metabolic profiles
affected by ASA and potentially involved in cardiovascular and cancer prevention.

2. Materials and Methods

2.1. Chemicals and Reagents

The purity of solvents, reagents, and chemical standards is reported in Appendix A.

2.2. Study Design

Seven healthy participants (HPs; aged 29.9 + 2.6 years; 42.8% men) were enrolled in the present
pilot study at the Centro Cardiologico Monzino, IRCCS (CCM). Participants ingested low-dose,
enteric-coated 100 mg ASA once-daily (od) for 7 consecutive days. A 24 h urine sample collection was
obtained before the first (T0) and after the last (T7) ASA intake. Serum samples were obtained at TO
and T7 after 2 h of incubation at 37 °C. All participants were instructed to avoid other drugs during the
study week.

The present study, approved by the CCM Institutional Ethics Committee (n® CCM 525), was carried
out according to the ethical guidelines of the 1975 Declaration of Helsinki. Written informed consent to
participate was obtained from all participants.

2.3. COX-mediated Effect of Acetylsalicylic Acid: TXA, Metabolite Measurement

The COX-1 mediated effect of ASA was assessed through the measurement of serum levels of TXB,,
the stable metabolite of TXA;, by a previously developed and validated liquid chromatography-tandem
mass spectrometry (LC-MS/MS) method [13]. In addition, as an index of systemic TXA, biosynthesis,
the urinary TXA; catabolic metabolite 11-dehydro thromboxane B; (11-dehydro TXB;), was also
measured [14].
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2.4. LC-QTOF-MS Metabolic Fingerprinting

2.4.1. Sample Preparation

Twenty-four hour urine samples were obtained from all study participants; during the 24 h
sample collection, urine was maintained at 4 °C. Once collection has been completed, urine was
aliquoted and stored at —80 °C until analysis. Frozen urine was thawed at room temperature and then
centrifuged at 1700x g for 10 min. The supernatant (100 pL) was diluted with a reference standard water
solution containing 11-dehydro-thromboxane B2-d4 (11-DH-TXB,-dy), 8-iso-prostaglandin Fp-dy
(8-is0-PGF;-dy), 12-hydroxyeicosatetraenoic acid-dg (12-HETE-dg), reserpine, 3—nitro—tyrosine—13C9
(3-nitro-tyr-13Cy), 8-hydroxy-2-deoxyguanosine-°Nj (8-OHdG-!°N5), and salicylic acid-d4 (SA-dy4)
(100 uL, final concentration 1 ng/mL each). Samples were centrifuged at 12,000 g for 20 min and aliquoted
in two vials for the LC-QTOF-MS metabolic fingerprinting and the liquid chromatography—quadrupole
time-of-flight-tandem mass spectrometry (LC-QTOF-MS/MS) analysis.

2.4.2. Ultra-High-Performance LC-QTOE-MS Method Sample Analysis

LC-QTOF-MS analysis was performed by an ultra-high-performance liquid chromatography
system (1290 Infinity series, Agilent Technologies, Santa Clara, CA, USA), coupled to a quadrupole
time-of-flight mass spectrometry detector (Agilent 6550 iFunnel Q-TOF) outfitted with an electrospray
ionization (ESI) source. Samples were analyzed in duplicate, both in positive and in negative detection
mode. One pL was injected onto the Zorbax Eclipse Plus C18 reverse phase column (2.1 X 150 mm,
1.8 um, Agilent Technologies), maintained at 40 °C. For the positive ion mode run, the used mobile
phases were: water + acetonitrile (95:5 v/v) with 0.1% formic acid (A) and acetonitrile with 0.1% formic
acid (B). The gradient was as follows: 2 min with 100% A, 2-12 min with 100-95% A, 12-18 min with
95-0% A, 18-22 min with 0% A, and 22-23 min with 0-100% A. For the negative ion mode run, mobile
phase A was ammonium acetate 10 mM, and mobile phase B was acetonitrile with ammonium acetate
10 mM. The gradient was as follows: 2 min with 99% A, 2-12 min with 99-95% A, 12-18 min with
95-0% A, 18-22 min with 0% A, and 22-23 min with 0-99% A. Both analyses were conducted at a
constant flow rate of 0.4 mL/min. The detector operated in full scan mode, acquiring mass spectra over
the m/z range of 40-1100 Da, with a scan rate of 2 scans per second. The source parameters for both ion
modes were drying gas temperature (280 °C), drying gas flow (13 1/min), nebulizer pressure (45 psig),
sheath gas temperature (300 °C), sheath gas flow (12 l/min), capillary voltage (3000 V), nozzle voltage
(500 V), and fragmentor (150 V). The reference masses were 121.0509 m/z and 922.0098 m/z (ESI+),
and 112.9856 m/z and 1033.9881 m/z (ESI-). These were continuously infused to correct instrument
variability. Data were acquired by Agilent’s MassHunter Workstation Data Acquisition software.

2.4.3. Performance Evaluation

Performance evaluation was assessed by analyzing reference standards spiked in urine and quality
control (QC) samples. QC samples were obtained by pooling together equal volumes of all urine
samples (TO + T7) spiked with the reference standard solution. Subsequently, QCs were injected at the
beginning of the analytical sequence (1 = 9), every six injections, and at the end of the analysis (n = 3).

2.4.4. Data Processing

Raw acquired data were analyzed by MassHunter Profinder software (Agilent Technologies)
using the “Batch Recursive Feature Extraction” algorithm that provides a list of features that represent
possible metabolites, combining different information from co-eluting ions, such as charge state,
isotopic distribution, presence of adducts, and dimers. The most relevant parameters selected for
feature extraction were 500 counts for peak filter (to clean background noise); charge state limited to 2;
allowed ion species: +H, +Na, and +K in positive ion mode, and —H, +Cl, and +CH3COO in negative
ion mode; and neutral loss of water for both ion modes. Through the same software was performed
the peak alignment, using a retention time (RT) window of 0% + 0.15 min and a mass window of
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15 ppm + 2 mDa. To improve data quality, a manual feature evaluation procedure was performed:
features present in the blank (water), with an RT lower than 0.7 min, or subjected to the carryover or
reference standard solution’s peaks were excluded. The abundance values of duplicates were averaged,
and missing values were manually assigned as half the lowest value detected in a single group if it
is random [15], or as zero if the feature was absent in the whole group (T0 or T7). Urine creatinine
normalization was also performed to control the variation in urine output. Furthermore, a filtering
quality assurance procedure was applied, in order to deem as reliable those features present in at
least 90% of the QCs with a coefficient of variation (CV) < 30% [16]. The robust lists finally obtained,
for positive and negative modes, were defined as compound lists.

2.4.5. Compound Identification

The metabolite identification was based on their measured accurate m/z values (10 ppm mass
error window) and on the comparison of their acquired LC-QTOF-MS/MS spectra with those available
on different databases, such as Metlin (http://metlin.scripps.edu), Kyoto Encyclopedia of Genes
and Genomes (http://www.kegg.jp/kegg), Human Metabolome Database (http://www.hmdb.ca),
and Personal Compound Database and Library (Agilent Technologies). The fragment elucidation,
performed by MassHunter Molecular Structure Correlator (Agilent Technologies), the agreement
between RT and compounds’ polarity, and the biological significance also contributed to define putative
matches. Annotation or identification was determined following official classification defined by the
Metabolomics Standard Initiative [17].

2.4.6. Ultra-High-Performance LC-QTOF-MS/MS Method Sample Analysis

The LC-QTOF-MS/MS experiments were performed only for nominally significant compounds
(T7 vs. T0), using the same chromatographic separation and ionization conditions previously described.
Compounds were targeted using their m/z value (isolation width 4 Da) and RT (ART 0.9 min), and data
were collected applying two fixed collision energies, 10 and 40 eV. Moreover, samples with the highest
intensity of each compound were analyzed to optimize the MS/MS spectra quality. Two pL of sample
were injected, and 32 runs (11 in positive ion mode and 21 in negative ion mode) were performed in
order to avoid fragmentation of significant compounds co-eluting in the same analysis. Subsequently,
spectra were processed through MassHunter Qualitative software (Agilent Technologies).

2.5. Statistics

The compound lists obtained from positive and negative modes were treated independently,
and values were log transformed before analysis. Using the lists obtained after the quality assurance
procedure (1048 in positive ion mode and 959 in negative ion mode), we performed unsupervised
principal component analysis (PCA) by Mass Profiler Professional software (Agilent Technologies),
and orthogonal, partial-least-squares discriminant analysis (OPLS-DA) by the SIMCA statistical
package. In OPLS-DA, in negative ionization mode we used one predictive and two orthogonal
components, and in positive ionization mode we used one predictive and three orthogonal components.
The criterion for inclusion of a new component in the model was based on the resultant increase in
overall R2X (explained variation parameter). For cross validation, the leave-one-out method was
employed. Metabolite values before and after treatment were compared by paired Student’s t-test.
Due to the nature of this study, a small-sample pilot investigation intended as a model for future
studies, a formal sample size calculation was not applied. Accordingly, feature selection has not
been based on stringent criteria (such as p-values corrected for multiple testing) as required in large
metabolomics studies. Instead, in order to highlight the best candidate metabolites, we adopted a
criterion based on a “variable importance in projection” (VIP) score above one, and on a “nominal”
p-value (i.e., the t-test p-value not corrected for multiple testing) below 0.05. Thus, the p-values referred
to in the present study should be interpreted as an illustration of a procedure for selecting metabolites
to be applied in future studies, and not as a criterion to evaluate the generalizability of our results.
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The heatmap and pathway analysis were performed using MetaboAnalyst, which is a web-based
tool for the visualization of metabonomics. Pathway analysis was tested by the Fishers” exact test.
The identified metabolites were visualized through Cytoscape v3.7.1 [18], using the app Metscape
v3.1.3. In particular, MetScape was used to provide the bioinformatic framework for the visualization
and interpretation of our metabolomic data [19].

The compound lists obtained from positive and negative modes were treated independently for
statistical analysis. Compound levels at TO and T7 were log-transformed before analysis and were
compared by paired Student’s t-test. Correlations between identified compounds were determined
using the Pearson test. All calculations were computed with the aid of the SAS software package
(Version 9.4 SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. TXA, Metabolite Measurement

At T7, serum TXB, concentrations were lower (more than 98% decrease) than at TO in each participant,
(TO: 205.69 + 77.27 ng/mL; T7: 1.48 + 0.41 ng/mL; p < 0.001). In agreement with this data, a significant
decrease in urinary 11-dehydro TXB, levels was observed after ASA treatment (381.7 + 131.4 and
95.5 + 39.0 pg/mg creatinine, respectively; p = 0.002).

3.2. LC-QTOF-MS Metabolic Fingerprint

3.2.1. LC-QTOF-MS Sample Analysis

To evaluate the metabolic modifications induced by ASA, we developed a LC-QTOF-MS untargeted
method for urine sample analysis. Representative chromatograms, obtained in positive and negative
ionization modes, are shown in Figure 1.
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Figure 1. Representative chromatograms obtained from a urine sample: total ion chromatogram (TIC)
in positive (A1) and negative (B1) detection modes; extracted compound chromatogram (ECC) in
positive (A2) and negative (B2) detection modes.

3.2.2. Performance Evaluation

The reproducibility of sample preparation and analysis processes were valuated through two
different approaches, based on QC samples and reference standards solution [20,21]. The total ion
chromatogram (TIC) of QCs versus the order of injection showed good reproducibility in the whole
analytical run, both for positive and negative ionization modes (CV: 1.64% and 1.62%, respectively).
The TICs of sample replicates showed a very little intra-run variability (Figure S1, panels Al and
A?2). Furthermore, the reproducibility of QC samples was confirmed using PCA score plots in both



J. Clin. Med. 2020, 9, 51

6 of 16

ionization modes (Figure S1, panels B1 and B2). In addition, the intensity of each reference standard,
added to the sample before its preparation, was evaluated: CV values were lower than 10% for all the
added standards, except for reserpine (Figure S1C).

3.2.3. Data Processing

The workflow of data processing is depicted in Figure 2.

—
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I

Quality assurance procedure

|

LC-QTOF-MS analysis
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Figure 2. Representation of the untargeted workflow applied to analyze urine samples. In the green box

are the steps involved in data processing; in the blue box are the steps regarding compound identification.

In the arrows are reported the number of features or compounds obtained by the different steps,
in positive (+) or negative (—) ionization modes. LC-QTOF-MS: Liquid Chromatography—Quadrupole
Time-of-Flight-mass spectrometry; PCA: Principal Component Analysis; OPLS-DA: Orthogonal
Partial-Least-Squares Discriminant Analysis; QTOF-MS/MS: Quadrupole Time of Flight-tandem

mass spectrometry.

After data acquisition, a total of 2599 features (1427 in positive and 1172 in negative ionization
modes) were extracted through the Batch Recursive Feature Extraction algorithm. After the visual
validation of peak morphology and integration of compounds, the data set was reduced to 2061
(1071 and 990, respectively). Applying the quality assurance procedure, 2007 features were considered to
be reliable compounds: 1048 for positive and 959 for negative modes. The compound lists (positive and
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negative) were used to build the multivariate models and to discriminate compounds potentially
modified by ASA treatment.

The OPLS-DA model was built by positive and negative lists subtracted from ASA-related
compounds and present only at T7. The plot of the first two OPLS-DA components, i.e., the two most
relevant indices summarizing the data, is represented in Figure S2.

3.3. Compound Identification

Metabolic Changes Induced by ASA

The flow chart of compound identification is shown in Figure 2. In Supplementary Table S1 are
reported all the metabolites that differ between TO and T7 or those that are only present at T7 (n = 57).
Sixty compounds differed between T0 and T7, while 11 metabolites are only present at T7; among
them, we found ASA related metabolites, i.e., salicylic acid, 5-sulfosalicylic acid, and salicyluric acid.
Based on the comparison of the acquired LC-QTOF-MS/MS spectra with those available on different
databases, we identified 25 compounds. The identified metabolites with their relative fold change and
VIP score are reported in Table 1.

Table 1. List of compounds potentially modified by acetylsalicylic acid (ASA) treatment; fold changes
were calculated comparing the levels before (T0) to those after treatment (T7). Compounds were selected
according to the procedure described in the Statistical Methods section. VIP: variable importance
in projection.

Compound Fold Change (T0 vs. T7) VIP Score
1,3,7-trimethyluric acid —2.44 3.21
aspartylglycosamine -1.79 2.90
aspartyl-isoleucine -1.29 2.79
tiglylcarnitine -1.30 2.53
2-methylhippuric acid -1.69 2.18
nicotinuric acid -1.26 2.13
2-isopropylmaleate 3.79 211
heptanoylcarnitine -1.23 2.10
3-methylglutarylcarnitine 2.56 1.98
L-histidine -1.56 1.96
xanthosine -1.33 1.93
N-formimino-L-glutamate -1.37 1.68
hydantoin-5-propionate -1.35 1.66
corchoionoside B -1.54 1.63
2-(2-phenylacetoxy)propionylglycine 1.37 1.63
prunasin 3.14 1.62
4-imidazolone-5-propanoate -1.34 1.50
AICAr -1.26 1.48
isovalerylcarnitine -1.35 1.43
glycochenodeoxycholate 7-sulfate -1.41 1.39
L-glutamine -1.29 1.30
1-malonylamino)cyclopropanecarboxylic acid -1.26 1.22
butyryl-L-carnitine -1.31 1.15
piperidine -1.65 1.08

benzeneacetamide-4-O-sulphate -1.18 1.04
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3.4. Biological Interpretation

The identified metabolites were investigated, and the biochemical pathways in which they are
involved were determined (Figure 3).
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Figure 3. Schematic representation of histidine; alanine, aspartate, and glutamate; and purine metabolism
(the main pathways affected by 7 days, low-dose acetylsalicylic acid (ASA) ingestion in healthy
participants). Red circles highlight the metabolites putatively identified whose levels decrease at T7.

#: Glucose-6P dehydrogenase; ¥: Glutamine-PRPP amidotransferase.

Eleven metabolic pathways were constructed, and among them, by applying the pathway
enrichment analysis, histidine; alanine, aspartate, and glutamate; and purine metabolisms appeared to
be the pathways maximally affected by the 7 days of exposure to low-dose ASA (Fishers” exact test,
p < 0.05, Figure 4).
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Figure 4. Pathway enrichment analysis showing the nodes in the graphic depicting the metabolic
pathways affected by 7 day treatment with ASA 100 mg once daily. On the y-axis, the -log (p) value
represents the quantitative perturbation of pathways. On the x-axis, the pathway impact value refers
to the centrality of a metabolite in the metabolic network. The node color, varying from yellow to
red, is based on its p value, and the node radius is determined on the basis of their pathway impact
values. A:histidine metabolism; B: alanine, aspartate, and glutamate metabolism; C: purine metabolism,
D: D-glutamine and D-glutamate metabolism; E: valine, leucine, and isoleucine biosynthesis, F: nitrogen
metabolism; G: aminoacyl-tRNA biosynthesis; H: caffeine metabolism; I: 3-alanine metabolism;
J: pyrimidine metabolism; K: arginine and proline metabolism.
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The levels of several acylcarnitines, reflecting the 3-oxidation process, were putatively affected by
the low-dose ASA administration: in particular, the concentrations of butyryl-L-carnitine, tiglylcarnitine,
isovalerylcarnitine, and heptanoylcarnitine were decreased, while those of methylglutarylcarnitine
were increased.

The metabolites identified were analyzed using MetScape, in order to evaluate whether there is a
common pathway linking them to one another. As reported in Figure 5, glutamine exerts a pivotal role
not only in glutamate metabolism, but also in histidine and alanine metabolism. The green and orange
arrows shown in Figure 5 confirm this hypothesis, representing the linear Pearson correlation between
the identified metabolites (green: positive correlations; orange: negative correlations).
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Figure 5. Metabolic pathway network interaction. Colored arrows represent the linear Pearson correlation
of >0.3 among the identified metabolites (green: positive correlations; orange: negative correlations).
The dark green lines refer to nominally significant correlations. The hexagons indicate metabolites
(dark red: identified metabolites; light red: predicted metabolites), while the diamonds represent
compound reactions (violet: reversible reactions; orange: irreversible reactions).

4. Discussion

By using an untargeted metabolomic approach, the present pilot study conducted in healthy
participants shows, besides the canonical ASA effect, putative changes in the histidine; purine; and
alanine, aspartate, and glutamate metabolisms after drug treatment. The ASA inhibition of the COX
enzyme in healthy participants was assessed by the measurement of TXA; metabolites. The levels of
serum TXB, before and after ASA ingestion are comparable to those reported in the literature [22-25],
and moves in parallel with the reduction of urinary levels of 11-dehydro TXB,.

Alongside the well-known inhibition of TXA; production, we demonstrated alterations in different
metabolic routes.
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In the samples collected after ASA treatment, the effect on the histidine pathway is documented
by the decrease of L-histidine and three major histidine catabolites: hydantoin-5-propionate,
4-imidazolone-5-propanoate, and N-formimino-L-glutamate (Figure 3). The involvement of the
purine pathway was also confirmed by xanthosine reduction (Figure 3). Finally, L-glutamine and
5-aminoimidazole-4-carboxamide-1-3-D-ribofuranoside (AICAr) reduction was found, with AICAr
being a link between the histidine and the purine metabolism.

Although a decrease in L-histidine and AICAr does not directly reflects changes in 5-phosphoribosyl-
1-pyrophosphate (PRPP), their reduction could be related to the ASA-mediated impairment of the PPP,
as ASA is known to inhibit the expression of glucose-6-phosphate dehydrogenase [26], the rate-limiting
enzyme in the production of PRPP (Figure 3). Our observation of reduced urinary histidine levels after
ASA treatment is in keeping with data obtained by Lewis [27] on healthy serum samples after 2 weeks
of ASA ingestion using gas chromatography—mass spectrometry analysis.

Histidine is the precursor of histamine, an inflammatory mediator and an intracellular messenger
involved in platelet aggregation [28]. A decrease in histamine biosynthesis after ASA treatment is thus
expected [28]. The impairment of this metabolism may well play a role both in the anti-inflammatory
and antiplatelet effects of ASA, reinforcing its efficacy in CVD prevention. Thus, whether the histidine
reduction is associated to the concomitant decrease in the levels of histamine is unknown so far,
and deserves to be elucidated in detail.

Histidine degradation leads to glutamine biosynthesis through the glutamate route. Glutamine
is a key factor for cell proliferation and tumor growth [29,30]. This amino acid is metabolized
within the mitochondrion through an enzymatic process termed glutaminolysis, whereby glutamine
is converted to x-ketoglutarate («KG), an intermediate of the tricarboxylic acid (TCA) cycle [31].
In highly proliferating cells, citrate produced in the TCA cycle is redirected into the cytosol for the
production of NADPH and fatty acids. The production of «KG though glutaminolysis replenishes
the TCA cycle [32-34]. In keeping with older data in this area [27,35], we report that glutamine,
xantosine AICAr, 2-Oxoglutaramate, histidine, 4-imidazolone-5propanoate, N-formimino-L-glutamate,
and hidantoin-5-propionate are all reduced after 7 days of ASA ingestion. L-glutamine is the nitrogen
donor for the glutamine 5-phosphoribosyl-1-pyrophosphate amidotransferase, the rate-limiting enzyme
in de novo synthesis of purine nucleotides [36]. Decreased levels of glutamine in the samples obtained
after 7 days of ASA administration argue for an abnormal purine metabolism. Concomitant decreases
in both xanthosine and AICAr (Figure 3) strengthen this hypothesis, since AICAr, the extracellular form
of AICAR, is the phosphorylated precursor of purine. Cumulatively, all the changes in the metabolites
that we have found appear to be related to each other (Figure 4), providing a comprehensive frame from
the affected pathways and a direction to be pursued to understand chemioprotection by low-dose ASA.

Actually, in recent years, there has been increasing evidence for anticancer ASA activity. In eight
studies, it the ability of ASA to delay malignancy-associated death has been demonstrated [3].
The prolongation of the period before the onset of death related to malignancy was found to be
approximately five years for esophageal, pancreatic, brain, and lung cancers, and was even higher for
gastric, colon, and prostate cancers [2,37]. This effect of ASA is currently explained by its ability to acetylate
proteins other than COX-1 [38]. Recently, it has been demonstrated that ASA also decreases the expression
of the hypoxia-inducible factor lalpha (HIF1«), a key regulator of genes that are involved in metabolism
under hypoxic conditions and a major determinant of tumor cell stabilization [39,40]. In a recent
report [41], it has been shown that under normoxic conditions, HIF1« activity is significantly increased
by glutamine metabolism, and is decreased by (a) acetylation via acetyl CoA synthetase or ATP citrate
lyase, and (b) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, ASA significantly
reduced the effect of glutamine on HIF1«x [41]. The high proliferation exhibited by cancer cells requires
a constant supply of nutrients [42]. To satisfy their high demand for nutrients, cancer cells undergo a
metabolic reprogramming that stimulates anabolism through numerous metabolic pathways. Those
pathways ultimately lead cancer cells to highly depend on specific nutrients [43].
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The ability of ASA to decrease glutamine levels is of crucial importance to define the role of this
drug in chemoprotection, and could pave the way to new ASA application fields.

In our untargeted LC-QTOF-MS approach, we have also detected and putatively identified
several short/medium-chain acylcarnitines: butyryl-L-carnitine, tiglylcarnitine, isovalerylcarnitine,
heptanoylcarnitine, and methylglutarylcarnitine. Acylcarnitines are formed in the fatty acid (FA)
metabolism to carry long-chain acyl groups of FAs into the mitochondria, where they are broken down
through the p-oxidation pathway. In addition to inducing cancer cell death in glutamine-dependent
tumors, suppression of glutaminolysis may switch cells to alternative compensatory energy sources.
In an experimental model of glutamine-addicted cancers, glutaminolysis inhibition did not induce cancer
cell death, and g-oxidation was enhanced. Accelerated lipid catabolism, together with glutaminolysis
inhibition, were needed to trigger autophagy and cancer cell death [44]. As already described, ASA
promotes the phosphorylation of AMP-activated protein kinase (AMPK) [6,45,46], thus leading to
the reduction of malonyl-CoA, an inhibitor of the carnitine palmitoyl-transferase 1 (CPT1), with a
consequent increase in FA transport (Figure 6). Thus, ASA increases the f-oxidation of fatty acids,
as reflected by the reduced urinary excretion of the short-chain acylcarnitines in the present setting.
With few exceptions [47,48], the effect of ASA on the increase of mitochondrial fatty acid oxidation has
been documented in different cell lines, and interpreted as a compensatory shift from carbohydrate
metabolism to FA oxidation [46]. Involvement of the p-oxidation pathway in the effect of a pro-drug
formulation of ASA has also been reported in an animal model of hyperlipidemia [49].
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Figure 6. ASA induces adenosine monophosphate-activated protein kinase AMPK activity, which
involves a double effect: inhibition of ACC and activation of MCD. As result, malonyl-CoA falls
rapidly, because its synthesis is blocked and its degradation is enhanced. Consequently, the decrease of
malonyl-CoA levels prevents the inhibition of CPT1, causing an ultimate increase in fatty acid
oxidation. Thus, ASA induces the formation of fatty acyl-carnitine, catalyzing the transfer of
the fatty acyl group from CoA to carnitine. Subsequently, CAT shuttles the fatty acyl-carnitine
across the mitochondrial membrane. Finally, the CPT2 converts fatty acyl-carnitine back into
fatty acyl-CoA, which is broken down through the -oxidation catabolic process. ACC: acetyl-CoA
carboxylase; AMPK: adenosine monophosphate-activated protein kinase; ASA: acetylsalicylic acid;
CAT: carnitine-acylcarnitine translocase; CoA: coenzyme A; CPT1: carnitine palmitoyltransferase 1;
CPT2: carnitine palmitoyltransferase 2; MCD: malonyl-CoA decarboxylase.
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We assume that an increase of methylglutarylcarnitine reflects increased peroxisomal oxidation,
such a metabolite having been suggested as a marker of this process [50]. ASA is known to induce
peroxisome proliferator-activated receptor alpha expression and activity [51], thus boosting S-oxidation.
Moreover, ASA-AMPK activation switches off ATP-consuming processes, while switching on catabolic
pathways that generate ATP, a major event in the fatty acid oxidation process [52].

Several studies have attempted to highlight ASA mechanisms beyond COX-1 inhibition by
hypothesis-driven methods [27,35]. The broad spectrum of biochemical effects induced by a short-term
ASA treatment is highlighted in the present pilot study on urine samples. This biological matrix
is not affected by homeostatic regulation; it reflects physiological changes in response to metabolic
dysregulation [53] and gives a time-averaged pattern, representing an attractive compartment for
metabolomic studies [54]. Compared to other biological fluids, the metabolomic profile of urine—the
strategy that we have chosen—provides several advantages. Urine can be noninvasively and repeatedly
collected in large volumes, the protein content is absent or relatively low, and urine metabolites are
thermodynamically stable [55]. On the other hand, the metabolic signature obtained through the
analysis of plasma or serum represents an instantaneous readout strictly connected to the time between
blood collection and ASA assumption, as a result of absorption or enzymatic inter-individual variability.

The untargeted metabolomic approach, which simultaneously measures representative metabolites
derived from several pathways, may reveal unknown pathways and their potential interactions, thus
avoiding the disadvantage of hypothesis-driven methods that let investigators lose the overall impact
of therapy on the whole metabolism.

Our method was set up to provide an excellent range of hydrophobic separation power, and the
reliability of LC-QTOF-MS analysis was ensured by the reproducibility of QC and of reference standard
solution CV values. Likewise, the biological reliability of the method is documented by the occurrence
of the expected ASA metabolites—i.e., salicylic acid, salicyluric acid, and 5-sulfosalicylic acid—in
the samples collected after treatment. Obviously, it is important to keep in mind that this analytical
approach is not exhaustive, nor does it allow the evaluation of neutral molecules or compounds that
are below the limit of detection.

5. Conclusions

Through an untargeted metabolomics approach, we have collected data suggesting that different
pathways may be affected by a short-term, low-dose ASA treatment commonly employed in clinical
settings to prevent cardiovascular events. Decreased levels of urinary acylcarnitines argue for increased
FA p-oxidation, and in turn decreased glutamine, indicating that prolonged administration of low-dose
ASA may potentially exert beneficial effects beyond canonical cardiovascular protection. The data
here reported also support the concept of untargeted metabolomics analysis as a major direction to be
pursued in order to widely investigate treatment effects and explore new clinical applications of such a
drug. Obviously, all biochemical and biological conclusions based on a pilot study with a small sample
size need to be confirmed in a larger number of participants with targeted analysis. The present data
provide the rationale for such studies.
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Appendix A

Reagents, Reference Materials, and Apparatus

Water, acetonitrile, formic acid, and ammonium acetate were purchased from Sigma-Aldrich
(St. Louis, MO, USA), and were liquid chromatography—mass spectrometry (LC-MS) grade, as noted.
Deuterated 11-dehydro-thromboxane B2 (11-DH-TXB2-d4), deuterated 8-iso- prostaglandin F2«
(8-iso-PGF2x-d4), deuterated 12-hydroxyeicosatetraenoic acid (12-HETE-d8), thromboxane B2 (TXB2),
and deuterated TXB2 (TXB2-d4) were purchased from Cayman Chemicals Co. (Ann Arbor, MI, USA).
Reserpine and 3-nitro-tyrosine-13C9 (3-nitro-tyr-13C9) were purchased from Sigma-Aldrich; 8-hydroxy-
2-deoxyguanosine-15N5 (8-OHdG-15N5) from Cambridge Isotope Laboratories, Inc. (Andover, MA,
USA); and salicylic acid-d4 (SA-d4) from Santa Cruz Biotechnology (Dallas, TX, USA).

The metabolic fingerprinting, LC-MS analysis, and tandem liquid chromatography-mass
spectrometry (LC-MS/MS) analysis have been performed by an ultra-high-performance liquid
chromatography system (1290 Infinity series, Agilent Technologies, Santa Clara, CA, United States),
coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometry detector (Agilent 6550 iFunnel
Q-TOF) outfitted with an electrospray ionization (ESI) source. A Zorbax Eclipse Plus C18 reverse phase
column (2.1 X 150 mm, 1.8 um, Agilent Technologies) was used.

An Accela high performance liquid chromatography System (Thermo Fisher Scientific, San Jose, CA,
United States) coupled to a triple quadrupole mass spectrometer TSQ Quantum Access (Thermo Fisher
Scientific), outfitted with an ESI source operating in negative mode, was used to measure TXB2 and
11-DH TXB;. For chromatographic separation, an XBridge C18 column (2.1 X 30 mm, 2.5 um, Waters)
was adopted.
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